Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Setup
2.2. Yield and Biometric Analysis
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Chichakli, B.; von Braun, J.; Lang, C.; Barben, D.; Philp, J. Policy: Five cornerstones of a global bioeconomy. Nature 2016, 535, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Ben Fradj, N.; Rozakis, S.; Borzęcka, M.; Matyka, M. Miscanthus in the European bio-economy: A network analysis. Ind. Crops Prod. 2020, 148, 112281. [Google Scholar] [CrossRef]
- Volk, T.A.; Abrahamson, L.P.; Nowak, C.A.; Smart, L.B.; Tharakan, P.J.; White, E.H. The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenergy 2016, 30, 715–727. [Google Scholar] [CrossRef]
- Walle, I.V.; Van Camp, N.; Van De Casteele, L.; Verheyen, K.; Lemeur, R. Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential. Biomass Bioenergy 2007, 31, 276–283. [Google Scholar] [CrossRef]
- Borkowska, H.; Molas, R. Yield comparison of four lignocellulosic perennial energy crop species. Biomass Bioenergy 2013, 51, 145–153. [Google Scholar] [CrossRef]
- Stolarski, J.M.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M. Extensive Willow Biomass Production on Marginal Land. Pol. J. Environ. Stud. 2019, 6, 4359–4367. [Google Scholar] [CrossRef]
- Diamantidis, N.D.; Koukis, E.G. Agricultural crops and residues as feedstock for non-food products in Western Europe. Ind. Crops Prod. 2000, 11, 97–106. [Google Scholar] [CrossRef]
- Tharakan, P.J.; Volk, T.A.; Abrahamson, L.P.; White, E.H. Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass Bioenergy 2003, 25, 571–580. [Google Scholar] [CrossRef]
- Licht, L.A.; Isebrands, J.G. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 2005, 28, 203–218. [Google Scholar] [CrossRef]
- Fillion, M.; Brisson, J.; Teodorescu, T.I.; Sauve, S.; Labrecque, M. Performance of Salix viminalis and Populus nigra x Populus maximowiczii in short rotation intensive culture under high irrigation. Biomass Bioenergy 2009, 33, 1271–1277. [Google Scholar] [CrossRef]
- Cunniff, J.; Purdy, S.J.; Barraclough, T.J.; Castle, M.; Maddison, A.L.; Jones, L.E.; Karp, A. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation. Biomass Bioenergy 2015, 80, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Kuzovkina, Y.A.; Volk, T.A. The characterization of willow (Salix L.) varieties for use in ecological engineering applications: Coordination of structure, function and autecology. Ecol. Eng. 2009, 35, 1178–1189. [Google Scholar] [CrossRef]
- Cao, Y.; Lehto, T.; Piirainen, S.; Kukkonen, J.V.K.; Pelkonen, P. Effects of planting orientation and density on the soil solution chemistry and growth of willow cuttings. Biomass Bioenergy 2012, 46, 165–173. [Google Scholar] [CrossRef]
- Djomo, S.N.; Kasmioui, O.E.; Ceulemans, R. Energy and greenhouse gas balance of bioenergy production from poplar and willow: A review. GCB Bioenergy 2011, 3, 181–197. [Google Scholar] [CrossRef]
- Zamora, S.D.; Apostol, G.K. Biomass production and potential ethanol yields of shrub willow hybrids and native willow accessions after a single 3-year harvest cycle on marginal lands in central Minnesota, USA. Agrofor. Syst. 2014, 88, 593–606. [Google Scholar] [CrossRef]
- Stolarski, J.M.; Krzyżaniak, M.; Załuski, D.; Tworkowski, J.; Szczukowski, S. Effects of site, genotype and subsequent harvest rotation of willow productivity. Agriculture 2020, 10, 412. [Google Scholar] [CrossRef]
- Stolarski, J.M.; Szczukowski, S.; Krzyżaniak, M.; Tworkowski, J. Energy Value of yield and biomass quality in a 7-year rotation of willow cultivated on marginal soil. Energies 2020, 13, 2144. [Google Scholar] [CrossRef]
- Hinton-Jones, M.; Valentine, J. Variety and altitude effects on yields and other characters of SRC willow in Wales. Biomass Energy Crops III Asp. Appl. Biol. 2009, 90, 67–73. [Google Scholar]
- El Bassam, N. Handbook of Bioenergy Crops; Earthscan Ltd.: London, UK, 2010; pp. 392–398. [Google Scholar]
