Effect of Anesthetic Technique on the Occurrence of Acute Kidney Injury after Total Knee Arthroplasty
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anesthesia
2.3. Clinical Data
2.4. Definitions of Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Conflicts of Interest
References
- Koh, I.J.; Kim, T.K.; Chang, C.B.; Cho, H.J.; In, Y. Trends in use of total knee arthroplasty in Korea from 2001 to 2010. Clin. Orthop. Relat. Res. 2013, 471, 1441–1450. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am. 2007, 89, 780–785. [Google Scholar] [PubMed]
- Kim, Y.H.; Kim, J.S.; Choe, J.W.; Kim, H.J. Long-term comparison of fixed-bearing and mobile-bearing total knee replacements in patients younger than fifty-one years of age with osteoarthritis. J. Bone Joint Surg. Am. 2012, 94, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, Z.A.; Sastow, D.; Giambrone, G.P.; Tedore, T. Anesthesia for the patient undergoing total knee replacement: Current status and future prospects. Local Reg. Anesth. 2017, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Brull, R.; McCartney, C.J.; Chan, V.W.; El-Beheiry, H. Neurological complications after regional anesthesia: Contemporary estimates of risk. Anesth. Analg. 2007, 104, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, A.J.; Prasad, G.A.; Chan, V.W.; Brull, R. Does regional anesthesia improve outcome after total knee arthroplasty? Clin. Orthop. Relat. Res. 2009, 467, 2379–2402. [Google Scholar] [CrossRef] [PubMed]
- Memtsoudis, S.G.; Sun, X.; Chiu, Y.-L.; Stundner, O.; Liu, S.S.; Banerjee, S.; Mazumdar, M.; Sharrock, N.E. Perioperative comparative effectiveness of anesthetic technique in orthopedic patients. Anesthesiology 2013, 118, 1046–1058. [Google Scholar] [CrossRef]
- Pugely, A.J.; Martin, C.T.; Gao, Y.; Mendoza-Lattes, S.; Callaghan, J.J. Differences in short-term complications between spinal and general anesthesia for primary total knee arthroplasty. J. Bone Joint Surg. Am. 2013, 95, 193–199. [Google Scholar] [CrossRef]
- Davis, F.M.; Laurenson, V.G.; Gillespie, W.J.; Wells, J.E.; Foate, J.; Newman, E. Deep vein thrombosis after total hip replacement. A comparison between spinal and general anaesthesia. J. Bone Joint Surg. Br. 1989, 71, 181–185. [Google Scholar] [CrossRef]
- Planes, A.; Vochelle, N.; Fagola, M.; Feret, J.; Bellaud, M. Prevention of deep vein thrombosis after total hip replacement. The effect of low-molecular-weight heparin with spinal and general anaesthesia. J. Bone Joint Surg. Br. 1991, 73, 418–422. [Google Scholar] [CrossRef]
- Stundner, O.; Chiu, Y.L.; Sun, X.; Mazumdar, M.; Fleischut, P.; Poultsides, L.; Gerner, P.; Fritsch, G.; Memtsoudis, S.G. Comparative perioperative outcomes associated with neuraxial versus general anesthesia for simultaneous bilateral total knee arthroplasty. Reg. Anesth. Pain Med. 2012, 37, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Koh, W.U.; Kim, S.G.; Park, H.S.; Song, J.G.; Ro, Y.J.; Yang, H.S. Early postoperative albumin level following total knee arthroplasty is associated with acute kidney injury: A retrospective analysis of 1309 consecutive patients based on kidney disease improving global outcomes criteria. Medicine 2016, 95, e4489. [Google Scholar] [CrossRef] [PubMed]
