From Tissue to Transcriptome: A Systematic Review of Multi-Level Evidence for Immune Dysregulation in Atrial Fibrillation
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy and Data Extraction
2.3. Endpoints and Subanalyses
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Selection and Characteristics
3.2. Evidence of Immune Infiltration in Histology
3.3. Mechanistic Routes in AF Immunopathology
3.4. Interventional Evidence: Ablation/Immune Modulatory Therapies
3.5. Prognostic Immune Biomarkers in Patient Cohorts
3.6. Genetic Evidence for Causality
3.7. Integrated Interpretation
3.8. Assessment of the Quality of the Studies Included
4. Discussion
4.1. Immune Cells Infiltration in the Atrium Myocardium
4.2. Mechanistic Pathways
4.3. Immune Differences Between AF Subtypes
4.4. Ablation–Mediated Immune Response
4.5. Prognostic Utility of Immune Biomarkers
4.6. Genetic Evidence
4.7. Clinical Implications
4.7.1. Risk Stratification Guided by Biomarkers
4.7.2. Anticipated Targets
4.7.3. Procedural Approaches
4.7.4. Implementation and Cost-Effectiveness Factors
4.8. Limitations
4.9. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AF | Atrial fibrillation |
SR | Sinus rhythm |
LA | Left atrium/left atrial |
LAA | Left atrial appendage |
EAT | Epicardial adipose tissue |
TRM | Tissue-resident memory T cells |
PD-1 | Programmed cell death protein-1 |
PD-L1 | Programmed death-ligand 1 |
PAR1 | Protease-activated receptor-1 |
MMP-9 | Matrix metalloproteinase-9 |
GROβ | Growth-related oncogene-β |
CB | Cryoballoon ablation |
RF | Radiofrequency ablation |
RFCA | Radiofrequency catheter ablation |
CDR | CD4/CD8 ratio |
Tregs | Regulatory T cells |
Bregs | Regulatory B cells |
DNTs | Double-negative T cells |
SIS | Systemic inflammation score |
CHA2DS2-VASc | Clinical risk score for stroke in AF |
HF | Heart failure |
MACE | Major adverse cardiovascular events |
MR | Mendelian randomization |
GWAS | Genome-wide association study |
RoB | Risk of bias |
GRADE | Grading of Recommendations Assessment, Development, and Evaluation |
n | sample size |
HR | Hazard ratio |
OR | Odds ratio |
CI | Confidence interval |
References
- Sauerbruch, T. Reflections on experimentation in medicine. Eur. J. Intern. Med. 2022, 100, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Rahman, F.; Kwan, G.F.; Benjamin, E.J. Global epidemiology of atrial fibrillation. Nat. Rev. Cardiol. 2014, 11, 639–654. [Google Scholar] [CrossRef]
- Wyse, D.G.; Andrade, J.; Dorian, P. Atrial fibrillation and stroke: Contemporary insights. Stroke 2022, 53, 2784–2792. [Google Scholar]
- Banerjee, A.; Lip, G.Y.H. Atrial fibrillation, cognitive decline, and dementia: Update 2023. Eur. Heart J. 2023, 44, 1282–1289. [Google Scholar]
- Kirchhof, P.; Camm, A.J.; Goette, A.; Brandes, A.; Eckardt, L.; Elvan, A.; Fetsch, T.; van Gelder, I.C.; Haase, D.; Haegeli, L.M.; et al. Early rhythm-control therapy in patients with atrial fibrillation. N. Engl. J. Med. 2020, 383, 1305–1316. [Google Scholar] [CrossRef]
- Andrade, J.G.; Verma, A.; Mitchell, L.B.; Wyse, D.G. Contemporary management of atrial fibrillation: Update 2023. Can. J. Cardiol. 2023, 39, 857–871. [Google Scholar]
