Relationship Between Plasma Leptin Levels and Airflow Limitation in the Small and Medium Airways in Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometry
2.3. Body Composition
2.4. Lung Function
2.5. Blood Plasma Sample
2.6. Leptin
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BC | Body composition |
FVC | Forced vital capacity |
FEV1 | Forced expiratory volume in the first second |
BF% | Body fat mass percentage |
BMI | Body mass index |
AFL | Airflow limitation |
FEF25–75% | Forced expiratory flow between 25–75% |
Raw | Airway resistance |
sRaw | Specific airway resistance |
VFI | Visceral fat index |
TF% | Trunk fat mass percentage |
FFM% | Free fat mass percentage |
RV | Residual volume |
MIP | Maximum inspiratory pressure |
MEP | Maximum expiratory pressure |
DLCO | Diffusing capacity of the lungs for carbon monoxide |
FEF | Forced expiratory flow |
PEF | Peak expiratory flow |
SVC | Slow vitality capacity |
ERV | Expiratory reserve volume |
IC | Inspiratory capacity |
TLC | Total lung capacity |
References
- Lufti, M.F. The physiological basis and clinical significance of lung volume measurements. Multidiscip. Respir. Med. 2017, 12, 3. [Google Scholar] [CrossRef]
- Huang, L.; Ye, Z.; Lu, J.; Kong, C.; Zhu, Q.; Huang, B.; Wang, Z.; Xu, L.; Deng, Q.; Gong, J.; et al. Effects of Fat Distribution on Lung Function in Young Adults. J. Physiol. Anthropol. 2019, 38, 7. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhou, L.; Li, Y.; Guo, S.; Li, X.; Zheng, J.; Zhu, Z.; Chen, Y.; Huang, Y.; Chen, R.; et al. Fat-Free Mass Index for Evaluating the Nutritional Status and Disease Severity in COPD. Respir. Care 2016, 61, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Pekkarinen, E.; Vanninen, E.; Länsimies, E.; Kokkarinen, J.; Timonen, L.K. Relation between body composition, abdominal obesity, and lung function. Clin. Physiol. Funct. Imaging 2012, 32, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, F.; Montella, S.; Greco, L.; Valerio, G.; Franzese, A.; Maniscalco, M.; Fiorentino, G.; Peroni, D.; Pietrobelli, A.; De Stefano, S.; et al. Obesity Duration Is Associated to Pulmonary Function Impairment in Obese Subjects. Obesity 2011, 19, 1623–1628. [Google Scholar] [CrossRef]
- Peters, U.; Suratt, B.T.; Bates, J.H.T.; Dixon, A.E. Beyond BMI: Obesity and Lung Disease. Chest 2018, 153, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Kull, I.; Bergström, A.; Hallberg, J.; Bergström, P.U.; Guerra, S.; Pershagen, G.; Gruzieva, O.; van Hage, M.; Georgelis, A. Early-life risk factors for reversible and irreversible airflow limitation in young adults: Findings from the BAMSE birth cohort. Thorax 2021, 76, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.H. Physiological Mechanisms of Airway Hyperresponsiveness in Obese Asthma. Am. J. Respir. Cell Mol. Biol. 2016, 54, 618–623. [Google Scholar] [CrossRef]