- Aylott, M.J.; Casella, E.; Tubby, I.; Street, N.R.; Smith, P.; Taylor, G. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol. 2008, 178, 358–370. [Google Scholar] [CrossRef]
- Lindegaard, K.N.; Carter, M.M.; McCracken, A.; Shield, I.; MacAlpine, W.; Jones, M.H.; Larsson, S. Comparative trials of elite Swedish and UK biomass willow varieties 2001–2010. Asp. Appl. Biol. 2011, 112, e66. [Google Scholar]
- Pei, M.H.; Lindegaard, K.; Ruiz, C.; Bayon, C. Rust resistance of some varieties and recently bred genotypes of biomass willows. Biomass Bioenergy 2008, 32, 453–459. [Google Scholar] [CrossRef]
- Dimitriou, I.; Mola-Yudego, B. Poplar and willow plantations on agricultural land in Sweden: Area, yield, groundwater quality and soil organic carbon. Biomass Bioenergy 2017, 383, 99–107. [Google Scholar] [CrossRef]
- Larsen, S.U.; JØrgensen, U.; Laerke, P.E. Willow yield is Highly dependent on clone and site. Bioenerg. Res. 2014, 7, 1280–1292. [Google Scholar] [CrossRef]
- Serapiglia, M.J.; Cameron, K.D.; Stipanovic, A.J.; Abrahamson, L.P.; Volk, T.A.; Smart, L.B. Yield and woody biomass traits of novel shrub willow hybrids at two contrasting sites. Bioenergy Res. 2013, 6, 533–546. [Google Scholar] [CrossRef]
- Fabio, E.S.; Volk, T.A.; Miller, R.O.; Serapiglia, M.J.; Gauch, H.G.; Van Rees, K.C.J.; Hangs, R.D.; Amichev, B.Y.; Kuzovkina, Y.A.; Labrecque, M.; et al. Genotype x environment interaction analysis of North American shrub willow yield trials confirms superior performance of triploid hybrids. GCB Bioenergy 2017, 9, 445–459. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Klasa, A. Willow biomass production under conditions of low-input agriculture on marginal soils. For. Ecol. Managm. 2011, 262, 1558–1566. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyzaniak, M.; Szczukowski, S.; Tworkowski, J.; ´Śnieg, M. Willow productivity on a commercial plantation in triennial harvest cycle. Bulg. J. Agric. Sci. 2016, 22, 65–72. [Google Scholar]
- Nord-Larsen, T.; Sevel, L.; Raulund-Rasmussen, K. Commercially grown short rotation coppice willow in Denmark: Biomass production and factors affecting production. Bioenergy Res. 2015, 8, 325–339. [Google Scholar] [CrossRef]
- Castaño-Díaz, M.; Barrio-Anta, M.; Afif-Khouri, E.; Cámara-Obregón, A. Willow short rotation coppice trial in a former mining area in northern Spain: Effects of clone, fertilization and planting density on yield after five years. Forests 2018, 9, 154. [Google Scholar] [CrossRef]
- Hernea, C.; Trava, I.D.; Borlea, G.F. Biomass production of some Swedish willow hybrids on the West of Romania. A case study. J. Hortic. For. Biotechnol. 2015, 19, 103–106. [Google Scholar]
- Maděra, P.; Kovářová, P. Primary succession of white willow communities in the supraregional biocorridor in the Middle water reservoir of Nové Mlýny. Ekológia 2004, 23, 191–204. [Google Scholar]
- Maděra, P.; Packová, P.; Manjarrés, D.R.L.; Štykar, J.; Simanov, V. The model of potential biomass production in Odra R. basin. Ekológia 2009, 28, 170–190. [Google Scholar] [CrossRef]
- Amichev, B.Y.; Volk, T.A.; Hangs, R.D.; Bélanger, N.; Vujanovic, V.; Van Rees, K.C.J. Growth, survival, and yields of 30 short-rotation willow cultivars on the Canadian Prairies: 2nd rotation implications. New For. 2018, 49, 649–665. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Niksa, D.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S. Willow productivity from small-and large-scale experimental plantations in Poland from 2000 to 2017. Renew. Sust. Energy Rev. 2019, 101, 461–475. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Załuski, D. Willow production during 12 consecutive years—The effects of harvest rotation, planting density and cultivar on biomass yield. GCB Bioenergy 2019, 11, 635–656. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Śnieg, M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S. Short rotation coppices, grasses and other herbaceous crops: Productivity and yield energy value versus 26 genotypes. Biomass Bioenergy 2018, 119, 109–120. [Google Scholar] [CrossRef]