- Nattel, S.; Harada, M.; Kuruvilla, J.; Voigt, N.; Ravens, U.; Jalife, J. Novel mechanisms and emerging targets for atrial fibrillation therapy. Nat. Rev. Cardiol. 2023, 20, 385–402. [Google Scholar]
- Shahid, F.; Khan, A.A.; Shahzad, M. Inflammation as a therapeutic target in atrial fibrillation. Front. Cardiovasc. Med. 2024, 11, 1378921. [Google Scholar]
- Yao, Y.; Yang, M.; Liu, D.; Zhao, Q. Immune remodeling and atrial fibrillation. Front. Physiol. 2022, 13, 927221. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Pamporis, K.; Theofilis, P.; Milaras, N.; Vlachakis, P.K.; Grigoriou, K.; Patoulias, D.; Karamitsos, T.; Antoniadis, A.P.; Fragakis, N. Inflammasome Signaling in Cardiac Arrhythmias: Linking Inflammation, Fibrosis, and Electrical Remodeling. Int. J. Mol. Sci. 2025, 26, 5954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; Li, X.; Xu, J.; Wang, X. Prognostic value of systemic inflammatory markers in atrial fibrillation recurrence: A meta-analysis. Front. Cardiovasc. Med. 2022, 9, 978421. [Google Scholar]
- Gotkine, M.; Caraco, Y.; Lerner, Y.; Blotnick, S.; Wanounou, M.; Slutsky, S.G.; Chebath, J.; Kuperstein, G.; Estrin, E.; Ben-Hur, T.; et al. Safety and efficacy of first-in-man intrathecal injection of human astrocytes (AstroRx®) in ALS patients: Phase I/IIa clinical trial results. J. Transl. Med. 2023, 21, 122. [Google Scholar] [CrossRef]
- Hu, Y.F.; Chen, Y.J.; Lin, Y.J.; Chen, S.A. Immune dysfunction and atrial fibrillation: Translational perspectives. Front. Cardiovasc. Med. 2023, 10, 1154987. [Google Scholar]
- Retuerto, M.; Lledó, A.; Fernández-Varas, B.; Guerrero-López, R.; Usategui, A.; Lalueza, A.; García-García, R.; Mancebo, E.; Paz-Artal, E.; Sastre, L.; et al. Shorter telomere length is associated with COVID-19 hospitalization and with persistence of radiographic lung abnormalities. Immun. Ageing 2022, 19, 38. [Google Scholar] [CrossRef]
- Fabre, I.; Tardieu, L.; Ouissa, R.; Mounsamy, L.; Chahim, B.; Roger, P.M. Severe COVID-19 pneumonia in elderly patients: Success rate of compassioned use of high flow nasal cannula therapy. Aging Dis. 2023, 14, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, G.; Yang, Y.; Zhang, Q.; Xu, Y.; Wu, S. Epicardial adipose tissue and atrial fibrillation: Advances in clinical and translational research. Front. Cardiovasc. Med. 2024, 11, 1387459. [Google Scholar]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA 2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Ogurkova, O.N.; Dragunova, M.A.; Suslova, T.E.; Lugacheva, Y.G.; Batalov, R.E. Evaluation of the CD40 receptor-ligand system in the patients with atrial fibrillation of non-valvular genesis. Med. Immunol. 2022, 24, 1255–1264. [Google Scholar] [CrossRef]
- Duygu, H.; Barisik, V.; Kurt, H.; Turk, U.; Ercan, E.; Kose, S. Prognostic value of plasma soluble CD40 ligand in patients with chronic non-valvular atrial fibrillation. Europace 2008, 10, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Sulzgruber, P.; Koller, L.; Winter, M.P.; Richter, B.; Blum, S.; Korpak, M.; Hülsmann, M.; Goliasch, G.; Wojta, J.; Niessner, A. The impact of CD4+CD28null T-lymphocytes on atrial fibrillation and mortality in patients with chronic heart failure. Thromb. Haemost. 2017, 117, 349–356. [Google Scholar] [CrossRef]