- Barton, J.H.; Ireland, A.; Fitzpatrick, M.; Kessinger, C.; Camp, D.; Weinman, R.; McMahon, D.; Leader, J.K.; Holguin, F.; Wenzel, S.E.; et al. Adiposity influences airway wall thickness and the asthma phenotype of HIV-associated obstructive lung disease: A cross-sectional study. BMC Pulm. Med. 2016, 16, 111. [Google Scholar] [CrossRef]
- Mafort, T.T.; Rufino, R.; Costa, C.H.; Lopes, A.J. Obesity: Systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip. Respir. Med. 2016, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Jutant, E.M.; Tu, L.; Humbert, M.; Guignabert, C.; Huertas, A. The thousand faces of leptin in the lung. Chest 2021, 159, 239–248. [Google Scholar] [CrossRef]
- Hickson, D.A.; Burchfiel, C.M.; Petrini, M.F.; Liu, J.; Campbell-Jenkins, B.W.; Bhagat, R.; Marshall, G.D. Leptin is inversely associated with lung function in African Americans, independent of adiposity: The Jackson Heart Study. Obesity 2011, 19, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Arteaga-Solis, E.; Zee, T.; Emala, C.W.; Vinson, C.; Wess, J.; Karsenty, G. Inhibition of leptin regulation of parasympathetic signaling as a cause of extreme body weight-associated asthma. Cell Metab. 2013, 17, 35–48. [Google Scholar] [CrossRef]
- Zaw, T.; Hlaing, Z.T.T.; Sein, M.T. Relationship between Anthropometric indices, serum Leptin and Respiratory function in Myanmar male adult subjects. Asian. J. Med. Sci. 2019, 10, 9–13. [Google Scholar] [CrossRef]
- García-Quero, C.; García-Río, F. Smoking-Induced Small Airway Dysfunction. An Early Marker of Future COPD? Arch. Bronconeumol. 2021, 57, 3–4. [Google Scholar] [CrossRef]
- de Araújo Morais, A.H.; de Souza Aquino, J.; da Silva-Maia, J.K.; de Lima Vale, S.H.; Maciel, B.L.L.; Passos, T.S. Nutritional status, diet and viral respiratory infections: Perspectives for severe acute respiratory syndrome coronavirus 2. Br. J. Nutr. 2021, 125, 851–862. [Google Scholar] [CrossRef]
- Rodríguez, S.; Donoso, D.; Sánchez, E.; Muñoz Cofré, R.; Conei, D.; del Sol, M.; Escobar Cabello, M. Use of the Body Mass Index and Body Fat Percentage in the Analysis of Pulmonary Function. Int. J. Morphol. 2019, 37, 592–599. [Google Scholar] [CrossRef]
- International Society for the Advancement of Kinanthropometry. International Standards for Anthropometric Assessment; ISAK: Underdale, Australia, 2001. [Google Scholar]
- World Health Organization (WHO). Obesity and Overweight. 2024. Available online: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 15 November 2024).
- Lizana, P.; Vega-Fernandez, G.; Lera, L. Association Between Chronic Health Conditions and Quality of Life in Rural Teachers. Front. Psychol. 2020, 10, 2898. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Wanger, J.; Clausen, J.L.; Coates, A.; Pedersen, O.F.; Brusasco, V.; Burgos, F.; Casaburi, R.; Crapo, R.; Enright, P.; van der Grinten, C.P.; et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005, 26, 511–522. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society/European Respiratory Society. ATS/ERS Statement on Respiratory Muscle Testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [Google Scholar] [CrossRef]
