Analyses of AUC(0–12) and C0 Compliances within Therapeutic Ranges in Kidney Recipients Receiving Cyclosporine or Tacrolimus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. PK Sampling
2.3. Determination of CsA
2.4. Determination of Tacrolimus
2.5. Pharmacokinetic Analysis
2.6. Statistical Analysis
2.7. Definition of Non-Compliance
3. Results
3.1. Baseline Data of Study Patients Receiving Tacrolimus
3.2. Baseline Data of Study Patients Receiving Cyclosporine
3.3. Comparison of C0 and AUC(0–12) Methods for Assessing Tacrolimus Concentrations in Tacrolimus-Receiving Subjects with Post-Transplantation Time from 1 to 5 Years and with Post-Transplantation Time > 5 Years
3.3.1. Analysis of the AUC(0–12) Compliance within the Therapeutic Range
3.3.2. Analysis of the C0 Compliance within the Therapeutic Range
3.3.3. Independent Sample t-Test Analyses
3.3.4. ANOVA Analysis
3.3.5. Rates of Non-Compliance
3.3.6. Cut-Offs for Non-Compliance
3.4. Comparison of C0 and AUC(0–12) Methods for Assessing Cyclosporine Concentrations in Cyclosporine-Receiving Subjects with Post-Transplantation Time from 1 to 5 Years and with Post-Transplantation Time > 5 Years
3.4.1. Analysis of the AUC(0–12) Compliance within the Therapeutic Range
3.4.2. Analysis of the C0 Compliance within the Therapeutic Range
3.4.3. Independent Sample t-Test Analyses
3.4.4. ANOVA Analysis
3.5. Comparison of C0 and AUC(0–12) Methods for Assessing Cyclosporine Concentrations in Cyclosporine-Receiving Patients with IFTA
3.5.1. Rates of Non-Compliance
3.5.2. Cut-Offs for Non-Compliance
4. Bland–Altman Plots for the Difference between C0 and AUC(0–12)
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AUC | area under the concentration time curve |
BID | twice-daily dosing |
C0 | through level |
CNI | calcineurin inhibitor |
CsA | cyclosporine |
IFTA | interstitial fibrosis and tubular atrophy |
MMF | mycophenolate mofetil |
PK | pharmacokinetic |
Tacro | tacrolimus |
TDM | therapeutic drug monitoring |
SD | standard deviation |
References
- Velickovic-Radovanovic, R.; Mikov, M.; Catic-Djordjevic, A.; Stefanovic, N.; Mitic, B.; Paunovic, G.; Cvetkovic, T. Gender-dependent predictable pharmacokinetic method for tacrolimus exposure monitoring in kidney transplant patients. Eur. J. Drug Metab. Pharmacokinet. 2015, 40, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, D.R.J.; Naesens, M.; De Jonge, H.; Lerut, E.; Verbeke, K.; Vanrenterghem, Y. Tacrolimus Dose Requirements and CYP3A5 Genotype and the Development of Calcineurin Inhibitor-Associated Nephrotoxicity in Renal Allograft Recipients. Ther. Drug Monit. 