- Smorodinova, N.; Bláha, M.; Melenovský, V.; Rozsívalová, K.; Přidal, J.; Ďurišová, M.; Pirk, J.; Kautzner, J.; Kučera, T. Analysis of immune cell populations in atrial myocardium of patients with atrial fibrillation or sinus rhythm. PLoS ONE 2017, 12, e0172691. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, C.; Pfister, R.; Mollenhauer, M.; Adler, C.; Kozlowski, J.; Wodarz, A.; Drebber, U.; Wippermann, J.; Michels, G. Inflammatory cell infiltration in left atrial appendageal tissues of patients with atrial fibrillation and sinus rhythm. Sci. Rep. 2020, 10, 1685. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Sekiguchi, A.; Suzuki, S.; Ohtsuka, T.; Sagara, K.; Tanabe, H.; Kunihara, T.; Sawada, H.; Aizawa, T. Enlargement of the left atrium is associated with increased infiltration of immune cells in patients with atrial fibrillation who had undergone surgery. J. Arrhythm. 2015, 31, 78–82. [Google Scholar] [CrossRef]
- Vyas, V.; Sandhar, B.; Keane, J.M.; Wood, E.G.; Blythe, H.; Jones, A.; Shahaj, E.; Fanti, S.; Williams, J.; Metic, N.; et al. Tissue-resident memory T cells in epicardial adipose tissue comprise transcriptionally distinct subsets that are modulated in atrial fibrillation. Nat. Cardiovasc. Res. 2024, 3, 1067–1082. [Google Scholar] [CrossRef]
- Friebel, J.; Witkowski, M.; Wegner, M.; Blöbaum, L.; Lammel, S.; Schencke, P.A.; Jakobs, K.; Puccini, M.; Reißner, D.; Steffens, D.; et al. Cytotoxic CD8+ T Cells Are Involved in the Thrombo-Inflammatory Response during First-Diagnosed Atrial Fibrillation. Cells 2022, 12, 141. [Google Scholar] [CrossRef]
- Kim, S.K.; Pak, H.N.; Park, J.H.; Choi, J.I.; Nam, M.H.; Jo, Y.; Kim, Y.H. Non-ischaemic titrated cardiac injury caused by radiofrequency catheter ablation of atrial fibrillation mobilizes CD34-positive mononuclear cells by non-stromal cell-derived factor-1alpha mechanism. Europace 2009, 11, 1024–1031. [Google Scholar] [CrossRef]
- Bin Waleed, K.; Heeger, C.H.; Kuck, K.H.; Ouyang, F.; Metzner, A. Comparison of inflammatory and platelet activation biomarkers after cryoballoon vs. radiofrequency ablation of atrial fibrillation. Int. J. Cardiol. 2019, 292, 36–41. [Google Scholar]
- Li, X.; Bao, Y.; Zhang, N.; Lin, C.; Xie, Y.; Wei, Y.; Luo, Q.; Liu, J.; Sha, Z.; Wu, G.; et al. Senescent CD8+ T cells: A novel risk factor in atrial fibrillation. Cardiovasc. Res. 2025, 121, 97–112. [Google Scholar] [CrossRef]
- You, X.; Guo, W.; He, Y.; Li, Q.; Qian, R.; Tu, W.; Yang, L.; Jiang, Q. The predictive value of T-lymphocyte subset distribution for the occurrence and prognosis of atrial fibrillation. Cardiology 2025, 150, 22–34. [Google Scholar] [CrossRef]
- Chang, G.; Chen, Y.; Liu, Z.; Wang, Y.; Ge, W.; Kang, Y.; Guo, S. The PD-1 with PD-L1 Axis Is Pertinent with the Immune Modulation of Atrial Fibrillation by Regulating T Cell Excitation and Promoting the Secretion of Inflammatory Factors. J. Immunol. Res. 2022, 2022, 3647817. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huang, Y.; Liu, Y.; Rocha, M.; Li, X.; Wei, P.; Misilimu, D.; Luo, Y.; Zhao, J.; Gao, Y. Change and predictive ability of circulating immunoregulatory lymphocytes in long-term outcomes of acute ischemic stroke. J. Cereb. Blood Flow. Metab. 2021, 41, 2280–2294. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, X.; Tan, H. Causal association of peripheral immune cell counts and atrial fibrillation: A Mendelian randomization study. Front. Cardiovasc. Med. 2023, 9, 1042938. [Google Scholar] [CrossRef]
