Evaluation of the Agronomic Traits of 80 Accessions of Proso Millet (Panicum miliaceum L.) under Mediterranean Pedoclimatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Variability for Agronomic Traits and Heritability
3.2. Principal Component Analysis and the Relationship between Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rai, M.; Reeves, T.G.; Pandey, S.; Collette, L. Save and Grow: A Policymaker’s Guide to Sustainable Intensification of Smallholder Crop Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- FAO. The Future of Food and Agriculture Alternative Pathways to 2050; Food and Agricultural Organization: Rome, Italy, 2018. [Google Scholar]
- Awika, J.M. Major Cereal Grains Production and Use around the World. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; American Chemical Society: Washington, DC, USA, 2011; pp. 1–13. [Google Scholar]
- Das, S.; Khound, R.; Santra, M.; Santra, D. Beyond Bird Feed: Proso Millet for Human Health and Environment. Agriculture 2019, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Palchetti, E.; Calamai, A.; Valenzi, E.; Rella, G.; Whittaker, A.; Masoni, A.; Bindi, M.; Moriondo, M.; Brilli, L. Open field screening of the productive parameters, protein content, phenolic compounds, and antioxidant capacity of maize (Zea mays L.) in the marginal uplands of southern Madagascar. J. Agric. Rural Dev. Trop. Subtrop. 2019, 120, 45–54. [Google Scholar]
- Habiyaremye, C.; Matanguihan, J.B.; D’Alpoim Guedes, J.; Ganjyal, G.M.; Whiteman, M.R.; Kidwell, K.K.; Murphy, K.M. Proso Millet (Panicum miliaceum L.) and Its Potential for Cultivation in the Pacific Northwest, U.S.: A Review. Front. Plant Sci. 2017, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Tomer, V.; Kaur, A.; Kumar, V.; Gupta, K. Millets: A solution to agrarian and nutritional challenges. Agric. Food Secur. 2018, 7. [Google Scholar] [CrossRef]
- Ullah, A. Recognizing production options for pearl millet in Pakistan under changing climate scenarios. J. Integr. Agric. 2017, 16, 762–773. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.; Vanga, S.; Wang, J.; Orsat, V.; Raghavan, V. Millets for Food Security in the Context of Climate Change: A Review. Sustainability 2018, 10, 2228. [Google Scholar] [CrossRef] [Green Version]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [Green Version]
- Masoni, A.; Calamai, A.; Marini, L.; Benedettelli, S.; Palchetti, E. Constitution of Composite Cross Maize (Zea mays L.) Populations Selected for the Semi-Arid Environment of South Madagascar. Agronomy 2019, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Amadoubr, I.; Le, M. Millets: Nutritional composition, some health benefits and processing—A Review. Emir. J. Food Agric. 2013, 25, 501. [Google Scholar] [CrossRef] [Green Version]
- Ndiku, M.H.; Jara, E.; Sabaté, J. Formative Research on Acceptability of Pearl Millet in Rural Eastern Kenya—A Pilot Study. Sustain. Agric. Res. 2014, 3, 8. [Google Scholar] [CrossRef]
- Seghatoleslami, M.J.; Kafi, M.; Majidi, E. Effect of Drought Stress at Different Growth Stages on Yield and Water Use Efficiency of Five. Pak. J. Bot. 2008, 40, 1427–1432. [Google Scholar]
- Bandyopadhyay, T.; Muthamilarasan, M.; Prasad, M. Millets for Next Generation Climate-Smart Agriculture. Front. Plant Sci. 2017, 8, 1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetriventhan, M.; Upadhyaya, H.D. Diversity and trait-specific sources for productivity and nutritional traits in the global proso millet (Panicum miliaceum L.) germplasm collection. Crop J. 2018, 6, 451–463. [Google Scholar] [CrossRef]