- Warth, L.C.; Noiseux, N.O.; Hogue, M.H.; Klaassen, A.L.; Liu, S.S.; Callaghan, J.J. Risk of acute kidney injury after primary and revision total hip arthroplasty and total knee arthroplasty using a multimodal approach to perioperative pain control including ketorolac and celecoxib. J. Arthroplasty 2016, 31, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Biteker, M.; Dayan, A.; Tekkesin, A.I.; Can, M.M.; Tayci, I.; Ilhan, E.; Sahin, G. Incidence, risk factors, and outcomes of perioperative acute kidney injury in noncardiac and nonvascular surgery. Am. J. Surg. 2014, 207, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, M.Y.; Passannante, A.N.; Onder, R.L.; Greene-Helms, W.F.; Perretta, S.G. Alteration of renal blood flow during epidural anesthesia in normal subjects. Anesth. Analg. 1997, 84, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- DiBona, G.F. Neural control of renal function in health and disease. Clin. Auton. Res. 1994, 4, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Pelayo, J.C.; Tucker, B.J.; Blantz, R.C. Effects of beta-adrenergic stimulation with isoproterenol on glomerular hemodynamics. Am. J. Physiol. 1989, 257, F866–F873. [Google Scholar] [CrossRef] [PubMed]
- Gonano, C.; Leitgeb, U.; Sitzwohl, C.; Ihra, G.; Weinstabl, C.; Kettner, S.C. Spinal versus general anesthesia for orthopedic surgery: Anesthesia drug and supply costs. Anesth. Analg. 2006, 102, 524–529. [Google Scholar] [CrossRef]
- Jellish, W.S.; Thalji, Z.; Stevenson, K.; Shea, J. A prospective randomized study comparing short-and intermediate-term perioperative outcome variables after spinal or general anesthesia for lumbar disk and laminectomy surgery. Anesth. Analg. 1996, 83, 559–564. [Google Scholar] [CrossRef]
- Korhonen, A.-M.; Valanne, J.V.; Jokela, R.M.; Ravaska, P.; Korttila, K.T. A comparison of selective spinal anesthesia with hyperbaric bupivacaine and general anesthesia with desflurane for outpatient knee arthroscopy. Anesth. Analg. 2004, 99, 1668–1673. [Google Scholar] [CrossRef]
- Carr, D.B.; Goudas, L.C. Acute pain. Lancet 1999, 353, 2051–2058. [Google Scholar] [CrossRef]
- Kehlet, H.; Dahl, J.B. Anaesthesia, surgery, and challenges in postoperative recovery. Lancet 2003, 362, 1921–1928. [Google Scholar] [CrossRef]