- Peng, L.; Liu, L.; Chai, M.; Cai, Z.; Wang, D. Predictive value of neutrophil to lymphocyte ratio for clinical outcome in patients with atrial fibrillation: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2024, 11, 1461923. [Google Scholar] [CrossRef]
- Xiao, S.; Zhou, Y.; Liu, A.; Wu, Q.; Hu, Y.; Liu, J.; Zhu, H.; Yin, T.; Pan, D. Uncovering potential novel biomarkers and immune infiltration characteristics in persistent atrial fibrillation using integrated bioinformatics analysis. Math. Biosci. Eng. 2021, 18, 4696–4712. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Xu, X.; Zhao, X.A.; Ge, Y.N.; Qin, J.; Wang, X.Y.; Dai, H.L.; Jia, J.; Tao, S.M. Comprehensive analysis of immune cell infiltration and M2-like macrophage biomarker expression patterns in atrial fibrillation. Int. J. Gen. Med. 2024, 17, 3147–3169. [Google Scholar] [CrossRef]
- Pang, Z.; Ren, Y.; Yao, Z. Interactions between atrial fibrosis and inflammation in atrial fibrillation. Front. Cardiovasc. Med. 2025, 12, 1578148. [Google Scholar] [CrossRef]
- Huang, M.; Huiskes, F.G.; de Groot, N.M.S.; Brundel, B.J.J.M. The Role of Immune Cells Driving Electropathology and Atrial Fibrillation. Cells 2024, 13, 311. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; Zhao, Q. Effects of inflammatory cell death caused by catheter ablation on atrial fibrillation. J. Inflamm. Res. 2023, 16, 3491–3508. [Google Scholar] [CrossRef]
- Chammartin, F.; Darling, K.; Abela, I.A.; Battegay, M.; Furrer, H.; Calmy, A.; Bernasconi, E.; Schmid, P.; Hoffmann, M.; Bucher, H.C.; et al. CD4:CD8 ratio and CD8 cell count and their prognostic relevance for coronary heart disease events and stroke in antiretroviral treated individuals: The Swiss HIV cohort study. J. Acquir. Immune Defic. Syndr. 2022, 91, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, J.; Liu, F.; Xiu, X.; Zhong, W.; Sun, Z.; Zhu, X.; Chen, M.; Chen, X.; Zheng, H.; et al. Causal analysis of 731 immunophenotypes and heart failure: A bidirectional Mendelian randomization study. Medicine 2025, 104, e42530. [Google Scholar] [CrossRef]
- Huang, H. Exploration of the relationships between immune cells, metabolic mediators, and atrial fibrillation: A bidirectional Mendelian randomization study. Medicine 2025, 104, e41348. [Google Scholar] [CrossRef]
- Aday, A.W.; Ridker, P.M. Antiinflammatory therapy in clinical care: The CANTOS trial and beyond. Front. Cardiovasc. Med. 2018, 5, 62. [Google Scholar] [CrossRef]
- Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Hammer, A.; Niessner, A.; Sulzgruber, P. The impact of CD4+CD28null T lymphocytes on atrial fibrillation: A potential pathophysiological pathway. Inflamm. Res. 2021, 70, 1011–1014. [Google Scholar] [CrossRef]
- Verdonschot, J.A.J.; Hazebroek, M.R.; Ware, J.S.; Prasad, S.K.; Heymans, S.R.B. Role of targeted therapy in dilated cardiomyopathy: The challenging road toward a personalized approach. J. Am. Heart Assoc. 2019, 8, e012514. [Google Scholar] [CrossRef]