- Saruhan, V.; Ku, A. The effect of different humic acid fertilization on yield and yield components performances of common millet (Panicum miliaceum L.). Sci. Res. Essays 2005, 7, 663–669. [Google Scholar]
- Flajšman, M.; Štajner, N.; Kocjan Ačko, D. Genetic diversity and agronomic performance of Slovenian landraces of proso millet (Panicum miliaceum L.). Turk J. Bot. 2019, 11, 185–195. [Google Scholar] [CrossRef]
- Crawford, G.W. East Asian Plant Domestication. In Archaeology of Asia; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2006; pp. 77–95. [Google Scholar]
- Sage, R.F.; Zhu, X.-G. Exploiting the engine of C4 photosynthesis. J. Exp. Bot. 2011, 12, 2989–3000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindquist, J.L.; Arkebauer, T.J.; Walters, D.T.; Cassman, K.G.; Dobermann, A. Maize Radiation Use Efficiency under Optimal Growth Conditions. Agron. J. 2005, 97, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Cavers, P.B.; Kane, M. The biology of Canadian weeds: 155. Panicum miliaceum L. Can. J. Plant Sci. 2016, 96, 939–988. [Google Scholar] [CrossRef] [Green Version]
- Blümmel, M.; Zerbini, E.; Reddy, B.V.S.; Hash, C.T.; Bidinger, F.; Ravi, D. Improving the production and utilization of sorghum and pearl millet as livestock feed: Methodological problems and possible solutions. Field Crop. Res. 2003, 84, 123–142. [Google Scholar] [CrossRef] [Green Version]
- Brunette, T.; Baurhoo, B.; Mustafa, A.F. Effects of replacing grass silage with forage pearl millet silage on milk yield, nutrient digestion, and ruminal fermentation of lactating dairy cows. J. Dairy Sci. 2016, 99, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Saha, D.; Gowda, M.V.C.; Arya, L.; Verma, M.; Bansal, K.C. Genetic and Genomic Resources of Small Millets. Crit. Rev. Plant Sci. 2016, 35, 56–79. [Google Scholar] [CrossRef]
- Saleh, A.S.M.; Zhang, Q.; Chen, J.; Shen, Q. Millet Grains: Nutritional Quality, Processing, and Potential Health Benefits. Compr. Rev. Food Sci. Food Saf. 2013, 12, 281–295. [Google Scholar] [CrossRef]
- Kettler, T.A.; Doran, J.W.; Gilbert, T.L. Simplified Method for Soil Particle-Size Determination to Accompany Soil-Quality Analyses. Soil Sci. Soc. Am. J. 2001, 65, 849–852. [Google Scholar] [CrossRef] [Green Version]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants, 2nd ed.; Federal Biological Research Centre for Agriculture and Forestry: Braunschweig, Germany, 2001. [Google Scholar]
- USDA. U.S. Department of Agriculture, USDA; DIANE Publishing: Darby, PA, USA, 2019. [Google Scholar]
- Qu, Y.; Wang, K.; Luo, Y.; Vus, N.; Feng, B. Plant-Type characteristics and seed yield of proso millet (Panicum miliaceum L.) response ton plant density. RJOAS 2020, 98, 152–160. [Google Scholar] [CrossRef]
- IBPGR. Descriptor for P. miliaceum and P. sumatrense; International Board for Plant Genetic Resources: Rome, Italy, 1985. [Google Scholar]
- Millets and Sorghum: Biology and Genetic Improvement; Patil, J.V. (Ed.) Wiley Blackwell: Chichester, UK, 2017; ISBN 978-1-119-13078-9. [Google Scholar]
- Sanon, M.; Hoogenboom, G.; Traoré, S.B.; Sarr, B.; Garcia, A.G.Y.; Somé, L.; Roncoli, C. Photoperiod sensitivity of local millet and sorghum varieties in West Africa. NJAS Wagening. J. Life Sci. 2014, 68, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Simulation of sorghum and pearl millet phenology. In Modeling the Growth and Development of Sorghum and Pearl Millet; Research Bulletin; ICRISAT: Patancheru, India, 1989; pp. 24–26.