2010, 32, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Sprangers, B.; Kuypers, D.R.J.; Vanrenterghem, Y. Immunosuppression: Does One Regimen Fit All? Transplantation 2011, 92, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Halim, M.; Said, T.; Al Otaibi, T.; Eleawa, S.; Al-Maged, H.; Gawish, A.; Nair, P.; Al-Muzairai, I.; Nampoory, M.; Al-Mousawi, M. Single Daily Dose Administration of Cyclosporine in Renal Transplant Recipients. Transplant. Proc. 2007, 39, 1225–1227. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-L.; Gao, X.; Wang, Q.; Zhang, J.; Cai, J.-Q.; Guo, J.-Q.; Tang, M.-Y.; Shang, L.-L.; Tan, J. Use of limited sampling strategy for estimating area under concentration-versus-time curve of mycophenolate sodium in renal allograft recipients. Zhonghua Yixue Zazhi 2013, 93, 3841–3846. [Google Scholar] [PubMed]
- Stratta, P.; Quaglia, M.; Cena, T.; Antoniotti, R.; Fenoglio, R.; Menegotto, A.; Ferrante, D.; Genazzani, A.A.; Terrazzino, S.; Magnani, C. The interactions of age, sex, body mass index, genetics, and steroid weight-based doses on tacrolimus dosing requirement after adult kidney transplantation. Eur. J. Clin. Pharmacol. 2011, 68, 671–680. [Google Scholar] [CrossRef]
- Christians, U.; Vinks, A.A.; Langman, L.J.; Clarke, W.; Wallemacq, P.; Van Gelder, T.; Renjen, V.; Marquet, P.; Meyer, E.J. Impact of Laboratory Practices on Interlaboratory Variability in Therapeutic Drug Monitoring of Immunosuppressive Drugs. Ther. Drug Monit. 2015, 37, 718–724. [Google Scholar] [CrossRef]
- Jeong, H.J. Diagnosis of renal transplant rejection: Banff classification and beyond. Kidney Res. Clin. Pr. 2020, 39, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Solez, K.; Colvin, R.B.; Racusen, L.C.; Sis, B.; Halloran, P.F.; Birk, P.E.; Campbell, P.M.; Cascalho, M.; Collins, A.B.; Demetris, A.J.; et al. Banff ’05 Meeting Report: Differential Diagnosis of Chronic Allograft Injury and Elimination of Chronic Allograft Nephropathy (?CAN?). Arab. Archaeol. Epigr. 2007, 7, 518–526. [Google Scholar] [CrossRef]
- Picard, N.; Djebli, N.; Sauvage, F.-L.; Marquet, P. Metabolism of Sirolimus in the Presence or Absence of Cyclosporine by Genotyped Human Liver Microsomes and Recombinant Cytochromes P450 3A4 and 3A5. Drug Metab. Dispos. 2006, 35, 350–355. [Google Scholar] [CrossRef]
- Benkali, K.; Prémaud, A.; Picard, N.; Rerolle, J.-P.; Toupance, O.; Hoizey, G.; Turcant, A.; Villemain, F.; Le Meur, Y.; Marquet, P.; et al. Tacrolimus Population Pharmacokinetic-Pharmacogenetic Analysis and Bayesian Estimation in Renal Transplant Recipients. Clin. Pharmacokinet. 2009, 48, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.; Léger, F.; Le Meur, Y.; Saint-Marcoux, F.; Paintaud, G.; Büchler, M.; Marquet, P. Population Pharmacokinetic Modeling of Oral Cyclosporin Using NONMEM: Comparison of absorption pharmacokinetic models and design of a Bayesian estimator. Ther. Drug Monit. 2004, 26, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Leger, F.; Debord, J.; Le Meur, Y.; Rousseau, A.; Büchler, M.; Lachâtre, G.; Paintaud, G.; Marquet, P. Maximum A Posteriori Bayesian Estimation of Oral Cyclosporin Pharmacokinetics in Patients with Stable Renal Transplants. Clin. Pharmacokinet. 2002, 41, 71–80. [Google Scholar] [CrossRef]