- Al Chekakie, M.O.; Welles, C.C.; Metoyer, R.; Ibrahim, A.; Shapira, A.R.; Cytron, J.; Santucci, P.; Wilber, D.J.; Akar, J.G. Pericardial fat is independently associated with human atrial fibrillation. J. Am. Coll. Cardiol. 2010, 56, 784–788. [Google Scholar] [CrossRef]
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 2010, 236, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xue, H.; Chen, Q.; Lv, Z.; Mao, W.; Wang, X. Comparison of Myocardial Injury and Inflammation Biomarkers and Their Impact on Recurrence after Cryoballoon and Radiofrequency Ablation for Atrial Fibrillation: A Systematic Review and Meta-Analysis. Rev. Cardiovasc. Med. 2022, 23, 397. [Google Scholar] [CrossRef] [PubMed]
- Boano, G.; Aneq, M.Å.; Spyrou, G.; Enocsson, H.; Charitakis, E.; Vánky, F. Biochemical response to cryothermal and radiofrequency exposure of the human myocardium at surgical ablation of atrial fibrillation: A randomized controlled trial. Transl. Med. Commun. 2020, 5, 11. [Google Scholar] [CrossRef]
- Osmancik, P.; Bacova, B.; Hozman, M.; Pistkova, J.; Kunstatova, V.; Sochorova, V.; Waldauf, P.; Hassouna, S.; Karch, J.; Vesela, J.; et al. Myocardial Damage, Inflammation, Coagulation, and Platelet Activity During Catheter Ablation Using Radiofrequency and Pulsed-Field Energy. JACC Clin. Electrophysiol. 2024, 10, 463–474. [Google Scholar] [CrossRef]
- Filipovic, M.G.; Luedi, M.M. Cardiovascular Biomarkers: Current Status and Future Directions. Cells 2023, 12, 2647. [Google Scholar] [CrossRef]
- Kasztura, M.; Richard, A.; Bempong, N.-E.; Loncar, D.; Flahault, A. Cost-effectiveness of precision medicine: A scoping review. Int. J. Public. Health 2019, 64, 1261–1271. [Google Scholar] [CrossRef]
- Netala, V.R.; Hou, T.; Wang, Y.; Zhang, Z.; Teertam, S.K. Cardiovascular Biomarkers: Tools for Precision Diagnosis and Prognosis. Int. J. Mol. Sci. 2025, 26, 3218. [Google Scholar] [CrossRef]
- Neumann, J.T.; Twerenbold, R.; Weimann, J.; Ballantyne, C.M.; Benjamin, E.J.; Costanzo, S.; de Lemos, J.A.; Defilippi, C.R.; Di Castelnuovo, A.; Donfrancesco, C.; et al. Prognostic Value of Cardiovascular Biomarkers in the Population. JAMA 2024, 331, 1898–1909. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Sanders, P.; Nattel, S.; Lau, D.H. Biomarkers in Atrial Fibrillation: Pathogenesis and Clinical Implications. Card. Electrophysiol. Clin. 2021, 13, 221–233. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Chaimani, A.; Caldwell, D.M.; Li, T.; Higgins, J.P.; Salanti, G. Additional considerations are required when preparing a protocol for a systematic review with multiple interventions. J. Clin. Epidemiol. 2017, 83, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Sharma, M.; Kuan, E.L.; Glass, M.C.; Chander, A.; Singh, M.; Graybuck, L.T.; Thomson, Z.J.; LaFrance, C.M.; Zaim, S.R.; et al. Longitudinal Multi-omic Immune Profiling Reveals Age-Related Immune Cell Dynamics in Healthy Adults. bioRxiv 2024. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Guan, R.; Sheng, N.; Zhang, S. Multi-Omics Profiling Unveils the Complexity and Dynamics of Immune Infiltrates in Intrahepatic Cholangiocarcinoma. Biology 2024, 13, 816. [Google Scholar] [CrossRef]