- Cheng, J.; Luo, Y.; Li, Y.; Zhang, F.; Zhang, X.; Zhou, X.; Ji, L. Sex- and body mass index-specific reference intervals for serum leptin: A population based study in China. Nutr. Metab. 2022, 19, 54. [Google Scholar] [CrossRef] [PubMed]
- McNeill, J.N.; Lee, D.H.; Hwang, S.J.; Courchesne, P.; Yao, C.; Huan, T.; Joehanes, R.; O’Connor, G.T.; Ho, J.E.; Levy, D. Association of 71 cardiovascular disease-related plasma proteins with pulmonary function in the community. PLoS ONE 2022, 17, e0266523. [Google Scholar] [CrossRef]
- Leone, N.; Courbon, D.; Thomas, F.; Bean, K.; Jégo, B.; Leynaert, B.; Guize, L.; Zureik, M. Lung function impairment and metabolic syndrome: The critical role of abdominal obesity. Am. J. Respir. Crit. Care Med. 2009, 179, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Parastesh, M.; Alibakhshi, E.; Saremi, A.; Shavandi, N. The effect of aerobic exercise training on leptin and pulmonary function tests during weight loss in men with visceral obesity. J. Shahrekord. Univ Med. Sci. 2020, 22, 96–101. [Google Scholar] [CrossRef]
- McNeill, J.N.; Lau, E.S.; Zern, E.K.; Nayor, M.; Malhotra, R.; Liu, E.E.; Bhat, R.R.; Brooks, L.C.; Farrell, R.; Sbarbaro, J.A.; et al. Association of obesity-related inflammatory pathways with lung function and exercise capacity. Respir. Med. 2021, 183, 106434. [Google Scholar] [CrossRef]
- Bruno, A.; Pace, E.; Chanez, P.; Gras, D.; Vachier, I.; Chiappara, G.; La Guardia, M.; Gerbino, S.; Profita, M.; Gjomarkaj, M. Leptin and leptin receptor expression in asthma. J. Allergy Clin. Immunol. 2009, 124, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, R.; Shi, W.; Mao, S. Predictive and prognostic value of leptin status in asthma. NPJ Prim. Care Respir. Med. 2023, 33, 10. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, Y.; Zhang, H.; Zhong, W.; Zhang, J. Association of asthma diagnosis with leptin and adiponectin: A systematic review and meta-analysis. J. Investig. Med. 2017, 65, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Budinger, G.R.; Lo, A.; Urich, D.; Rivera, S.E.; Ghosh, A.K.; Gonzalez, A.; Chiarella, S.E.; Marks, K.; Donnelly, H.K.; et al. Leptin promotes fibroproliferative acute respiratory distress syndrome by inhibiting peroxisome proliferator-activated receptor-γ. Am. J. Respir. Crit. Care Med. 2011, 183, 1490–1498. [Google Scholar] [CrossRef]
- Macklin, M.; Thompson, C.; Kawano-Dourado, L.; Bauer Ventura, I.; Weschenfelder, C.; Trostchansky, A.; Marcadenti, A.; Tighe, R.M. Linking Adiposity to Interstitial Lung Disease: The Role of the Dysfunctional Adipocyte and Inflammation. Cells 2023, 12, 2206. [Google Scholar] [CrossRef]
