Long-Term Outcomes of Nephron-Sparing Versus Radical Nephrectomy in Stage 4 Chronic Kidney Disease
Abstract
1. Introduction
2. Methods
2.1. Data Availability Statement
2.2. Study Design and Patient Selection
2.3. Ethics Statement
2.4. Statistical Analysis
3. Results
3.1. Cohort Selection and Characteristics
3.2. Risk of Electrolyte and Metabolic Abnormalities Across Postoperative Time Intervals
3.3. Renal Function and Long-Term CKD-Related Cardiovascular and Skeletal Outcomes
3.4. Electrolyte Imbalances Between 1 Week and 1 Month as Predictors of Renal and Long-Term Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Poppel, H.; Da Pozzo, L.; Albrecht, W.; Matveev, V.; Bono, A.; Borkowski, A.; Colombel, M.; Klotz, L.; Skinner, E.; Keane, T.; et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur. Urol. 2011, 59, 543–552. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Kidney Cancer, Version 1.2026. Available online: https://www.nccn.org/guidelines/category_1 (accessed on 1 June 2025).
- Chiang, T.-Y.; Tsai, I.-C.; Hsieh, C.-C.; Tseng, W.-H.; Wu, R.-H.; Huang, S.K.; Chiu, A.W. Pioneering the retroperitoneal approach: Indocyanine green fluorescence-guided embolization in totally endophytic renal masses during robot-assisted partial nephrectomy. Urol. Sci. 2025, 36, 41–46. [Google Scholar] [CrossRef]
- Bex, A.; Ghanem, Y.A.; Albiges, L.; Bonn, S.; Campi, R.; Capitanio, U.; Dabestani, S.; Hora, M.; Klatte, T.; Kuusk, T.; et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2025 Update. Eur. Urol. 2025, 87, 683–696. [Google Scholar] [CrossRef]
- Campbell, S.C.; Clark, P.E.; Chang, S.S.; Karam, J.A.; Souter, L.; Uzzo, R.G. Renal Mass and Localized Renal Cancer: Evaluation, Management, and Follow-Up: AUA Guideline: Part I. J. Urol. 2021, 206, 199–208. [Google Scholar] [CrossRef]
- Kim, S.P.; Thompson, R.H.; Boorjian, S.A.; Weight, C.J.; Han, L.C.; Murad, M.H.; Shippee, N.D.; Erwin, P.J.; Costello, B.A.; Chow, G.K.; et al. Comparative effectiveness for survival and renal function of partial and radical nephrectomy for localized renal tumors: A systematic review and meta-analysis. J. Urol. 2012, 188, 51–57. [Google Scholar] [CrossRef]
- Yap, S.A.; Finelli, A.; Urbach, D.R.; Tomlinson, G.A.; Alibhai, S.M. Partial nephrectomy for the treatment of renal cell carcinoma (RCC) and the risk of end-stage renal disease (ESRD). BJU Int. 2015, 115, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Bianchi, M.; Hansen, J.; Trinh, Q.D.; Abdollah, F.; Tian, Z.; Sammon, J.; Shariat, S.F.; Graefen, M.; Montorsi, F.; et al. Chronic kidney disease after nephrectomy in patients with small renal masses: A retrospective observational analysis. Eur. Urol. 2012, 62, 696–703. [Google Scholar] [CrossRef]
- Khanna, A.; Gottlich, H.C.; Dorr, M.; Lohse, C.M.; Zganjar, A.; Sharma, V.; Joyce, D.; Potretzke, A.; Britton, C.; Rule, A.D.; et al. End-Stage Kidney Disease After Partial and Radical Nephrectomy Among Patients With Severe Chronic Kidney Disease. J. Urol. 2024, 212, 550–559. [Google Scholar] [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Bohm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, K.; Ballew, S.H.; Wang, A.Y.; Kalyesubula, R.; Schaeffner, E.; Agarwal, R. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat. Rev. Nephrol. 2022, 18, 696–707. [Google Scholar] [CrossRef]