- Alagarswamy, G.; Ritchie, J.T. Phasic Development in CERES-Sorghum Model. In Predicting Crop Phenology; Hodges, T., Ed.; CRC Press: Boca Raton, FL, USA, 1991; pp. 143–152. [Google Scholar]
- Nield, R.E.; Seeley, M.W. Growing degree days predictions for corn and sorghum development and some applications to crop production in Nebraska. Neb. Agric. Exp. Stn. 1977, 3, 15. [Google Scholar]
- Choi, B.H.; Park, K.Y.; Park, R.K. Growing degree days and productivity by shifting planting dates in pearl millet. Korean J. Crop Sci. 1990, 35, 122–125. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R. Package ‘Vegan’. Community Ecol. Package 2013, 2, 1–295. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix; Renmin University of China: Beijing, China, 2017. [Google Scholar]
- Alvarado, G.; Rodríguez, F.M.; Pacheco, A.; Burgueño, J.; Crossa, J.; Vargas, M.; Pérez-Rodríguez, P.; Lopez-Cruz, M.A. META-R: A software to analyze data from multi-environment plant breeding trials. Crop J. 2020, 8, 745–756. [Google Scholar] [CrossRef]
- Vetriventhan, M.; Upadhyaya, H.D. Variability for Productivity and Nutritional Traits in Germplasm of Kodo Millet, an Underutilized Nutrient-Rich Climate Smart Crop. Crop Sci. 2019, 59, 1095–1106. [Google Scholar] [CrossRef] [Green Version]
- Sood, S.; Khulbe, R.K.; Agrawal, P.K.; Upadhyaya, H.D. Barnyard millet global core collection evaluation in the submontane Himalayan region of India using multivariate analysis. Crop J. 2015, 3, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Dhanalakshmi, R.; Subramanian, A.; Thirumurugan, T.; Elangovan, M.; Kalaimagal, T. Genetic variability and association studies in barnyard millet (Echinochloa frumentacea (Roxb.) Link) germplasm under sodic soil condition. Electron. J. Plan. Breed. 2019, 10, 430. [Google Scholar] [CrossRef]
- Salini, K.; Nirmalakumari, A.; Muthiah, A.; Senthil, N. Evaluation of proso millet (Panicum miliaceum L.) germplasm collections. Electron. J. Plant Breed. 2010, 11, 489–499. [Google Scholar]
- Anuradha, N.; Tara, T.; Bharadwaj, C.; Sankar, S.M.; Thalambedu, L. Association of agronomic traits and micronutrients in pearl millet. Int. J. Chem. Stud. 2018, 6, 181–184. [Google Scholar]
- Huitink, G. Harvesting Grain Sorghum. In Sorghum Production Handbook; University of Arkansas Cooperative Extension Service Printing: Little Rock, AR, USA, 2018; pp. 51–54. [Google Scholar]
- Santra, D.K.; Heyduck, R.F.; Baltensperger, D.D.; Graybosch, R.A.; Nelson, L.A.; Frickel, G.; Nielsen, E. Registration of ‘Plateau’ Waxy (Amylose-Free) Proso Millet. J. Plant Regist. 2015, 9, 41–43. [Google Scholar] [CrossRef]
- Dewey, D.R.; Lu, K.H. A Correlation and Path-Coefficient Analysis of Components of Crested Wheatgrass Seed Production. Agron. J. 1959, 51, 515–518. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Gowda, C.L.L.; Reddy, V.G. Diversity of small millets germplasm in genebank at ICRISAT. In Proceedings of the 5th International Symposium on New Crops and Uses, Southampton, UK, 3–4 September 2007; University of Southampton: Southampton, UK, 2008; pp. 173–185. [Google Scholar]
- Balodis, O.; Bartuševics, J.; Gaile, Z. Biomass Yield of Different Plants for Biogass Production. ETR 2011, 1, 238. [Google Scholar] [CrossRef]