- Brandao-Rangel, M.A.R.; Moraes-Ferreira, R.; Oliveira-Junior, M.C.; Santos-Dias, A.; Bachi, A.L.L.; Gabriela-Pereira, G.; de Oliveira Freitas, S.; Araújo-Rosa, A.C.; Oliveira, L.V.F.; Frison, C.R.; et al. Pulmonary function changes in older adults with and without metabolic syndrome. Sci. Rep. 2021, 11, 17337. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, R.; Hu, C. Leptin/obR signaling exacerbates obesity-related neutrophilic airway inflammation through inflammatory M1 macrophages. Mol. Med. 2023, 29, 100. [Google Scholar] [CrossRef] [PubMed]
- Tchernof, A.; Brochu, D.; Maltais-Payette, I.; Mansour, M.F.; Marchand, G.B.; Carreau, A.M.; Kapeluto, J. Androgens and the Regulation of Adiposity and Body Fat Distribution in Humans. Compr. Physiol. 2018, 8, 1253–1290. [Google Scholar] [CrossRef] [PubMed]
- Zerradi, M.; Dereumetz, J.; Boulet, M.M.; Tchernof, A. Androgens, body fat Distribution and Adipogenesis. Curr. Obes. Rep. 2014, 3, 396–403. [Google Scholar] [CrossRef]
- Muñoz Cofré, R.; Del Sol, M.; Medina González, P.; Escobar Inostroza, J.; Lizana, P.A.; Conei, D.; Escobar Cabello, M. Relation among body mass index, waist-hip ratio, and pulmonary functional residual capacity in normal weight versus obese Chilean children: A cross-sectional study. Arch. Argent Pediatr. 2019, 117, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Melo, L.C.; Silva, M.A.; Calles, A.C. Obesity and lung function: A systematic review. Einstein 2014, 12, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Lange, J. Overweight and obesity in Chile: Considerations for its approach in a context of social inequality. Rev. Chil. Nutr. 2023, 50, 457–463. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Peterson, C.M.; Thomas, D.M.; Heo, M.; Schuna, J.M. Why are there race/ethnic differences in adult body mass index–adiposity relationships? A quantitative critical review. Obes. Rev. 2016, 17, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.M.; Su, H.; Thomas, D.M.; Heo, M.; Golnabi, A.H.; Pietrobelli, A.; Heymsfield, S.B. Tri-Ponderal Mass Index vs Body Mass Index in Estimating Body Fat During Adolescence. JAMA Pediatr. 2017, 171, 629–636. [Google Scholar] [CrossRef]
Total Sample | Male | Female | p Value | |
---|---|---|---|---|
n (%) | 83 (100) | 40 (48.19) | 43 (51.81) | - |
Age (years) | 21.55 ± 2.08 | 21.93 ± 2.73 | 21.85 ± 2.17 | 0.27 MW |
Weight (Kg) | 68.26 ± 11.76 | 74.26 ± 15.78 | 70.18 ± 12.68 | <0.66 t |
Height (m) | 1.65 ± 0.09 | 1.71 ± 2.70 | 1.65 ± 0.09 | <0.01 t |
Leptin (pg/mL) | 820.91 ± 614.5 | 423.9 ± 339.4 | 1230.0 ± 489.90 | <0.01 t |
BMI (Kg/m2) | 25.15 ± 4.32 | 25.35 ± 4.94 | 25.33 ± 4.42 | 0.79 MW |
BF% | 24.79 ± 8.66 | 19.39 ± 7.60 | 30.34 ± 5.70 | <0.01 t |
TF% | 23.89 ± 7.84 | 22.29 ± 8.60 | 25.53 ± 6.71 | 0.07 t |
FFM% | 75.21 ± 8.66 | 80.59 ± 7.60 | 69.66 ± 5.70 | <0.0001 MW |