- Saeed, D.; Reza, T.; Shahzad, M.W.; Karim Mandokhail, A.; Bakht, D.; Qizilbash, F.H.; Silloca-Cabana, E.O.; Ramadhan, A.; Bokhari, S.F.H. Navigating the Crossroads: Understanding the Link Between Chronic Kidney Disease and Cardiovascular Health. Cureus 2023, 15, e51362. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef]
- Weight, C.J.; Larson, B.T.; Fergany, A.F.; Gao, T.; Lane, B.R.; Campbell, S.C.; Kaouk, J.H.; Klein, E.A.; Novick, A.C. Nephrectomy induced chronic renal insufficiency is associated with increased risk of cardiovascular death and death from any cause in patients with localized cT1b renal masses. J. Urol. 2010, 183, 1317–1323. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, Y.; Li, B.; Xu, S.; Du, H.; Wang, X.; Li, Y. Trends and predictors of changes in renal function after radical nephrectomy for renal tumours. BMC Nephrol. 2024, 25, 174. [Google Scholar] [CrossRef]
- Xu, L.; Li, C.; Gao, S.; Zhao, L.; Guan, C.; Shen, X.; Zhu, Z.; Guo, C.; Zhang, L.; Yang, C.; et al. Personalized Prediction of Long-Term Renal Function Prognosis Following Nephrectomy Using Interpretable Machine Learning Algorithms: Case-Control Study. JMIR Med. Inform. 2024, 12, e52837. [Google Scholar] [CrossRef]
- Lin, Y.C.; Huang, Y.W.; Huang, S.W.; Huang, C.Y.; Yuan, L.H. Initial experiences and troubleshooting of Senhance robotic system: A community hospital perspective. Urol. Sci. 2024, 35, 24–30. [Google Scholar] [CrossRef]
- Patel, H.D.; Pierorazio, P.M.; Johnson, M.H.; Sharma, R.; Iyoha, E.; Allaf, M.E.; Bass, E.B.; Sozio, S.M. Renal Functional Outcomes after Surgery, Ablation, and Active Surveillance of Localized Renal Tumors: A Systematic Review and Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2017, 12, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Nowak, L.; Janczak, D.; Laszkiewicz, J.; Guzinski, M.; Del Giudice, F.; Tresh, A.; Chung, B.I.; Chorbinska, J.; Tomczak, W.; Malkiewicz, B.; et al. Clinical and Oncological Outcomes Following Percutaneous Cryoablation vs. Partial Nephrectomy for Clinical T1 Renal Tumours: Systematic Review and Meta-Analysis. Cancers 2024, 16, 1175. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.C.; Elkin, E.B.; Levey, A.S.; Jang, T.L.; Russo, P. Partial nephrectomy versus radical nephrectomy in patients with small renal tumors--is there a difference in mortality and cardiovascular outcomes? J. Urol. 2009, 181, 55–61; discussion 61–62. [Google Scholar] [CrossRef]
- Capitanio, U.; Terrone, C.; Antonelli, A.; Minervini, A.; Volpe, A.; Furlan, M.; Matloob, R.; Regis, F.; Fiori, C.; Porpiglia, F.; et al. Nephron-sparing techniques independently decrease the risk of cardiovascular events relative to radical nephrectomy in patients with a T1a-T1b renal mass and normal preoperative renal function. Eur. Urol. 2015, 67, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.C.; Schonlau, M.; Litwin, M.S.; Lai, J.; Saigal, C.S. Renal and cardiovascular morbidity after partial or radical nephrectomy. Cancer 2008, 112, 511–520. [Google Scholar] [CrossRef]