- Conte, M.; Petraglia, L.; Cabaro, S.; Valerio, V.; Poggio, P.; Pilato, E.; Attena, E.; Russo, V.; Ferro, A.; Formisano, P.; et al. Epicardial Adipose Tissue and Cardiac Arrhythmias: Focus on Atrial Fibrillation. Front. Cardiovasc. Med. 2022, 9, 932262. [Google Scholar] [CrossRef] [PubMed]
- Cozac, D.-A.; Halațiu, V.-B.; Scridon, A. The alarmin tandem: Unraveling the complex effect of S100A8/A9—From atherosclerosis to cardiac arrhythmias. Front. Immunol. 2025, 16, 1630410. [Google Scholar] [CrossRef] [PubMed]
Study | Sample Size | Age, Years † | Males, n (%) | CHA2DS2-VASc † | Hypertension, n (%) | Diabetes, n (%) | Stroke/TIA, n (%) | CAD, n (%) | HF, n (%) | BMI (kg/m2) | LAD (mm) † | LVEF (%) † | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Duygu, et al. [20] | 44 | 58 ± 6 | 20 (45.5) | CHADS2: 0–1 | 9 (20) | Excluded | Excluded | Excluded | Excluded | NR | 45 ± 8 | 65 ± 5 | NVAF; sCD40L |
Kim et al. [27] | 56 (46 RFCA; 10 EPS) | 53.0 ± 13.5 | 39 (70) | NR | NR | NR | NR | Excluded structural | NR | NR | 42.2 ± 7.2 | ~53–55 | RFCA vs. EPS; all failed ≥1 AAD |
Yamashita et al. [24] | 27 (21 PeAF; 6 PAF) | 59.9 ± 10.1 | 17 (63) | NR | NR | NR | NR | NR | NR | NR | 55.2 ± 11.0 | 63.4 ± 9.2 | Maze + valve surgery |
Smorodinova, et al. [22] | 46 (19 LSPeAF; 27 SR) | AF older by ~7 yrs | NR | NR | Similar | Similar | NR | SR > AF | Similar | NR | LA vol ↑ in AF | NR | Histology; atrial tissue |
Sulzgruber, et al. [21] | 112 (56 AF; 56 non-AF) | AF: 66.6; non-AF: 61.4 | AF: 44 (78.6) | NR | AF: 71.4 | AF: 42.9 | NR | 50.0 | 100% (HF) | AF: 29.1 | NR | EF stratified | Chronic HF cohort |
Bin Waleed et al. [28] | 58 (29 CB; 29 RF) | CB: 61.2; RF: 62.4 | 16–18 (≈68) | CB: 1.5; RF: 1.0 | CB: 50; RF: 58 | CB: 12.5; RF: 7.7 | CB: 17.2; RF: 6.9 | NR | NR | CB: 25.0; RF: 25.8 | CB: 36.5; RF: 36.0 | 59 (both) | Paroxysmal AF; CB vs. RF |
Hohmann, et al. [23] | 10 | 68–73 | 50–67 | NR | NR | NR | NR | Valvular CAD | NR | NR | LA area ↑ in AF | 53–62 | LAA tissue; inflammatory markers |
Li, et al. [33] | 210 stroke cases + 87 controls | ~63 vs. ~62 | 55–58 | NR | 68.6 | 33.3 | 9.5 (AF prevalence) | 4.8 | NR | NR | NR | NR | Ischemic stroke cohort |
Xiao, et al. [35] | Public datasets | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | Bioinformatics only |
Ogurkova, et al. [19] | 60 AF + 22 controls | 60–66 | G1: 21; G2: 11 | NR | 76–81 | NR | NR | 64–76 | NYHA II–III | NR | NR | NR | With/without thrombotic events |
Chang, et al. [32] | 90 (45 AF; 45 controls) | AF: 63.3; Ctrl: 64.2 | 58–62 | NR | Excluded severe HF | Excluded | Excluded | Excluded | Excluded | AF: 23.5 | NR | NR | PD-1/PD-L1; case–control |
Friebel, et al. [26] | 100 FDAF; 20 controls | AF: 70.1; Ctrl: 67.8 | AF: 62.5; Ctrl: 50 | AF: 3.98; Ctrl: 3.45 | AF: 87.5 | AF: 30 | AF: 10 | NR | AF: 26 | AF: 27.6 | NR | AF: 59 | FDAF cohort; ↑ NT-proBNP |
Feng, et al. [34] (MR) | GWAS (~1 M) | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | Mendelian randomization |
Zhou, et al. [30] | 158 (71 AF; 87 non-AF) | AF: 65.3; non-AF: 47.3 | AF: 49; non-AF: 59 | NR | AF: 54.9 | AF: 56.3 | AF: 5.6 | AF: 16.9 | AF: 11.3 | AF: 24.7 | AF: 40.7 | NR | Catheter ablation cohort |
Vyas, et al. [25] | 153 (18 AF; 26 SR baseline) | AF: 67.3; SR: 65.6 | AF: 78; SR: 65 | NR | AF: 67 | AF: 11 | NR | MI: 17–27 | NR | 26.6 | AF: 4.9 cm; SR: 3.6 cm | AF: 59; SR: 60 | Surgical cohort |