- Boehne, M.; Sasse, M.; Karch, A.; Dziuba, F.; Horke, A.; Kaussen, T.; Mikolajczyk, R.; Beerbaum, P.; Jack, T. Systemic inflammatory response syndrome after pediatric congenital heart surgery: Incidence, risk factors, and clinical outcome. J. Card. Surg. 2017, 32, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Park, J.T. Postoperative acute kidney injury. Korean J. Anesthesiol. 2017, 70, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.; Clatworthy, M.R. Immunotherapy for acute kidney injury. Immunotherapy 2012, 4, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Nechemia-Arbely, Y.; Barkan, D.; Pizov, G.; Shriki, A.; Rose-John, S.; Galun, E.; Axelrod, J.H. IL-6/IL-6R axis plays a critical role in acute kidney injury. J. Am. Soc. Nephrol. 2008, 19, 1106–1115. [Google Scholar] [CrossRef]
- Song, J.W.; Goligorsky, M.S. Perioperative implication of the endothelial glycocalyx. Korean J. Anesthesiol. 2018, 71, 92–102. [Google Scholar] [CrossRef]
- Milosavljevic, S.B.; Pavlovic, A.P.; Trpkovic, S.V.; Ilić, A.N.; Sekulic, A.D. Influence of spinal and general anesthesia on the metabolic, hormonal, and hemodynamic response in elective surgical patients. Med. Sci. Monit. 2014, 20, 1833–1840. [Google Scholar]
- Buyukkocak, U.; Daphan, C.; Caglayan, O.; Aydinuraz, K.; Kaya, T.; Saygun, O.; Agalar, F. Effects of different anesthetic techniques on serum leptin, C-reactive protein, and cortisol concentrations in anorectal surgery. Croat. Med. J. 2006, 47, 862–868. [Google Scholar]
- Bugada, D.; Ghisi, D.; Mariano, E.R. Continuous regional anesthesia: A review of perioperative outcome benefits. Minerva Anestesiol. 2017, 83, 1089–1100. [Google Scholar]
- Lirk, P.; Picardi, S.; Hollmann, M.W. Local anaesthetics: 10 essentials. Eur. J. Anaesthesiol. 2014, 31, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Lirk, P.; Fiegl, H.; Weber, N.; Hollmann, M. Epigenetics in the perioperative period. Br. J. Pharmacol. 2015, 172, 2748–2755. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.E.; Holm, H.A.; Kristensen, P.W.; Kjaersgaard-Andersen, P. Tourniquet time in total knee arthroplasty. Knee 2018, 25, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Zarbock, A.; Koyner, J.L.; Hoste, E.A.; Kellum, J.A. Update on perioperative acute kidney injury. Anesth. Analg. 2018, 127, 1236–1245. [Google Scholar] [CrossRef] [PubMed]
- Miskovic, A.; Lumb, A.B. Postoperative pulmonary complications. Br. J. Anaesth. 2017, 118, 317–334. [Google Scholar] [CrossRef]
- Turan, A.; Bajracharya, G.R.; Leung, S.; Yazici Kara, M.; Mao, G.; Botsford, T.; Ruetzler, K.; Maheshwari, K.; Ali Sakr Esa, W.; Elsharkawy, H.; et al. Association of neuraxial anesthesia with postoperative venous thromboembolism after noncardiac surgery: A propensity-matched analysis of ACS-NSQIP database. Anesth. Analg. 2019, 128, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Mauermann, W.J.; Shilling, A.M.; Zuo, Z. A comparison of neuraxial block versus general anesthesia for elective total hip replacement: A meta-analysis. Anesth. Analg. 2006, 103, 1018–1025. [Google Scholar] [CrossRef]