- Lane, B.R.; Campbell, S.C.; Demirjian, S.; Fergany, A.F. Surgically induced chronic kidney disease may be associated with a lower risk of progression and mortality than medical chronic kidney disease. J. Urol. 2013, 189, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- Han, S.W.; Tilea, A.; Gillespie, B.W.; Finkelstein, F.O.; Kiser, M.A.; Eisele, G.; Kotanko, P.; Levin, N.; Saran, R. Serum sodium levels and patient outcomes in an ambulatory clinic-based chronic kidney disease cohort. Am. J. Nephrol. 2015, 41, 200–209. [Google Scholar] [CrossRef]
- Park, S.; An, J.N.; Lee, J.P.; Oh, Y.K.; Kim, D.K.; Joo, K.W.; Kim, Y.S.; Lim, C.S. Association between postoperative hyponatremia and renal prognosis in major urologic surgery. Oncotarget 2017, 8, 79935–79947. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Floris, M.; Pani, A.; Rosner, M.H. Sodium and Volume Disorders in Advanced Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2016, 23, 240–246. [Google Scholar] [CrossRef]
- Hruska, K.A.; Mathew, S.; Lund, R.; Qiu, P.; Pratt, R. Hyperphosphatemia of chronic kidney disease. Kidney Int. 2008, 74, 148–157. [Google Scholar] [CrossRef]
- Kestenbaum, B.; Sampson, J.N.; Rudser, K.D.; Patterson, D.J.; Seliger, S.L.; Young, B.; Sherrard, D.J.; Andress, D.L. Serum phosphate levels and mortality risk among people with chronic kidney disease. J. Am. Soc. Nephrol. 2005, 16, 520–528. [Google Scholar] [CrossRef]
- Raggi, P.; Boulay, A.; Chasan-Taber, S.; Amin, N.; Dillon, M.; Burke, S.K.; Chertow, G.M. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J. Am. Coll. Cardiol. 2002, 39, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Slinin, Y.; Foley, R.N.; Collins, A.J. Calcium, phosphorus, parathyroid hormone, and cardiovascular disease in hemodialysis patients: The USRDS waves 1, 3, and 4 study. J. Am. Soc. Nephrol. 2005, 16, 1788–1793. [Google Scholar] [CrossRef]



| Attribute | Before Matching | After Matching | ||||||
|---|---|---|---|---|---|---|---|---|
| Cohort A (Partial Nephrectomy or Ablation) | Cohort B (Radical Nephrectomy) | Cohort A (Partial Nephrectomy or Ablation) | Cohort B (Radical Nephrectomy) | |||||
| N = 224 | N = 546 | N = 219 | N = 219 | |||||
| Demographics | N (%) | N (%) | p-value | SMD 2 | N (%) | N (%) | p-value | SMD 2 |
| Age (years) | ||||||||
| Current Age | 74.0 ± 11.7 | 71.0 ± 14.3 | 0.007 | 0.223 | 74.0 ± 11.7 | 75.2 ± 11.4 | 0.297 | 0.100 |
| Age at Index | 65.3 ± 11.8 | 63.6 ± 14.2 | 0.104 | 0.134 | 65.5 ± 11.9 | 65.8 ± 12.1 | 0.793 | 0.025 |
| Gender | ||||||||
| Male | 130 (58.0) | 311 (57.0) | 0.784 | 0.022 | 126 (57.5) | 127 (58.0) | 0.923 | 0.009 |
| Female | 92 (41.1) | 220 (40.3) | 0.842 | 0.016 | 91 (41.6) | 92 (42.0) | 0.923 | 0.009 |
| Unknown Gender 1 | ≤10 (≤4.5) | 14 (2.7) | -- | -- | ≤10 (≤4.6) | 0 (0.0) | -- | -- |
| Ethnicity | ||||||||
| Not Hispanic or Latino | 159 (71.0) | 380 (69.6) | 0.703 | 0.030 | 156 (71.2) | 151 (68.9) | 0.602 | 0.050 |
| Hispanic or Latino | 19 (8.5) | 53 (9.7) | 0.596 | 0.043 | 18 (8.2) | 18 (8.2) | 1.000 | <0.001 |
| Unknown Ethnicity | 46 (20.5) | 113 (20.7) | 0.960 | 0.004 | 45 (20.5) | 50 (22.8) | 0.562 | 0.055 |
| Race | ||||||||
| White | 143 (63.8) | 405 (74.2) | 0.004 | 0.225 | 142 (64.8) | 145 (66.2) | 0.763 | 0.029 |