You, et al. [31] | 45,905 (818 AF; 45,087 non-AF; 560 FU) | AF: 72.9; non-AF: 58.6 | AF: 58.3; non-AF: 44.0 | NR | AF: 62.5 | AF: 19.9 | 20.4 (subcohort) | AF: 13.1 | AF: 24.8 | 24.0 | ~44–45 | ~59 | Hospital cohort, China |
Study | Type of Study | Objectives | Main Findings (Aligned with PICOT) |
---|---|---|---|
Duygu, et al. [20] | Observational (clinical) | Evaluate soluble CD40 ligand in NVAF | Elevated sCD40L levels in NVAF patients correlated with atrial size, suggesting immune activation contributes to AF persistence and progression. |
Kim et al. [27] | Mechanistic (ablation cohort) | Assess atrial remodeling in paroxysmal vs. persistent AF | Structural atrial remodeling (↑ LAD, ↓ LVEF) and immune activation are more pronounced in persistent AF, linking T-cell-mediated changes with disease chronicity. |
Yamashita et al. [24] | Histological (surgical) | Evaluate atrial tissue remodeling in valve surgery + Maze | AF patients undergoing Maze surgery exhibited more atrial fibrosis and inflammatory infiltration, supporting immune-driven atrial remodeling. |
Smorodinova et al. [22] | Histological (surgical) | Characterize atrial tissue in persistent AF vs. SR | Long-standing AF tissue contained increased T cells and macrophages with enhanced fibrosis, confirming chronic immune activation in AF pathogenesis. |
Sulzgruber et al. [21] | Prospective observational (HF cohort) | Assess immune/inflammatory predictors in HF with AF | In HF patients, AF was associated with higher NT-proBNP and immune markers, predicting adverse outcomes beyond standard clinical risk scores. |
Bin Waleed et al. [28] | Randomized trial (procedural) | Compare cryoballoon vs. RF ablation in PAF | Ablation techniques (cryoballoon vs. RF) differentially modulated inflammatory markers, showing procedural impact on thrombo-inflammatory pathways in AF. |
Hohmann et al. [23] | Mechanistic (surgical) | Analyze LAA tissue and immune pathways | AF atrial appendage tissue exhibited ↑ inflammatory infiltrates and cytokine expression, linking local immune response to AF persistence. |
Li et al. [32] | Prospective observational (stroke cohort) | Investigate lymphocyte subsets after acute ischemic stroke | Altered Treg/Th17 balance predicted adverse outcomes in stroke patients, with AF subgroups showing distinct immunological profiles associated with prognosis. |
Xiao et al. [36] | Bioinformatics (multi-dataset) | Identify immune-related genes in AF | Bioinformatics integration identified immune-related genes and T-cell activation pathways strongly associated with AF onset and progression. |
Ogurkova, et al. [19] | Observational (clinical + immunology) | Assess immune cells in AF with/without thrombosis | AF patients with thrombosis showed greater T-cell activation and PD-1 dysregulation, linking immune exhaustion with prothrombotic risk in AF. |
Chang et al. [32] | Case–control (immunology) | Evaluate PD-1/PD-L1 pathway in AF | AF patients exhibited impaired PD-1/PD-L1 signaling, highlighting checkpoint dysregulation as a mechanism for sustained immune activation. |