- Pudełko, R.; Kozak, M.; Jędrejek, A.; Gałczyńska, M.; Pomianek, B. Regionalisation of unutilised agricultural area in Poland. Pol. J. Soil Sci. 2018, 51, 119. [Google Scholar] [CrossRef]
- Scholz, V.; Ellerbrock, R. The growth productivity, and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass Bioenergy 2002, 23, 81–92. [Google Scholar] [CrossRef]
- Peacock, L.; Hunter, T.; Turner, H.; Brain, P. Does host genotype diversity affect the distribution of insect and disease damage in willow cropping systems? J. Appl. Ecol. 2001, 38, 1070–1081. [Google Scholar] [CrossRef]
- Karp, A.; Hanley, S.J.; Trybush, S.O.; Macalpine, W.; Pei, M.; Shield, I. Genetic improvement of willow for bioenergy and biofuels free access. J. Integr. Plant. Biol. 2011, 53, 151–165. [Google Scholar] [CrossRef]
Variety | Species | Country of Breeding |
---|---|---|
Gigantea | Salix viminalis | Denmark |
Inger | S. viminalis × S. triandra | Sweden |
Linnea | S. viminalis | Sweden |
Olof | S. viminalis× S. schwerinii | Sweden |
Sven | S. viminalis× S. schwerinii | Sweden |
Tora | S. viminalis× S. schwerinii | Sweden |
Tordis | S. viminalis× S. schwerinii | Sweden |
Torhild | S. viminalis× S. schwerinii | Sweden |
Ekotur | S. viminalis | Poland |
Tur | S. viminalis | Poland |
Żubr | S. viminalis | Poland |
Variety | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tora (1) | −10 | −13 | −17 | −19 | −20 | −33 | −34 | −38 | −43 | −53 | −28 | |
Tur (2) | 11 | −3 | −8 | −10 | −11 | −25 | −26 | −31 | −37 | −47 | −20 | |
Sven (3) | 15 | 3 | −5 | −7 | −8 | −23 | −23 | −29 | −35 | −46 | −18 | |
Olof (4) | 21 | 8 | 5 | −2 | −4 | −19 | −20 | −25 | −32 | −43 | −14 | |
Torhild (5) | 24 | 11 | 8 | 3 | −2 | −17 | −18 | −24 | −30 | −42 | −11 | |
Tordis (6) | 26 | 13 | 9 | 4 | 2 | −16 | −16 | −22 | −29 | −41 | −10 | |
Gigantea (7) | 49 | 34 | 29 | 23 | 20 | 19 | −1 | −8 | −15 | −30 | 7 | |
Inger (8) | 50 | 35 | 31 | 25 | 22 | 20 | 1 | −7 | −15 | −29 | 8 | |
Linnea (9) | 62 | 45 | 41 | 34 | 31 | 29 | 9 | 8 | −8 | −24 | 16 | |
Ekotur (10) | 76 | 58 | 53 | 46 | 42 | 40 | 18 | 17 | 9 | −17 | 26 | |
Żubr (11) | 112 | 90 | 84 | 75 | 71 | 68 | 42 | 41 | 31 | 20 | 51 | |
Average (12) | 40 | 26 | 21 | 16 | 13 | 11 | −6 | −7 | −14 | −21 | −34 |
Variety | Number of Shoots for Plant | Plant Height (m) | Shoot Diameter (mm) |
---|---|---|---|
Gigantea | 8.4 a * | 3.3 d | 15.6 f |
Inger | 7.7 ab | 3.2 d | 17.1 def |
Linnea | 6.8 b | 3.4 d | 18.5 cde |
Olof | 7.1 b | 3.3 d | 17.8 cdef |
Sven | 5.1 c | 3.5 cd | 18.4 cde |
Tora | 5.0 c | 3.5 cd | 19.9 bc |
Tordis | 4.9 c | 3.9 bc | 19.3 bcd |
Torhild | 6.7 b | 3.1 d | 16.3 ef |
Ekotur | 4.9 c | 4.1 b | 21.7 b |
Tur | 6.5 b | 3.1 d | 15.7 f |
Żubr | 2.9 d | 4.8 a | 29.6 a |
Average | 6.0 | 3.6 | 19.1 |
Cluster | Variety | DM Yield (Mg ha−1 year−1) | Number of Shoots for Plant | Plant Height (m) | Shoot Diameter (mm) |
---|---|---|---|---|---|
1 | Ekotur, Żubr | 12.6 | 4.0 | 4.5 | 25.7 |
2 | Gigantea, Inger, Linnea | 10.0 | 7.7 | 3.3 | 18.5 |
3 | Olof, Sven, Tora, Tordis, Torhild, Tur | 7.6 | 5.8 | 3.4 | 17.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matyka, M.; Radzikowski, P. Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil. Agriculture 2020, 10, 616. https://doi.org/10.3390/agriculture10120616
Matyka M, Radzikowski P. Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil. Agriculture. 2020; 10(12):616. https://doi.org/10.3390/agriculture10120616
Chicago/Turabian StyleMatyka, Mariusz, and Paweł Radzikowski. 2020. "Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil" Agriculture 10, no. 12: 616. https://doi.org/10.3390/agriculture10120616
APA StyleMatyka, M., & Radzikowski, P. (2020). Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil. Agriculture, 10(12), 616. https://doi.org/10.3390/agriculture10120616