- Woillard, J.-B.; De Winter, B.C.M.; Kamar, N.; Marquet, P.; Rostaing, L.; Rousseau, A. Population pharmacokinetic model and Bayesian estimator for two tacrolimus formulations—Twice daily Prograf® and once daily Advagraf®. Br. J. Clin. Pharmacol. 2011, 71, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doğan, N. Özgür Bland-Altman analysis: A paradigm to understand correlation and agreement. Turk. J. Emerg. Med. 2018, 18, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Noreikaitė, A.; Saint-Marcoux, F.; Kaduševičius, E.; Stankevičius, E. Cyclosporine therapeutic window evaluation by Chebyshev’s inequality method in kidney recipients. Medicina 2014, 50, 37–43. [Google Scholar] [CrossRef]
- Hesselink, D.A.; Bouamar, R.; Elens, L.; Van Schaik, R.H.N.; Van Gelder, T. The Role of Pharmacogenetics in the Disposition of and Response to Tacrolimus in Solid Organ Transplantation. Clin. Pharmacokinet. 2014, 53, 123–139. [Google Scholar] [CrossRef]
- Birdwell, K.A.; Decker, B.; Barbarino, J.M.; Peterson, J.F.; Stein, C.M.; Sadee, W.; Wang, D.; Vinks, A.A.; He, Y.; Swen, J.J.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines forCYP3A5Genotype and Tacrolimus Dosing. Clin. Pharmacol. Ther. 2015, 98, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Barraclough, K.A.; Staatz, C.E.; Johnson, D.W.; Lee, K.J.; McWhinney, B.C.; Ungerer, J.P.; Hawley, C.M.; Campbell, S.B.; Leary, D.R.; Isbel, N.M. Kidney transplant outcomes are related to tacrolimus, mycophenolic acid and prednisolone exposure in the first week. Transpl. Int. 2012, 25, 1182–1193. [Google Scholar] [CrossRef]
- Picard, N.; Cresteil, T.; Prémaud, A.; Marquet, P. Characterization of a Phase 1 Metabolite of Mycophenolic Acid Produced by CYP3A4/5. Ther. Drug Monit. 2004, 26, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Braun, F.; Schöcklmann, H.; Ziegler, E.; Kunzendorf, U.; Armstrong, V.W.; Renders, L. Increased Mycophenolic Acid Exposure in Stable Kidney Transplant Recipients on Tacrolimus as Compared With Those on Sirolimus: Implications for Pharmacokinetics. Clin. Pharmacol. Ther. 2009, 86, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Han, N.; Kim, M.G.; Yun, H.-Y.; Lee, S.; Bae, E.; Kim, Y.S.; Kim, I.-W.; Oh, J.M. Increased Exposure of Tacrolimus by Co-administered Mycophenolate Mofetil: Population Pharmacokinetic Analysis in Healthy Volunteers. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, N.; Yun, H.-Y.; Hong, J.-Y.; Kim, I.-W.; Ji, E.; Hong, S.H.; Kim, Y.S.; Ha, J.; Shin, W.G.; Oh, J.M. Prediction of the tacrolimus population pharmacokinetic parameters according to CYP3A5 genotype and clinical factors using NONMEM in adult kidney transplant recipients. Eur. J. Clin. Pharmacol. 2012, 69, 53–63. [Google Scholar] [CrossRef]