- Smith, L.M.; Cozowicz, C.; Uda, Y.; Memtsoudis, S.G.; Barrington, M.J. Neuraxial and combined neuraxial/general anesthesia compared to general anesthesia for major truncal and lower limb surgery: A systematic review and meta-analysis. Anesth. Analg. 2017, 125, 1931–1945. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, Z.Y.; Hua, Y.Q.; Li, J.; Cai, Z.D. A comparison of regional and general anaesthesia for total replacement of the hip or knee: A meta-analysis. J. Bone Joint Surg. Br. 2009, 91, 935–942. [Google Scholar] [CrossRef]
- Walker, J.B.; Nguyen, P.L.; Schmidt, U.H.; Gabriel, R.A. Postoperative outcomes associated with neuraxial vs general anesthesia following bilateral total knee arthroplasty. J. Arthroplasty 2017, 32, 3632–3636. [Google Scholar] [CrossRef]
- Johnson, R.L.; Kopp, S.L.; Burkle, C.M.; Duncan, C.M.; Jacob, A.K.; Erwin, P.J.; Murad, M.H.; Mantilla, C.B. Neuraxial vs general anaesthesia for total hip and total knee arthroplasty: A systematic review of comparative-effectiveness research. Br. J. Anaesth. 2016, 116, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Helwani, M.A.; Avidan, M.S.; Ben Abdallah, A.; Kaiser, D.J.; Clohisy, J.C.; Hall, B.L.; Kaiser, H.A. Effects of regional versus general anesthesia on outcomes after total hip arthroplasty: A retrospective propensity-matched cohort study. J. Bone Joint Surg. Am. 2015, 97, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Cryer, C.; Gulliver, P.; Langley, J.D.; Davie, G. Is length of stay in hospital a stable proxy for injury severity? Inj. Prev. 2010, 16, 254–260. [Google Scholar] [CrossRef] [PubMed]
- McIsaac, D.I.; McCartney, C.J.; Walraven, C.V. Peripheral Nerve Blockade for Primary Total Knee Arthroplasty: A population-based cohort study of outcomes and resource utilization. Anesthesiology 2017, 126, 312–320. [Google Scholar] [CrossRef] [PubMed]
- El Bitar, Y.F.; Illingworth, K.D.; Scaife, S.L.; Horberg, J.V.; Saleh, K.J. Hospital length of stay following primary total knee arthroplasty: Data from the nationwide inpatient sample database. J. Arthroplasty 2015, 30, 1710–1715. [Google Scholar] [CrossRef]
Demographic Data | General (N = 2353) | Spinal (N = 634) | p-Value | Standardized Difference |
---|---|---|---|---|
Age (years) | 68.6 ± 6.6 | 69.3 ± 6.4 | 0.027 | 0.102 |
Body mass index (kg/m2) | 26.8 ± 3.5 | 26.5 ± 3.2 | 0.048 | 0.090 |
Sex, Female/male | 2174 / 179 (92.4/7.6) | 568 / 66 (89.6 / 10.4) | 0.022 | 0.092 |
ASA PS †, 1/2/3 | 129/2157/67 (5.5/91.7/2.9) | 21/581/32 (3.3/91.6/5.1) | 0.003 | 0.152 |
Smoking History Non/current/ex-smoker | 2039/52/262 (86.7/2.2/11.1) | 325/19/290 (51.3/3/45.7) | <0.001 | 0.844 |
Surgical Data | ||||
Surgical strategy, Single/staggered/staged_1st/ staged_2nd/simultaneous | 983/380/149/146/695 (41.8/16.2/6.3/6.2/29.5) | 334/175/29/32/64 (52.7/27.6/4.6/5.1/10.1) | <0.001 | 0.553 |
Surgeon, B/C/K | 719/1173/461 (30.6/49.9/19.6) | 326/273/35 (51.4/43.1/5.5) | <0.001 | 0.542 |
Preoperative Medical History | ||||
Diabetes mellitus | 306 (13.0) | 105 (16.6) | 0.021 | 0.096 |
Hypertension | 768 (32.6) | 261 (41.2) | <0.001 | 0.173 |