| Asian 1 | ≤10 (≤4.5) | ≤10 (≤1.8) | 0.037 | 0.151 | ≤10 (≤4.6) | ≤10 (≤4.6) | 1.000 | <0.001 |
| Black or African American | 38 (17.0) | 66 (12.1) | 0.072 | 0.139 | 37 (16.9) | 39 (17.8) | 0.801 | 0.024 |
| American Indian or Alaska Native 1 | ≤10 (≤4.5) | 0 (0.0) | <0.001 | 0.306 | 0 (0.0) | 0 (0.0) | -- | -- |
| Other Race 1 | ≤10 (≤4.5) | ≤10 (≤1.8) | 0.037 | 0.151 | ≤10 (≤4.6) | ≤10 (≤4.6) | 1.000 | <0.001 |
| Unknown Race | 28 (12.5) | 57 (10.4) | 0.407 | 0.065 | 27 (12.3) | 26 (11.9) | 0.884 | 0.014 |
| Nicotine dependence | 23 (10.3) | 59 (10.8) | 0.826 | 0.018 | 22 (10.0) | 22 (10.0) | 1.000 | <0.001 |
| BMI (kg/m2) | 30.7 ± 7.8 | 0.567 | 0.051 | 30.6 ± 7.9 | 30.1 ± 7.9 | 0.501 | 0.072 | |
| –18.5 kg/m2 1 | 11 (4.9) | 28 (5.1) | 0.901 | 0.010 | 11 (5.0) | ≤10 (≤4.6) | 0.823 | 0.021 |
| 18.5–25 kg/m2 | 56 (25.0) | 130 (23.8) | 0.726 | 0.028 | 56 (25.6) | 58 (26.5) | 0.828 | 0.021 |
| 25–30 kg/m2 | 88 (39.3) | 213 (39.0) | 0.943 | 0.006 | 85 (38.8) | 89 (40.6) | 0.696 | 0.037 |
| 30– kg/m2 | 101 (45.1) | 237 (43.4) | 0.669 | 0.034 | 98 (44.7) | 93 (42.5) | 0.630 | 0.046 |
| eGFR | ||||||||
| 15–20 mL/min/{1.73_m2} | 60 (26.8) | 158 (28.9) | 0.547 | 0.048 | 59 (26.9) | 61 (27.9) | 0.830 | 0.020 |
| 20–25 mL/min/{1.73_m2} | 103 (46.0) | 282 (51.6) | 0.153 | 0.114 | 101 (46.1) | 112 (51.1) | 0.293 | 0.101 |
| 25–30 mL/min/{1.73_m2} | 149 (66.5) | 395 (72.3) | 0.107 | 0.127 | 147 (67.1) | 153 (69.9) | 0.537 | 0.059 |
| Underlying disease | ||||||||
| Diabetes mellitus | 84 (37.5) | 225 (41.2) | 0.340 | 0.076 | 82 (37.4) | 84 (38.4) | 0.844 | 0.019 |
| Hypertensive diseases | 185 (82.6) | 426 (78.0) | 0.155 | 0.115 | 180 (82.2) | 174 (79.5) | 0.466 | 0.070 |
| Heart failure | 33 (14.7) | 95 (17.4) | 0.367 | 0.073 | 32 (14.6) | 35 (16.0) | 0.690 | 0.038 |
| Cerebrovascular diseases | 33 (14.7) | 76 (13.9) | 0.769 | 0.023 | 33 (15.1) | 26 (11.9) | 0.327 | 0.094 |
| Ischemic heart diseases | 60 (26.8) | 174 (31.9) | 0.164 | 0.112 | 59 (26.9) | 62 (28.3) | 0.749 | 0.031 |
| Dyslipidemia | 129 (57.6) | 272 (49.8) | 0.050 | 0.156 | 125 (57.1) | 122 (55.7) | 0.773 | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, N.-W.; Chao, H.-N.; Yu, C.-Y.; Chang, Y.-C.; Chen, S.-L.; Hsieh, T.-Y.; Sung, W.-W. Long-Term Outcomes of Nephron-Sparing Versus Radical Nephrectomy in Stage 4 Chronic Kidney Disease. J. Clin. Med. 2025, 14, 7951. https://doi.org/10.3390/jcm14227951
Chang N-W, Chao H-N, Yu C-Y, Chang Y-C, Chen S-L, Hsieh T-Y, Sung W-W. Long-Term Outcomes of Nephron-Sparing Versus Radical Nephrectomy in Stage 4 Chronic Kidney Disease. Journal of Clinical Medicine. 2025; 14(22):7951. https://doi.org/10.3390/jcm14227951
Chicago/Turabian StyleChang, Nai-Wen, Huan-Nung Chao, Chia-Ying Yu, Ya-Chuan Chang, Sung-Lang Chen, Tzuo-Yi Hsieh, and Wen-Wei Sung. 2025. "Long-Term Outcomes of Nephron-Sparing Versus Radical Nephrectomy in Stage 4 Chronic Kidney Disease" Journal of Clinical Medicine 14, no. 22: 7951. https://doi.org/10.3390/jcm14227951
APA StyleChang, N.-W., Chao, H.-N., Yu, C.-Y., Chang, Y.-C., Chen, S.-L., Hsieh, T.-Y., & Sung, W.-W. (2025). Long-Term Outcomes of Nephron-Sparing Versus Radical Nephrectomy in Stage 4 Chronic Kidney Disease. Journal of Clinical Medicine, 14(22), 7951. https://doi.org/10.3390/jcm14227951