- Han, N.; Ha, S.; Yun, H.-Y.; Kim, M.G.; Min, S.I.; Ha, J.; Lee, J.I.; Oh, J.M.; Kim, I.-W. Population Pharmacokinetic-Pharmacogenetic Model of Tacrolimus in the Early Period after Kidney Transplantation. Basic Clin. Pharmacol. Toxicol. 2013, 114, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Zhang, H.; Ma, S.; Rui, J.-Z.; Miao, L.-Y. Population Pharmacokinetics and Pharmacogenetics of Tacrolimus in Healthy Chinese Volunteers. Pharmacology 2011, 88, 288–294. [Google Scholar] [CrossRef]
- Hesselink, D.A.; Van Hest, R.M.; Mathot, R.A.A.; Bonthuis, F.; Weimar, W.; De Bruin, R.W.F.; Van Gelder, T. Cyclosporine Interacts with Mycophenolic Acid by Inhibiting the Multidrug Resistance-Associated Protein 2. Arab. Archaeol. Epigr. 2005, 5, 987–994. [Google Scholar] [CrossRef]
- Gustavsen, M.T.; Midtvedt, K.; Robertsen, I.; Woillard, J.-B.; Debord, J.; Klaasen, R.A.; Vethe, N.T.; Bergan, S.; Åsberg, A. Fasting Status and Circadian Variation Must be Considered When Performing AUC-based Therapeutic Drug Monitoring of Tacrolimus in Renal Transplant Recipients. Clin. Transl. Sci. 2020. [Google Scholar] [CrossRef]
- Wallemacq, P.; Armstrong, V.W.; Brunet, M.; Haufroid, V.; Holt, D.W.; Johnston, A.; Kuypers, D.; Le Meur, Y.; Marquet, P.; Oellerich, M.; et al. Opportunities to Optimize Tacrolimus Therapy in Solid Organ Transplantation: Report of the European Consensus Conference. Ther. Drug Monit. 2009, 31, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Sapir-Pichhadze, R.; Wang, Y.; Famure, O.; Li, Y.; Kim, J.S. Time-dependent variability in tacrolimus trough blood levels is a risk factor for late kidney transplant failure. Kidney Int. 2014, 85, 1404–1411. [Google Scholar] [CrossRef] [Green Version]
- Žilinská, Z.; Dedinska, I.; Breza, J.; Laca, L. Impact of Trough Levels of Tacrolimus on Kidney Function and Graft Survival in Short and Longer Periods After Renal Transplantation. Transplant. Proc. 2016, 48, 2637–2643. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Han, N.; Kim, M.G.; Kim, Y.W.; Jang, H.; Yun, H.-Y.; Yu, M.-Y.; Kim, I.-W.; Kim, Y.S.; Oh, J.M. Model based development of tacrolimus dosing algorithm considering CYP3A5 genotypes and mycophenolate mofetil drug interaction in stable kidney transplant recipients. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stifft, F.; VanderMeer, F.; Neef, C.; Van Kuijk, S.M.J.; Christiaans, M.H.L. A limited sampling strategy to estimate exposure of once-daily modified release tacrolimus in renal transplant recipients using linear regression analysis and comparison with Bayesian population pharmacokinetics in different cohorts. Eur. J. Clin. Pharmacol. 