Ischemic heart disease | 164 (7.0) | 63 (9.9) | 0.012 | 0.099 |
Cerebrovascular disease | 127 (5.4) | 45 (7.1) | 0.103 | 0.066 |
Pulmonary disease | 88 (3.7) | 35 (5.5) | 0.045 | 0.078 |
Adrenal disease | 33 (1.4) | 7 (1.1) | 0.562 | 0.029 |
Preoperative Medication History | ||||
Calcium channel blocker | 927 (39.4) | 243 (38.3) | 0.625 | 0.022 |
Angiotensin-converting enzyme inhibitor | 803 (34.1) | 220 (34.7) | 0.787 | 0.012 |
Beta blocker | 360 (15.3) | 106 (16.7) | 0.382 | 0.038 |
Aspirin | 512 (21.8) | 135 (21.3) | 0.800 | 0.011 |
Clopidogrel | 150 (6.4) | 58 (9.2) | 0.015 | 0.096 |
HMG-CoA reductase inhibitors ‡ | 600 (25.5) | 234 (36.9) | <0.001 | 0.236 |
Antibiotics | 12 (0.5) | 1 (0.2) | 0.323 | 0.089 |
Nonsteroidal anti-inflammatory drugs | 187 (8.0) | 33 (5.2) | 0.019 | 0.123 |
Selective cyclooxygenase-2 inhibitor | 408 (17.3) | 140 (22.1) | 0.006 | 0.114 |
Other analgesics | 356 (15.1) | 116 (18.3) | 0.052 | 0.082 |
Steroids | 51 (2.2) | 19 (3.0) | 0.220 | 0.049 |
Preoperative Laboratory Data | ||||
Anemia | 618 (26.3) | 147 (23.2) | 0.115 | 0.073 |
Thrombocytopenia/normal/ thrombocytosis | 85/2142/126 (3.6/91.0/5.4) | 19/590/25 (3.0/93.1/3.9) | 0.255 | 0.077 |
Leukopenia/normal/leukocytosis | 89/2198/66 (3.8/93.4/2.8) | 22/598/14 (3.5/94.3/2.2) | 0.657 | 0.042 |
Hyponatremia/normal/hypernatremia | 26/2279/48 (1.1/96.9/2.0) | 10/611/13 (1.6/96.4/2.1) | 0.626 | 0.041 |
Hemoglobin (g/dL) | 12.7 ± 1.1 | 12.8 ± 1.1 | 0.111 | 0.071 |
C-reactive protein (mg/dL) | 0.23 ± 0.48 | 0.21 ± 0.4 | 0.014 | 0.052 |
Aspartate aminotransferase (IU/L) | 23.0 ± 8.9 | 22.4 ± 9.0 | 0.008 | 0.064 |
Alanine aminotransferse (IU/L) | 19.9 ± 11.2 | 20.4 ± 12.0 | 0.569 | 0.039 |
Albumin (g/dL) | 3.9 ± 0.3 | 3.8 ± 0.3 | <0.001 | 0.418 |
Uric acid (mg/dL) | 4.6 ± 1.2 | 4.6 ± 1.1 | 0.519 | 0.029 |
Abnormality on echocardiogram | 279 (11.9) | 48 (7.6) | 0.002 | 0.163 |
Abnormality on pulmonary function test | 103 (4.4) | 40 (6.4) | 0.041 | 0.081 |
Demographic Data | General (N = 467) | Spinal (N = 467) | Standardized Difference |
---|---|---|---|
Age | 69.4 ± 6.5 | 69.3 ± 6.4 | 0.011 |
Body mass index (kg/m2) | 26.4 ± 3.3 | 26.4 ± 3.3 | 0.017 |
Sex, Female/male | 423/44 (90.6/9.4) | 416/51 (89.1/10.9) | 0.049 |
ASA PS †, 1/2/3 | 17/425/25 (3.6/91.0/5.4) | 18/426/23 (3.9/91.2/4.9) | 0.022 |
Smoking HistoryNon/current/ex-smoker | 340/15/112 (72.8/3.2/24.0) | 320/18/129 (68.5/3.9/27.6) | 0.094 |
Surgical Data | |||
Surgical strategy, Single/staggered/staged_1st/staged_2nd/simultaneous | 238/120/19/27/63 (51.0/25.7/4.1/5.8/13.5) | 240/110/23/31/63 (51.4/23.6/4.9/6.6/13.5) | 0.069 |
Surgeon, B/C/K | 216/208/43 (46.3/44.5/9.2) | 204/228/35 (43.7/48.8/7.5) | 0.095 |
Preoperative Medical History | |||
Diabetes mellitus | 74 (15.9) | 70 (15.0) | 0.023 |
Hypertension | 166 (35.6) | 170 (36.4) | 0.017 |
Ischemic heart disease | 47 (10.1) | 45 (9.6) | 0.014 |