Total Sample | Male | Female | p Value | |
---|---|---|---|---|
FVC (L) | 4.52 ± 0.95 | 5.25 ± 0.66 | 3.78 ± 0.54 | <0.01 t |
FEV1 (L/s) | 3.86 ± 0.76 | 4.43 ± 0.53 | 3.28 ± 0.47 | <0.01 t |
FEF25–75% (L/s) | 4.13 ± 0.94 | 4.61 ± 0.93 | 3.63 ± 0.68 | <0.01 t |
PEF (L/s) | 8.08 ± 1.72 | 9.38 ± 1.28 | 6.75 ± 0.90 | <0.01 MW |
SVC (L) | 4.06 ± 0.89 | 4.74 ± 0.73 | 3.50 ± 0.60 | <0.01 t |
ERV (L) | 1.33 ± 0.43 | 1.55 ± 0.46 | 1.15 ± 0.31 | <0.01 t |
IC (L) | 2.72 ± 0.75 | 3.19 ± 0.79 | 2.32 ± 0.50 | <0.01 t |
RV (L) | 1.92 ± 0.71 | 2.26 ± 0.81 | 1.56 ± 0.48 | <0.01 t |
TLC (L) | 5.89 ± 1.40 | 6.81 ± 1.41 | 5.03 ± 0.75 | <0.01 MW |
MIP (-cmH2O) | 102.72 ± 33.04 | 117.4 ± 34.32 | 87.59 ± 23.09 | <0.01 t |
MEP (cmH2O) | 99.76 ± 26.98 | 112.8 ± 25.75 | 86.38 ± 21.30 | <0.01 t |
Raw (cmH2O/L/s) | 1.00 ± 0.51 | 0.83 ± 0.45 | 1.17 ± 0.52 | 0.03 MW |
sRaw (cmH2O*s) | 3.35 ± 1.33 | 3.24 ± 1.36 | 3.46 ± 1.31 | 0.40 MW |
FEV1 (L/s) | FEF25–75% (L/s) | Raw (cmH2O/L/s) | sRaw (cmH2O*s) | Leptin (pg/mL) | BMI (Kg/m2) | BF (%) | TF (%) | FFM (%) | |
---|---|---|---|---|---|---|---|---|---|
FEV1 (L/s) | - | - | - | - | - | - | - | - | - |
FEF25–75% (L/s) | 0.80 <0.01 | - | - | - | - | - | - | - | - |
Raw (cmH2O/L/s) | −0.34 <0.01 | −0.37 <0.01 | - | - | - | - | - | - | - |
sRaw cmH2O*s) | −0.09 0.47 | −0.21 0.08 | 0.87 <0.01 | - | - | - | - | - | - |
Leptin (pg/mL) | −0.54 <0.01 | −0.47 <0.01 | 0.56 <0.01 | 0.46 <0.01 | - | - | - | - | - |
BMI (Kg/m2) | −0.15 0.23 | −0.20 0.10 | 0.23 0.06 | 0.15 0.22 | 0.18 0.13 | - | - | - | - |
BF (%) | −0.46 <0.01 | −0.31 0.01 | 0.68 <0.01 | 0.53 <0.01 | 0.73 <0.01 | 0.25 0.04 | - | - | - |
TF (%) | −0.11 0.38 | −0.09 0.47 | 0.64 <0.01 | 0.61 <0.01 | 0.50 <0.01 | 0.21 0.07 | 0.87 <0.01 | - | - |
FFM (%) | 0.46 <0.01 | 0.31 0.01 | −0.68 <0.01 | −0.53 <0.01 | −0.73 <0.01 | −0.25 0.04 | −1.00 <0.01 | −0.87 <0.01 | - |
FEV1(L/s) | FEF 25–75% (L/s) | Raw(cmH2O/L/s) | sRaw(cmH2O*s) | |||||
---|---|---|---|---|---|---|---|---|
OR [95%CI] | p | OR [95%CI] | p | OR [95%CI] | p | OR [95%CI] | p | |
Gender (female) | 0.55 [0.13–2.38] | 0.42 | 2.37 [0.51–7.18] | 0.33 | 0.23 [0.01–5.37] | 0.357 | 0.096 [0.011–0.783] | 0.029 |
Age (years) | 1.04 [0.79–1.39] | 0.78 | 0.97 [0.76–1.24] | 0.79 | 1.47 [0.81–2.65] | 0.202 | 1.053 [0.733–1.513] | 0.778 |
Leptin | 1.06 [0.74–10.16] | 0.13 | 1.17 [0.34–4.07] | 0.80 | 2.21 [0.23–21.13] | 0.491 | 1.002 [1.001–1.004] | 0.001 |
Obese BMI (≥30 kg/m2) | 2.74 [0.02–1.49] | 0.11 | 0.28 [0.05–1.49] | 0.13 | 4.86 [0.05–45.46] | 0.162 | 2.264 [0.491–10.448] | 0.295 |
Hosmer-Lemeshow | >0.05 | >0.05 | >0.05 | >0.05 | ||||
Gender (female) | 0.75 [0.15–3.78] | 0.79 | 2.37 [0.57–9.87] | 0.24 | 0.27 [0.01–6.45] | 0.417 | 0.058 [0.007–0.484] | 0.008 |
Age | 1.01 [0.77–1.34] | 0.92 | 0.97 [0.76–1.24] | 0.83 | 1.24 [0.73–2.1] | 0.420 | 1.031 [0.711–1.495] | 0.869 |