2020, 76, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Hsu, T.; Kerr, J.S.; Steiner, R.W.; Awdishu, L. Relationship between 2-Hour Tacrolimus Concentrations and Clinical Outcomes in Long Term Kidney Transplantation. Pharmacy 2020, 8, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclerc, V.; Bleyzac, N.; Ceraulo, A.; Bertrand, Y.; Ducher, M. A decision support tool to find the best cyclosporine dose when switching from intravenous to oral route in pediatric stem cell transplant patients. Eur. J. Clin. Pharmacol. 2020, 76, 1409–1416. [Google Scholar] [CrossRef]
- Salkowski, N.; Snyder, J.J.; Zaun, D.A.; Leighton, T.; Edwards, E.B.; Israni, A.K.; Kasiske, B.L. A Scientific Registry of Transplant Recipients Bayesian Method for Identifying Underperforming Transplant Programs. Arab. Archaeol. Epigr. 2014, 14, 1310–1317. [Google Scholar] [CrossRef] [Green Version]
- Brunet, M.; Van Gelder, T.; Åsberg, A.; Haufroid, V.; Hesselink, D.A.; Langman, L.; Lemaitre, F.; Marquet, P.; Seger, C.; Shipkova, M.; et al. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second consensus report. Ther. Drug Monit. 2019, 41, 261–307. [Google Scholar] [CrossRef]
Groups | Therapeutic Ranges | |
---|---|---|
AUC(0–12) | C0 | |
1–5 years (Tacro + MMF) | 120–150 µg/h/L | 4–6 µg/L |
>5 years (Tacro + MMF) | 120–150 µg/h/L | 3–5 µg/L |
1–5 years (Tacro) | 120–150 µg/h/L | 4–6 µg/L |
>5 years (Tacro) | 120–150 µg/h/L | 3–5 µg/L |
1–5 years (CsA + MMF) | 3.05–3.75 mg/h/L | 75–150 µg/L |
>5 years (CsA + MMF) | 2.70–2.98 mg/h/L | 75–150 µg/L |
1–5 years (CsA) | 3.05–3.75 mg/h/L | 75–150 µg/L |
>5 years (CsA) | 2.70–2.98 mg/h/L | 75–150 µg/L |
Time after Transplantation | 1–5 Years (Tacro + MMF) | >5 Years (Tacro + MMF) | 1–5 Years (Tacro) | >5 Years (Tacro) | ANOVA |
---|---|---|---|---|---|
Age ± SD (years) (range) | 51.70 ± 13.48 (19–75) | 55.04 ± 10.57 (29–73) | 52.42 ± 12.83 (34–75) | 56.01 ± 10.89 (26–71) | p = 0.873 |
Tacro dose ± SD (mg) (range) | 5.03 ± 2.47 (1.5–13) | 4.58 ± 2.06 (2–9) | 5.70 ± 2.83 (2–10) | 5.44 ± 2.68 (1–10) | p = 0.430 |
Therapeutic range of the AUC(0–12) exposure (µg/h/L) | 120–150 | 120–150 | 120–150 | 120–150 | - |
AUC(0–12) ± SD (µg/h/L) (range) | 146.97 ± 53.04 (68–379) | 129.73 ± 36.70 (59–235) | 113.90 ± 17.95 (77–138) | 129.72 ± 38.09 (50–195) | p = 0.055 |
Therapeutic range of the C0 concentration (µg/L) | 4–6 | 3–5 | 4–6 | 3–5 | - |
C0 ± SD (µg/L) (range) | 8.23 ± 2.81 (4.05–18.58) | 7.23 ± 2.14 (3.13–13.63) | 6.12 ± 1.47 (4.02–9.66) | 7.54 ± 2.67 (3.26–13.81) | p = 0.022 |
Number of subjects | 72 | 44 | 10 | 18 | 144 |
Number of Subjects | 1–5 Years (Tacro + MMF) | >5 Years (Tacro + MMF) | 1–5 Years (Tacro) | >5 Years (Tacro) | |
---|---|---|---|---|---|
72 | 44 | 10 | 18 | ||
Therapeutic range | <120 µg/h/L | 23 (31.9%) | 20 (45.5%) | 6 (60.0%) | 8 (44.4%) |
120–150 µg/h/L | 23 (31.9%) | 11 (25.0%) | 4 (40.0%) | 5 (27.8%) | |
>150 µg/h/L | 26 (36.1%) | 13 (29.5%) | - | 5 (27.8%) |