Cerebrovascular disease | 29 (6.2) | 30 (6.4) | 0.008 |
Pulmonary disease | 26 (5.6) | 27 (5.8) | 0.009 |
Adrenal disease | 7 (1.5) | 6 (1.3) | 0.020 |
Preoperative Medication History | |||
Calcium channel blocker | 186 (39.8) | 178 (38.1) | 0.035 |
Angiotensin converting enzyme inhibitor | 165 (35.3) | 162 (34.7) | 0.014 |
Beta blocker | 84 (18.0) | 77 (16.5) | 0.040 |
Aspirin | 101 (21.6) | 99 (21.2) | 0.010 |
Clopidogrel | 42 (9.0) | 39 (8.4) | 0.022 |
HMG-CoA reductase inhibitors ‡ | 160 (34.3) | 150 (32.1) | 0.044 |
Antibiotics | 0 (0) | 1 (0.2) | 0.054 |
NSAIDs | 29 (6.2) | 24 (5.1) | 0.048 |
Selective cyclooxygenase-2 inhibitor | 102 (21.8) | 101 (21.6) | 0.005 |
Other analgesics | 94 (20.1) | 81 (17.3) | 0.072 |
Steroids | 13 (2.8) | 11 (2.4) | 0.025 |
Preoperative Laboratory Data | |||
Anemia | 119 (25.5) | 106 (22.7) | 0.066 |
Thrombocytopenia/normal/thrombocytosis | 18/427/22 (3.9/91.4/4.7) | 17/431/19 (3.6/92.3/4.1) | 0.034 |
Leukopenia/normal/leukocytosis | 25/432/10 (5.4/92.5/2.1) | 21/437/9 (4.5/93.6/1.9) | 0.043 |
Hyponatremia/normal/hypernatremia | 7/450/10 (1.5/96.4/2.1) | 4/455/8 (0.9/97.4/1.7) | 0.068 |
Hemoglobin (g/dL) | 12.7 ± 1.2 | 12.8 ± 1.1 | 0.088 |
C-reactive protein (mg/dL) | 0.22 ± 0.38 | 0.23 ± 0.45 | 0.008 |
Aspartate aminotransferase (IU/L) | 22.2 ± 7.7 | 22.6 ± 9.6 | 0.048 |
Alanine aminotransferse (IU/L) | 20.4 ± 12.2 | 20.5 ± 12.9 | 0.010 |
Albumin (g/dL) | 3.8 ± 0.3 | 3.8 ± 0.3 | 0.085 |
Uric acid (mg/dL) | 4.7 ± 1.2 | 4.7 ± 1.1 | 0.003 |
Abnormality on echocardiogram | 49 (10.5) | 45 (9.6) | 0.032 |
Abnormality on pulmonary function test | 34 (7.3) | 34 (7.3) | 0.0 |
Intraoperative Data | Total Set | Matched Set | ||||
---|---|---|---|---|---|---|
General Group (n = 2353) | Spinal Group (n = 634) | p-Value | General Group (n = 467) | Spinal Group (n = 467) | p-Value | |
Use of vasopressor | 430 (18.3) | 102 (16.1) | 0.202 | 77 (16.5) | 86 (18.4) | 0.432 |
Use of calcium channel blocker | 366 (15.6) | 58 (9.2) | <0.001 | 65 (13.9) | 34 (7.3) | 0.001 |
Use of beta blocker | 516 (21.9) | 8 (1.3) | <0.001 | 95 (20.3) | 5 (1.1) | <0.001 |
Red blood cell transfusion | 795 (33.8) | 103 (16.3) | <0.001 | 95 (20.3) | 99 (21.2) | 0.730 |
Infused crystalloid (mL) | 1014.8 ± 600.1 | 961.1 ± 551.2 | 0.016 | 922.4 ± 574.1 | 1013.5 ± 599.9 | 0.012 |
Infused colloid (mL) | 544.6 ± 305.1 | 382.8 ± 209.0 | <0.001 | 496.7 ± 277.9 | 402.0 ± 215.0 | <0.001 |
Urine output (mL) | 193.4 ± 230.8 | 379.4 ± 350.6 | <0.001 | 168.0 ± 209.9 | 366.2 ± 341.8 | <0.001 |
The lowest mean blood pressure (mm Hg) | 69.3 ± 8.5 | 73.1 ± 9.8 | <0.001 | 70.3 ± 8.7 | 72.6 ± 9.9 | <0.001 |
Operation time (minute) | 133.4 ± 42.3 | 122.5 ± 33.8 | <0.001 | 123.7 ± 34.8 | 124.4 ± 36.9 | 0.731 |
Tourniquet time (minute) | 123.1 ± 34.5 | 105.3 ±30.6 | <0.001 | 114.0 ± 31.0 | 104.5 ± 31.0 | <0.001 |