- Turgut, I.; Duman, A.; Wietgrefe, G.W.; Acikgoz, E. Effect of Seeding Rate and Nitrogen Fertilization on Proso Millet Under Dryland and Irrigated Conditions. J. Plant Nutr. 2006, 29, 2119–2129. [Google Scholar] [CrossRef]
- Encyclopedia of Genetics; Reeve, E.C.R. (Ed.) Fitzroy Dearborn Publishers: New York, NY, USA, 2001. [Google Scholar]
- FAO. Report on the Agro-Ecological Zones Project; Food and Agricultural Organization FAO: Rome, Italy, 1978. [Google Scholar]
- Nirmalakumari, A.; Subramanian, A.; Sumathi, P.; Senthil, N.; Kumaravadivel, N.; Joel, A.J.; Mohanasundaram, K.; Muthiah, A.; Raveendran, T.S.; Raguchander, T.; et al. A High Yielding Kudiraivali Variety CO (KV) 2. Madras Agric. J. 2009, 3, 319–321. [Google Scholar]
- Nandini, K.M.; Sridhara, S. Performance of foxtail millet (Setaria italica L.) genotypes to sowing dates in Southern transition zone of Karnataka. J. Pharmacogn. Phytochem. 2019, 8, 2109–2112. [Google Scholar]
- Baltensperger, D.D. Foxtail and Proso Millet. In Progress in New Crops; J. Janick: Alexandria, VA, USA, 1996; pp. 182–190. [Google Scholar]
- May, W.E.; Klein, L.H.; Lafond, G.P.; McConnell, J.T.; Phelps, S.M. The suitability of cool- and warm-season annual cereal species for winter grazing in Saskatchewan. Can. J. Plant Sci. 2007, 87, 739–752. [Google Scholar] [CrossRef]
- Parthasarathi, T.; Velu, G.; Jeyakumar, P. Impact of Crop Heat Units on Growth and Developmental Physiology of Future Crop Production: A Review. J. Crop Sci. Technol. 2013, 2, 9. [Google Scholar]
- Arunachalam, P.; Vanniarajan, A.; Nirmalakumari, A. Consistency of barnyard millet (Echinochloa frumentacea) genotypes for plant height, duration and grain yield over environments. Madras Agric. J. 2012, 99, 11–13. [Google Scholar]
- Eric, M.O.; Pangirayi, T.; Paul, S.; Mwangi, G.; Abhishek, R. Correlations, Path Coefficient Analysis and Heritability for Quantitative Traits in Finger Millet Landraces. Philipp. J. Sci. 2016, 145, 12. [Google Scholar]
- Rajput, S.G.; Santra, D.K. Evaluation of Genetic Diversity of Proso Millet Germplasm Available in the United States using Simple-Sequence Repeat Markers. Crop Sci. 2016, 56, 2401–2409. [Google Scholar] [CrossRef]
- Lessa, E.P. Multidimensional Analysis of Geographic Genetic Structure. Syst. Zool. 1990, 39, 242. [Google Scholar] [CrossRef]
- Goodman, M.M. Estimates of Genetic Variance in Adapted and Exotic Populations of Maize. Crop Sci. 1965, 5, 87–90. [Google Scholar] [CrossRef]
- Baltensperger, D.D. Progress with Proso, Pearl and Other Millets. In Trends in New Crops and New Uses; Whipkey, A., Ed.; ASHS Press: Alexandria, VA, USA, 2002; pp. 100–103. [Google Scholar]
- Serba, D.D.; Perumal, R.; Tesso, T.T.; Min, D. Status of Global Pearl Millet Breeding Programs and the Way Forward. Crop Sci. 2017, 57, 2891–2905. [Google Scholar] [CrossRef]
- Bisht, A.; Kumar, A.; Gautam, R.D.; Arya, R.K. Breeding of Pearl Millet (Pennisetum glaucum (L.) R. Br.). In Advances in Plant Breeding Strategies: Cereals; Springer Cham.: New York, NY, USA, 2019; pp. 165–221. [Google Scholar]
- Weltzien, E.; Whitaker, M.L.; Rattunde, H.F.W.; Dhamotharan, M.; Anders, M.M. Participatory Approaches in Pearl Millet Breeding. In Seeds of Choice: Making the Most of New Varieties for Small Farmers; Oxford & IBH Publishing: New Delhi, India, 1998; pp. 143–170. [Google Scholar]
Month | Mean Temperature (°C) | Mean T Max (°C) | Mean T Min (°C) | Total Rainfall (mm) | Mean Relative Humidity (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Year | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 |