Number of Subjects | 1–5 Years (Tacro + MMF) | >5 Years (Tacro + MMF) | 1–5 Years (Tacro) | >5 Years (Tacro) | |
---|---|---|---|---|---|
72 | 44 | 10 | 18 | ||
Therapeutic range | <3 µg/L | NA | - | NA | - |
3–5 µg/L | NA | 3 (6.8%) | NA | 2 (11.1%) | |
>5 µg/L | NA | 41 (93.2%) | NA | 16 (88.9%) | |
<4 µg/L | - | NA | - | NA | |
4–6 µg/L | 13 (18.1%) | NA | 6 (60.0%) | NA | |
>6 µg/L | 59 (81.9%) | NA | 4 (40.0%) | NA |
Time after Transplantation | 1–5 Years (CsA + MMF) | >5 Years (CsA + MMF) | 1–5 Years (CsA) | >5 Years (CsA) | ANOVA |
---|---|---|---|---|---|
Age ± SD (years) (range) | 55.01 ± 14.25 (22–78) | 58.19 ± 13.53 (27–82) | 58.97 ± 13.30 (44–69) | 61.96 ± 13.59 (38–83) | p = 0.105 |
CsA dose ± SD (mg) (range) | 204.41 ± 53.82 (120–400) | 183.18 ± 50.14 (60–350) | 233.33 ± 28.87 (200–250) | 164.13 ± 48.55 (70–270) | p = 0.001 |
Therapeutic range of the AUC(0–12) exposure (mg/h/L) | 3.05–3.75 | 2.70–2.98 | 3.05–3.75 | 2.70–2.98 | - |
AUC(0–12) ± SD (mg/h/L) (range) | 3.31 ± 0.94 (1.65–5.65) | 2.97 ± 0.79 (1.46–6.96) | 3.01 ± 0.96 (1.91–3.57) | 2.99 ± 0.70 (1.39–4.27) | p = 0.087 |
Therapeutic range of the C0 concentration (µg/L) | 75–150 | 75–150 | 75–150 | 75–150 | - |
C0 ± SD (µg/L) (range) | 128.55 ± 51.84 (44–258) | 97.90 ± 33.23 (37–240) | 117.33 ± 41.97 (70–150) | 106.54 ± 37.40 (41–187) | p = 0.000 |
Number of subjects | 51 | 96 | 3 | 46 | 196 |
Number of Subjects with IFTA | 1–5 Years (Tacro + MMF) | >5 Years (Tacro + MMF) | 1–5 Years (Tacro) | >5 Years (Tacro) | Total | |
---|---|---|---|---|---|---|
17 (23.6%) Out of 72 | 8 * (18.2%) Out of 44 | 3 (30.0%) Out of 10 | 6 (33.3%) Out of 18 | 34 (23.6%) Out of 144 | ||
Therapeutic range | <120 µg/h/L | 5 (29.4%) | 4 (50.0%) | 2 (66.7%) | 3 (50.0%) | 14 (9.7%) |
120–150 µg/h/L | 8 (47.1%) | 1 (12.5%) | 1 (33.3%) | 1 (16.7%) | 11 (7.6%) | |
>150 µg/h/L | 4 (23.5%) | 3 (37.5%) | - | 2 (33.3%) | 9 (6.3%) |
Number of Subjects with IFTA | 1–5 Years (Tacro + MMF) | >5 Years (Tacro + MMF) | 1–5 Years (Tacro) | >5 Years (Tacro) | Total | |
---|---|---|---|---|---|---|
17 (23.6%) Out of 72 | 8 * (18.2%) Out of 44 | 3 (30.0%) Out of 10 | 6 (33.3%) Out of 18 | 34 (23.6%) Out of 144 | ||
Therapeutic range | <3 µg/L | NA | - | NA | - | - |
3–5 µg/L | NA | 1 (12.5%) | NA | 1 (16.7%) | 2 (5.9%) | |
>5 µg/L | NA | 7 (87.5%) | NA | 5 (83.3%) | 12 (35.3%) | |
<4 µg/L | - | NA | - | NA | - | |
4–6 µg/L | 4 (23.5%) | NA | 1 (33.3%) | NA | 5 (14.7%) | |
>6 µg/L | 13 (76.5%) | NA | 2 (66.7%) | NA | 15 (44.1%) |
Number of Subjects | 1–5 Years (CsA + MMF) | 1–5 Years (CsA) | Number of Subjects | >5 Years (CsA + MMF) | >5 Years (CsA) | |
---|---|---|---|---|---|---|
51 | 3 | 96 | 46 | |||
Therapeutic range | <3.04 mg/h/L | 26 (51.0%) | 1 (33.3%) | <2.69 mg/h/L | 34 (35.4%) | 13 (28.3%) |
3.05–3.75 mg/h/L | 15 (29.4%) | 2 (66.7%) | 2.70–2.98 mg/h/L | 20 (20.8%) | 11 (23.9%) | |
