Association of Computed Tomography Perfusion Parameters with 90-Day Functional Independence After Endovascular Thrombectomy
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CTP | Computed tomography perfusion |
EVT | Endovascular thrombectomy |
LVO | Large vessel occlusion |
CBVI | Cerebral blood volume index |
HIR | Hypoperfusion intensity ratio |
Tmax > 10 s | 10 s delayed perfusion |
Tmax > 6 s | 6 s delayed perfusion |
CTA | Computed tomography angiogram |
COMPI | Compensation index |
Tmax > 4 s | 4 s delayed perfusion |
DSA | Digital subtraction angiography |
ASPECTS | Alberta Stroke Program Early Computed Tomography Score |
mRS | Modified Rankin Scale |
NIHSS | National Institutes of Health Stroke Scale |
IV | Intravenous |
DPI | Delayed perfusion index |
SD | Standard deviation |
IQR | Interquartile range |
mTICI | Modified treatment in cerebral ischemia |
TLKW | Time last known well |
OR | Odds ratio |
CI | Confidence interval |
References
- Demeestere, J.; Wouters, A.; Christensen, S.; Lemmens, R.; Lansberg, M.G. Review of perfusion imaging in acute ischemic stroke: From time to tissue. Stroke 2020, 51, 1017–1024. [Google Scholar] [CrossRef]
- Albers, G.W.; Marks, M.P.; Kemp, S.; Christensen, S.; Tsai, J.P.; Ortega-Gutierrez, S.; McTaggart, R.A.; Torbey, M.T.; Kim-Tenser, M.; Leslie-Mazwi, T.; et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N. Engl. J. Med. 2018, 378, 708–718. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef]
- Huo, X.; Ma, G.; Tong, X.; Zhang, X.; Pan, Y.; Nguyen, T.N.; Yuan, G.; Han, H.; Chen, W.; Wei, M.; et al. Trial of endovascular therapy for acute ischemic stroke with large infarct. N. Engl. J. Med. 2023, 388, 1272–1283. [Google Scholar] [CrossRef]
- Sarraj, A.; Hassan, A.E.; Abraham, M.G.; Ortega-Gutierrez, S.; Kasner, S.E.; Hussain, M.S.; Chen, M.; Blackburn, S.; Sitton, C.W.; Churilov, L.; et al. Trial of endovascular thrombectomy for large ischemic strokes. N. Engl. J. Med. 2023, 388, 1259–1271. [Google Scholar] [CrossRef]
- Wang, C.-M.; Chang, Y.-M.; Sung, P.-S.; Chen, C.-H. Hypoperfusion index ratio as a surrogate of collateral scoring on CT angiogram in large vessel stroke. J. Clin. Med. Res. 2021, 10, 1296. [Google Scholar] [CrossRef]
- Lakhani, D.A.; Balar, A.B.; Koneru, M.; Wen, S.; Hoseinyazdi, M.; Greene, C.; Xu, R.; Luna, L.; Caplan, J.; Dmytriw, A.A.; et al. The compensation index is better associated with DSA ASITN collateral score compared to the cerebral blood volume index and hypoperfusion intensity ratio. J. Clin. Med. Res. 2023, 12, 7365. [Google Scholar] [CrossRef] [PubMed]
- Arenillas, J.F.; Cortijo, E.; García-Bermejo, P.; Levy, E.I.; Jahan, R.; Liebeskind, D.; Goyal, M.; Saver, J.L.; Albers, G.W. Relative cerebral blood volume is associated with collateral status and infarct growth in stroke patients in SWIFT PRIME. J. Cereb. Blood Flow Metab. 2018, 38, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Voleti, S.; Aziz, Y.N.; Vidovich, J.; Corcoran, B.; Zhang, B.; Mistry, E.; Khandwala, V.; Khatri, P.; Tomsick, T.; Wang, L.; et al. Association between CT angiogram collaterals and CT perfusion in delayed time windows for large vessel occlusion ischemic strokes. J. Stroke Cerebrovasc. Dis. 2022, 31, 106263. [Google Scholar] [CrossRef] [PubMed]