January | 6.7 | 2.5 | 12.0 | 8.0 | 1.5 | −2.0 | 27.8 | 38.8 | 87.2 | 83.5 |
February | 3.9 | 6.8 | 8.2 | 14.4 | −0.4 | 0.0 | 93.8 | 39.6 | 81.3 | 68.7 |
March | 7.8 | 9.8 | 12.8 | 17.2 | 2.9 | 2.1 | 127.2 | 5,2 | 81.7 | 64.7 |
April | 14.6 | 11.9 | 21.6 | 18.5 | 6.9 | 5.2 | 66.4 | 98.0 | 70.6 | 73.9 |
May * | 17.6 | 13.5 | 23.6 | 18.9 | 11.6 | 8.2 | 140.6 | 128.6 | 77.2 | 80.1 |
June * | 20.4 | 22.3 | 27.7 | 30.7 | 13.1 | 13.8 | 14.0 | 2.2 | 65.3 | 61.5 |
July * | 23.7 | 24.0 | 32.0 | 32.2 | 15.4 | 15.8 | 22.6 | 202.6 | 61.3 | 62.7 |
August * | 23.9 | 24.4 | 32.1 | 32.5 | 15.1 | 16.2 | 23.0 | 45.4 | 62.7 | 66.3 |
September | 20.2 | 19.4 | 28.2 | 26.7 | 12.8 | 12.1 | 18.6 | 34.2 | 66.9 | 72.9 |
October | 15.9 | 15.2 | 22.3 | 22.2 | 9.8 | 9.3 | 59.2 | 59.2 | 74.1 | 84.4 |
November | 10.2 | 11.0 | 14.3 | 15.2 | 6.6 | 7.1 | 102.4 | 207.0 | 89.0 | 91.0 |
December | 5.1 | 7.1 | 10.2 | 12.4 | 0.4 | 2.3 | 63.8 | 90.0 | 90.8 | 86.9 |
Mean a | 21.4 | 21.1 | 28.8 | 28.6 | 13.8 | 13.5 | 50.1 | 94.7 | 66.6 | 67.7 |
Total Rain b | - | - | - | - | - | - | 200.2 | 378.8 | - | - |
Total Rain c | - | - | - | - | - | - | 759.4 | 950.8 | - | - |
Properties | Value | Unit |
---|---|---|
Sand | 25.4 | % |
Silt | 30.1 | % |
Clay | 44.5 | % |
Total organic matter | 1.66 | % |
Total nitrogen | 0.12 | % |
Available phosphorous | 11 | ppm |
pH | 7.1 | |
Electrical conductivity (EC) | 0.154 | mS cm−1 |
Cation exchange capacity (CEC) | 27.46 | meq 100 g−1 |
Exchangeable Ca | 21.25 | ppm |
Exchangeable Mg | 5.17 | ppm |
Exchangeable Na | 0.58 | ppm |
Exchangeable K | 0.46 | ppm |
Trait | 2018 | 2019 | ||||
---|---|---|---|---|---|---|
Mean | Range | h2b | Mean | Range | h2b | |
Plant height (cm) | 67.48 b | 25–104 | 0.85 | 69.82 a | 33–111 | 0.86 |
Leaf number | 6.70 a | 3–11 | 0.82 | 6.52 a | 3–10 | 0.87 |
Basal tiller | 3.9 a | 2–6 | 0.83 | 3.7 a | 2–6 | 0.82 |
Seed yield per plant (g) | 8.54 a | 2.6–16.7 | 0.71 | 8.96 a | 2.8–15.9 | 0.75 |
Grain yield (kg ha−1) | 1708 b | 842–2982 | 0.55 | 1832 a | 891–3125 | 0.58 |
Total dry biomass (kg ha−1) | 6001 b | 2889–9664 | 0.53 | 6279 a | 2767–10,627 | 0.58 |
Harvest index | 0.28 b | 0.25–0.33 | 0.58 | 0.30 a | 0.27–0.35 | 0.59 |
100-seed weight (g) | 0.56 a | 0.35–0.71 | 0.73 | 0.54 a | 0.32–0.71 | 0.77 |
GDDs to flowering | 740.8 b | 581–891 | 0.77 | 743.3 a | 592–899 | 0.79 |
Days to maturity | 97.8 b | 80–109 | 0.73 | 98.8 a | 83–111 | 0.75 |
Trait | Mean | Range | ||||||
---|---|---|---|---|---|---|---|---|
compactum | contractum | miliaceum | patentissimum | compactum | contractum | miliaceum | patentissimum | |
Plant height (cm) | 53.6 c | 75.14 a | 71.52 ab | 68.8 b | 34–62 | 53–97 | 38–100 | 58–90 |
Leaf number | 5.99 c | 7.11 a | 6.56 b | 6.18 b | 4–7 | 5–10 | 4–9 | 4–9 |
Basal tiller | 3.6 a | 3.9 a | 3.9 a | 3.9 a | 3–5 | 3–5 | 3–5 | 4–5 |
Seed yield per plant (g) | 6.64 c | 10.28 a | 8.94 b | 8.22 b | 3.7–12.1 | 6.1–19.1 | 4.6–14.1 | 3.7–13.8 |
Grain yield (kg ha−1) | 1428 b | 1900 a | 1860 a | 1790 ab | 911–2045 | 1209–2984 | 994–2893 | 1004–2743 |
Total dry biomass (kg ha−1) | 4902 c | 6506 a | 6432 a | 6291 b | 2909–7550 | 3960–9775 | 3422–9477 | 3334–9230 |
Harvest index | 0.28 a | 0.30 a | 0.30 a | 0.29 a | 0.25–0.31 | 0.26–0.34 | 0.26–0.35 | 0.26–0.33 |