>3.76 mg/h/L | 10 (19.6%) | - | >2.99 mg/h/L | 42 (43.8%) | 22 (47.8%) |
Number of Subjects | 1–5 Years (CsA + MMF) | 1–5 Years (CsA) | >5 Years (CsA + MMF) | >5 Years (CsA) | |
---|---|---|---|---|---|
51 | 3 | 96 | 46 | ||
Therapeutic range | <75 µg/L | 6 (11.8%) | 1 (33.3%) | 22 (22.9%) | 8 (17.4%) |
75–150 µg/L | 35 (68.6%) | 2 (66.7%) | 69 (71.9%) | 29 (63.0%) | |
>150 µg/L | 10 (19.6%) | - | 5 (5.2%) | 9 (19.6%) |
Number of Subjects with IFTA | 1–5 Years (CsA + MMF) | 1–5 Years (CsA) | Number of Subjects with IFTA | >5 Years (CsA + MMF) | >5 Years (CsA) | Total | |
---|---|---|---|---|---|---|---|
10 (19.6%) Out of 51 | 1 (33.33%) Out of 3 | 20 (20.8%) Out of 96 | 8 (17.4%) Out of 46 | 39 (19.9%) Out of 196 | |||
Therapeutic ranges | < 3.04 mg/h/L | 4 (40.0%) | - | < 2.69 mg/h/L | 11 (55.0%) | 2 (25.0%) | 17 (8.7%) |
3.05–3.75 mg/h/L | 3 (30.0%) | 1 (100.0%) | 2.70–2.98 mg/h/L | 1 (5.0%) | 3 (37.5%) | 8 (4.1%) | |
> 3.76 mg/h/L | 3 (30.0%) | - | > 2.99 mg/h/L | 8 (40.0%) | 3 (37.5%) | 14 (7.1%) |
Number of Subjects with IFTA | 1–5 Years (CsA + MMF) | 1–5 Years (CsA) | >5 Years (CsA + MMF) | >5 Years (CsA) | Total | |
---|---|---|---|---|---|---|
10 (19.6%) Out of 51 | 1 (33.33%) Out of 3 | 20 (20.8%) Out of 96 | 8 (17.4%) Out of 46 | 39 (19.9%) Out of 196 | ||
Therapeutic range | < 75 µg/L | 1 (10.0%) | - | 5 (25.0%) | 2 (25.0%) | 8 (20.5%) |
75–150 µg/L | 7 (70.0%) | 1 (100.0%) | 13 (65.0%) | 5 (62.5%) | 26 (66.7%) | |
> 150 µg/L | 2 (20.0%) | - | 2 (10.0%) | 1 (12.5%) | 5 (12.8%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radzevičienė, A.; Marquet, P.; Maslauskienė, R.; Vaičiūnienė, R.; Kaduševičius, E.; Stankevičius, E. Analyses of AUC(0–12) and C0 Compliances within Therapeutic Ranges in Kidney Recipients Receiving Cyclosporine or Tacrolimus. J. Clin. Med. 2020, 9, 3903. https://doi.org/10.3390/jcm9123903
Radzevičienė A, Marquet P, Maslauskienė R, Vaičiūnienė R, Kaduševičius E, Stankevičius E. Analyses of AUC(0–12) and C0 Compliances within Therapeutic Ranges in Kidney Recipients Receiving Cyclosporine or Tacrolimus. Journal of Clinical Medicine. 2020; 9(12):3903. https://doi.org/10.3390/jcm9123903
Chicago/Turabian StyleRadzevičienė, Aurelija, Pierre Marquet, Rima Maslauskienė, Rūta Vaičiūnienė, Edmundas Kaduševičius, and Edgaras Stankevičius. 2020. "Analyses of AUC(0–12) and C0 Compliances within Therapeutic Ranges in Kidney Recipients Receiving Cyclosporine or Tacrolimus" Journal of Clinical Medicine 9, no. 12: 3903. https://doi.org/10.3390/jcm9123903
APA StyleRadzevičienė, A., Marquet, P., Maslauskienė, R., Vaičiūnienė, R., Kaduševičius, E., & Stankevičius, E. (2020). Analyses of AUC(0–12) and C0 Compliances within Therapeutic Ranges in Kidney Recipients Receiving Cyclosporine or Tacrolimus. Journal of Clinical Medicine, 9(12), 3903. https://doi.org/10.3390/jcm9123903