Leptin | 3.09 [0.72–13.34] | 0.13 | 1.60 [0.40–6.49] | 0.51 | 0.86 [0.07–11.2] | 0.907 | 1.001 [1.000–1.003] | 0.017 |
Fat mass % | 0.33 [0.06–1.87] | 0.21 | 0.26 [0.05–1.30] | 0.10 | 1.41 [1.01–1.95] | 0.042 | 1.154 [1.015–1.312] | 0.028 |
Hosmer-Lemeshow | >0.05 | >0.05 | >0.05 | >0.05 | ||||
Gender (female) | 0.45 [0.09–2.21] | 0.33 | 1.82 [0.48–6.92] | 0.38 | 2.90 [0.06–143.795] | 0.593 | 0.170 [0.025–1.130] | 0.067 |
Age (years) | 1.01 [0.76–1.34] | 0.93 | 0.97 [0.76–1.24] | 0.81 | 1.21 [0.74–1.98] | 0.447 | 1.023 [0.709–1.478] | 0.900 |
Leptin | 1.97 [0.52–7.40] | 0.32 | 0.99 [0.28–3.53] | 0.99 | 1.25 [0.11–14.19] | 0.857 | 1.002 [1.000–1.003] | 0.011 |
Trunk fat % | 0.84 [0.21–3.29] | 0.81 | 0.77 [0.22–2.70] | 0.69 | 1.36 [1.09–1.84] | 0.044 | 1.148 [1.019–1.295] | 0.023 |
Hosmer-Lemeshow | >0.05 | >0.05 | >0.05 | >0.05 | ||||
Gender (female) | 0.75 [0.15–3.79] | 0.73 | 2.37 [0.57–9.85] | 0.24 | 0.27 [0.01–6.47] | 0.418 | 0.058 [0.007–0.485] | 0.009 |
Age (years) | 1.01 [0.77–1.34] | 0.92 | 0.97 [0.76–1.24] | 0.83 | 1.24 [0.73–2.11] | 0.421 | 1.031 [0.711–1.495] | 0.870 |
Leptin | 1.00 [0.10–1.00] | 0.09 | 1.00 [0.99–1.00] | 0.43 | 0.99 [0.99–1.00] | 0.406 | 1.001 [1.000–1.003] | 0.017 |
Fat-free mass % | 1.07 [0.96–1.19] | 0.20 | 1.04 [0.95–1.14] | 0.39 | 0.71 [0.51–0.99] | 0.042 | 0.866 [0.762–0.984] | 0.028 |
Hosmer-Lemeshow | >0.05 | >0.05 | >0.05 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Cofré, R.; Rojas-Mancilla, E.; Lizana, P.A.; Escobar-Cabello, M.; García-Herrera, C.; Conei, D.; Valenzuela-Aedo, F.; Soto-Rodríguez, F.J.; del Sol, M. Relationship Between Plasma Leptin Levels and Airflow Limitation in the Small and Medium Airways in Young Adults. J. Clin. Med. 2025, 14, 1624. https://doi.org/10.3390/jcm14051624
Muñoz-Cofré R, Rojas-Mancilla E, Lizana PA, Escobar-Cabello M, García-Herrera C, Conei D, Valenzuela-Aedo F, Soto-Rodríguez FJ, del Sol M. Relationship Between Plasma Leptin Levels and Airflow Limitation in the Small and Medium Airways in Young Adults. Journal of Clinical Medicine. 2025; 14(5):1624. https://doi.org/10.3390/jcm14051624
Chicago/Turabian StyleMuñoz-Cofré, Rodrigo, Edgardo Rojas-Mancilla, Pablo A. Lizana, Máximo Escobar-Cabello, Claudio García-Herrera, Daniel Conei, Fernando Valenzuela-Aedo, Francisco Javier Soto-Rodríguez, and Mariano del Sol. 2025. "Relationship Between Plasma Leptin Levels and Airflow Limitation in the Small and Medium Airways in Young Adults" Journal of Clinical Medicine 14, no. 5: 1624. https://doi.org/10.3390/jcm14051624
APA StyleMuñoz-Cofré, R., Rojas-Mancilla, E., Lizana, P. A., Escobar-Cabello, M., García-Herrera, C., Conei, D., Valenzuela-Aedo, F., Soto-Rodríguez, F. J., & del Sol, M. (2025). Relationship Between Plasma Leptin Levels and Airflow Limitation in the Small and Medium Airways in Young Adults. Journal of Clinical Medicine, 14(5), 1624. https://doi.org/10.3390/jcm14051624