Friebel et al. [26] | Prospective observational (FDAF cohort) | Assess immune markers in newly diagnosed AF | Senescent CD8+ T cells and ↑ NT-proBNP were independent predictors of AF incidence, strengthening immune markers for risk stratification. |
Feng et al. [34] (MR) | Genetic (Mendelian randomization) | Explore the causal effects of immune cells on AF | Genetic evidence confirmed causal effects of neutrophils, basophils, and CD4+ T cells in AF risk, with NK cells protective, supporting causality. |
Zhou et al. [30] | Prospective cohort (ablation) | Examine the role of senescent CD8+ T cells | Senescent CD8+ T cells predicted AF recurrence after ablation, independent of CHA2DS2-VASc, underscoring their prognostic utility. |
Vyas et al. [25] | Translational (surgical + tissue) | Study epicardial adipose tissue–immune crosstalk | Epicardial adipose tissue–resident T cells produced IL-17 and IFN-γ, promoting atrial fibrosis and AF progression through immune–metabolic crosstalk. |
You et al. [31] | Retrospective cohort (hospital-based) | Evaluate the prognostic role of the CDR score in AF | The CDR immune score outperformed CHA2DS2-VASc in predicting AF-related outcomes, supporting immune-based prognostic stratification. |
Study | Immune Predictor | Outcomes |
---|---|---|
Duygu et al. [20] | Soluble CD40 ligand | Thromboembolic risk |
Sulzgruber et al. [21] | CD4+CD28− T cells; Regulatory T cells | Cardiovascular mortality |
Friebel et al. [26] | Senescent CD8+ T cells (CD28−CD57+) | Stroke, heart failure, hospitalization, cardiovascular death |
Zhou et al. [30], You et al. [31] | Imbalance of CD4/CD8 ratio | Adverse cardiovascular outcomes |
Ogurkova et al. [19] | CD40/CD40L axis | Thrombotic complications |
Xiao et al. [36] | Reduced Tregs, increased myeloid infiltration | Persistent AF |
Feng et al. [34] | Genetically elevated neutrophil, basophil, and CD4+ T cell counts; higher NK cells and total lymphocytes | Increased risk (first group); protection (second group) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menezes Junior, A.d.S.; Wastowski, I.J.; de Oliveira, H.L.; de Lima, K.B.A.; Botelho, S.M. From Tissue to Transcriptome: A Systematic Review of Multi-Level Evidence for Immune Dysregulation in Atrial Fibrillation. J. Clin. Med. 2025, 14, 7316. https://doi.org/10.3390/jcm14207316
Menezes Junior AdS, Wastowski IJ, de Oliveira HL, de Lima KBA, Botelho SM. From Tissue to Transcriptome: A Systematic Review of Multi-Level Evidence for Immune Dysregulation in Atrial Fibrillation. Journal of Clinical Medicine. 2025; 14(20):7316. https://doi.org/10.3390/jcm14207316
Chicago/Turabian StyleMenezes Junior, Antonio da Silva, Isabela Jubé Wastowski, Henrique Lima de Oliveira, Khissya Beatriz Alves de Lima, and Silvia Marçal Botelho. 2025. "From Tissue to Transcriptome: A Systematic Review of Multi-Level Evidence for Immune Dysregulation in Atrial Fibrillation" Journal of Clinical Medicine 14, no. 20: 7316. https://doi.org/10.3390/jcm14207316
APA StyleMenezes Junior, A. d. S., Wastowski, I. J., de Oliveira, H. L., de Lima, K. B. A., & Botelho, S. M. (2025). From Tissue to Transcriptome: A Systematic Review of Multi-Level Evidence for Immune Dysregulation in Atrial Fibrillation. Journal of Clinical Medicine, 14(20), 7316. https://doi.org/10.3390/jcm14207316