Clinical Outcome | Group | Total Set | Matched Set | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Event | Odds Ratio | 95% Confidence Interval | p-Value | Event | Odds Ratio | 95% Confidence Interval | p-Value | ||||
Acute kidney injury | General | 143 | 1 | 24 | |||||||
Spinal | 19 | 0.477 | 0.293 | 0.778 | 0.003 | 13 | 0.529 | 0.273 | 1.024 | 0.059 | |
Cardiovascular complication | General | 29 | 1 | 10 | |||||||
Spinal | 7 | 0.895 | 0.390 | 2.052 | 0.793 | 5 | 0.495 | 0.166 | 1.470 | 0.205 | |
Pulmonary complication | General | 38 | 14 | ||||||||
Spinal | 7 | 0.680 | 0.276 | 1.676 | 0.402 | 4 | 0.280 | 0.091 | 0.862 | 0.027 | |
Deep vein thrombosis/Pulmonary thromboembolism | General | 28 | 11 | ||||||||
Spinal | 3 | 0.395 | 0.119 | 1.309 | 0.129 | 2 | 0.178 | 0.039 | 0.813 | 0.026 | |
Delirium | General | 32 | 7 | ||||||||
Spinal | 19 | 2.241 | 1.254 | 4.004 | 0.006 | 15 | 2.181 | 0.873 | 5.450 | 0.095 | |
Neurologic complication | General | 18 | 3 | ||||||||
Spinal | 6 | 1.239 | 0.490 | 3.133 | 0.650 | 6 | 2.013 | 0.497 | 8.146 | 0.327 | |
Surgical site infection | General | 14 | 4 | ||||||||
Spinal | 6 | 1.596 | 0.611 | 4.171 | 0.340 | 6 | 1.507 | 0.420 | 5.409 | 0.530 | |
Gastrointestinal complication | General | 58 | 6 | ||||||||
Spinal | 26 | 1.692 | 1.060 | 2.701 | 0.028 | 14 | 2.375 | 0.943 | 5.980 | 0.066 | |
Endocrinologic complication | General | 3 | 2 | ||||||||
Spinal | 1 | 1.237 | 0.128 | 11.918 | 0.854 | 1 | 0.499 | 0.045 | 5.540 | 0.571 | |
Urologic complication | General | 24 | 11 | ||||||||
Spinal | 9 | 1.397 | 0.641 | 3.048 | 0.400 | 4 | 0.358 | 0.122 | 1.053 | 0.062 | |
Major complication | General | 70 | 18 | ||||||||
Spinal | 24 | 1.283 | 0.800 | 2.058 | 0.301 | 22 | 1.233 | 0.654 | 2.325 | 0.517 | |
Intensive care unit admission | General | 59 | 1 | 15 | |||||||
Spinal | 21 | 1.332 | 0.803 | 2.210 | 0.267 | 19 | 1.278 | 0.647 | 2.526 | 0.480 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-J.; Park, H.-S.; Go, Y.-J.; Koh, W.U.; Kim, H.; Song, J.-G.; Ro, Y.-J. Effect of Anesthetic Technique on the Occurrence of Acute Kidney Injury after Total Knee Arthroplasty. J. Clin. Med. 2019, 8, 778. https://doi.org/10.3390/jcm8060778
Kim H-J, Park H-S, Go Y-J, Koh WU, Kim H, Song J-G, Ro Y-J. Effect of Anesthetic Technique on the Occurrence of Acute Kidney Injury after Total Knee Arthroplasty. Journal of Clinical Medicine. 2019; 8(6):778. https://doi.org/10.3390/jcm8060778
Chicago/Turabian StyleKim, Ha-Jung, Hee-Sun Park, Yon-Ji Go, Won Uk Koh, Hyungtae Kim, Jun-Gol Song, and Young-Jin Ro. 2019. "Effect of Anesthetic Technique on the Occurrence of Acute Kidney Injury after Total Knee Arthroplasty" Journal of Clinical Medicine 8, no. 6: 778. https://doi.org/10.3390/jcm8060778
APA StyleKim, H.-J., Park, H.-S., Go, Y.-J., Koh, W. U., Kim, H., Song, J.-G., & Ro, Y.-J. (2019). Effect of Anesthetic Technique on the Occurrence of Acute Kidney Injury after Total Knee Arthroplasty. Journal of Clinical Medicine, 8(6), 778. https://doi.org/10.3390/jcm8060778