100-seed weight (g) | 0.54 a | 0.55 a | 0.55 a | 0.54 a | 0.36–0.69 | 0.45–0.69 | 0.46–0.68 | 0.43–0.67 |
GDDs to flowering | 679 c | 772 a | 732 b | 721 b | 590–760 | 609–890 | 606–886 | 602–881 |
Days to maturity | 86 b | 98 a | 95 b | 92 ab | 83–91 | 92–111 | 90–108 | 88–105 |
Trait | PC1 | PC2 | PC3 |
---|---|---|---|
Plant height (cm) | 0.425 | −0.074 | −0.264 |
Leaf number | 0.351 | 0.207 | −0.234 |
Basal tiller | −0.079 | 0.112 | −0.783 |
Seed yield per plant (g) | 0.309 | 0.536 | −0.034 |
Grain yield (kg ha−1) | 0.582 | 0.198 | 0.097 |
Total dry biomass (kg ha−1) | 0.533 | 0.234 | 0.136 |
100-seed weight (g) | −0.053 | 0.213 | 0.513 |
GDDs to flowering | 0.623 | 0.189 | 0.097 |
Days to maturity | 0.449 | 0.374 | 0.023 |
Standard deviation | 1.9217 | 1.4947 | 1.0778 |
Proportion of variance | 32.941 | 24.823 | 12.947 |
Cumulative proportion | 32.941 | 57.764 | 70.711 |
Trait | Plant Height (cm) | Leaf Number | Basal Tiller | Seed Yield Per Plant (g) | Grain Yield (kg ha−1) | Total Dry Biomass (kg ha−1) | Harvest Index | Days to Maturity | 100-Seed Weight | GDDs to Flowering |
---|---|---|---|---|---|---|---|---|---|---|
Plant height (cm) | 1 | - | - | - | - | - | - | - | - | - |
Leaf number | 0.547 ** | 1 | - | - | - | - | - | - | - | - |
Basal tiller | 0.062 | −0.007 | 1 | - | - | - | - | - | - | - |
Seed yield per plant (g) | 0.244 * | 0.167 | 0.094 | 1 | - | - | - | - | - | - |
Grain yield (kg ha−1) | 0.445 ** | 0.288 ** | 0.225 * | 0.538 ** | 1 | - | - | - | - | - |
Total dry biomass (kg ha−1) | 0.436 ** | 0.287 ** | 0.485 * | 0.521 ** | 0.688 ** | 1 | - | - | - | - |
Harvest Index | −0.086 | −0.115 | −0.121 | −0.095 | −0.118 | −0.182 | 1 | - | - | - |
Days to maturity | 0.309 ** | 0.259 * | −0.176 | 0.100 | 0.655 ** | 0.638 ** | 0.125 | 1 | - | - |
100-seed weight (g) | 0.147 | 0.155 | 0.223 | 0.143 | 0.052 | 0.073 | 0.027 | 0.206 | 1 | - |
GDDs to flowering | 0.300 ** | 0.255 * | 0.175 | −0.108 | 0.680 ** | 0.594 ** | 0.125 | 0.741 ** | −0.206 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calamai, A.; Masoni, A.; Marini, L.; Dell’acqua, M.; Ganugi, P.; Boukail, S.; Benedettelli, S.; Palchetti, E. Evaluation of the Agronomic Traits of 80 Accessions of Proso Millet (Panicum miliaceum L.) under Mediterranean Pedoclimatic Conditions. Agriculture 2020, 10, 578. https://doi.org/10.3390/agriculture10120578
Calamai A, Masoni A, Marini L, Dell’acqua M, Ganugi P, Boukail S, Benedettelli S, Palchetti E. Evaluation of the Agronomic Traits of 80 Accessions of Proso Millet (Panicum miliaceum L.) under Mediterranean Pedoclimatic Conditions. Agriculture. 2020; 10(12):578. https://doi.org/10.3390/agriculture10120578
Chicago/Turabian StyleCalamai, Alessandro, Alberto Masoni, Lorenzo Marini, Matteo Dell’acqua, Paola Ganugi, Sameh Boukail, Stefano Benedettelli, and Enrico Palchetti. 2020. "Evaluation of the Agronomic Traits of 80 Accessions of Proso Millet (Panicum miliaceum L.) under Mediterranean Pedoclimatic Conditions" Agriculture 10, no. 12: 578. https://doi.org/10.3390/agriculture10120578
APA StyleCalamai, A., Masoni, A., Marini, L., Dell’acqua, M., Ganugi, P., Boukail, S., Benedettelli, S., & Palchetti, E. (2020). Evaluation of the Agronomic Traits of 80 Accessions of Proso Millet (Panicum miliaceum L.) under Mediterranean Pedoclimatic Conditions. Agriculture, 10(12), 578. https://doi.org/10.3390/agriculture10120578