- MacLellan, A.; Mlynash, M.; Kemp, S.; Ortega-Gutierrez, S.; Heit, J.J.; Marks, M.P.; Lansberg, M.G.; Albers, G.W. Perfusion imaging collateral scores predict infarct growth in non-reperfused DEFUSE 3 patients. J. Stroke Cerebrovasc. Dis. 2021, 31, 106208. [Google Scholar] [CrossRef]
- Wouters, A.; Seners, P.; Yuen, N.; Mlynash, M.; Heit, J.J.; Kemp, S.; Demeestere, J.; Christensen, S.; Albers, G.W.; Lemmens, R.; et al. Clinical and imaging features associated with fast infarct growth during interhospital transfers of patients with large vessel occlusions. Neurology 2024, 103, e209814. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.L.; Mlynash, M.; Christensen, S.; Yennu, A.; Kemp, S.; Zaharchuk, G.; Heit, J.J.; Marks, M.P.; Lansberg, M.G.; Albers, G.W. Collateral status contributes to differences between observed and predicted 24-h infarct volumes in DEFUSE 3. J. Cereb. Blood Flow Metab. 2020, 40, 1966–1974. [Google Scholar] [CrossRef]
- Yedavalli, V.S.; Koneru, M.; Hoseinyazdi, M.; Marsh, E.B.; Llinas, R.H.; Urrutia, V.; Leigh, R.; Gonzalez, L.F.; Xu, R.; Caplan, J.; et al. Low cerebral blood volume index, thrombectomy, and prior stroke are independently associated with hemorrhagic transformation in medium-vessel occlusion ischemic stroke. Stroke Vasc. Interv. Neurol. 2024, 4, e001250. [Google Scholar] [CrossRef]
- Karamchandani, R.R.; Strong, D.; Rhoten, J.B.; Prasad, T.; Selig, J.; Defilipp, G.; Asimos, A.W. Cerebral blood volume index as a predictor of functional independence after basilar artery thrombectomy. J. Neuroimaging 2022, 32, 171–178. [Google Scholar] [CrossRef]
- Karamchandani, R.R.; Yang, H.; Strong, D.; Rhoten, J.B.; Clemente, J.D.; Defilipp, G.; Patel, N.M.; Bernard, J.D.; Stetler, W.R.; Parish, J.M.; et al. Glucose and cerebral blood volume index as predictors of ambulatory function for patients presenting with ultra-large core infarctions. Clin. Neuroimaging 2024, 1, e70007. [Google Scholar] [CrossRef]
- Asimos, A.W.; Yang, H.; Strong, D.; Teli, K.J.; Clemente, J.D.; DeFilipp, G.; Bernard, J.; Stetler, W.; Parish, J.M.; Hines, A.; et al. Association of hypoperfusion intensity ratio and cerebral blood volume Index with good outcome in patients transferred for thrombectomy. Interv. Neuroradiol. 2025, 15910199251352046. [Google Scholar] [CrossRef]
- Sun, A.; Cao, Y.; Jia, Z.; Zhao, L.; Shi, H.; Liu, S. Prognostic value of CBV index in patients with acute ischemic stroke treated with endovascular thrombectomy in late therapeutic window. Front. Neurol. 2023, 14, 1282159. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Meng, Z.; Xie, S.; Fang, J.; Li, L.; Chen, Z.; Liu, J.; Jiang, G. Correlation between hypoperfusion intensity ratio and functional outcome in large-vessel occlusion acute ischemic stroke: Comparison with multi-phase CT angiography. J. Clin. Med. 2022, 11, 5274. [Google Scholar] [CrossRef] [PubMed]
- Berkhemer, O.A.; Jansen, I.G.; Beumer, D.; Fransen, P.S.; van den Berg, L.A.; Yoo, A.J.; Lingsma, H.F.; Sprengers, M.E.; Jenniskens, S.F.; Lycklama, À.; et al. Collateral Status Baseline Computed Tomographic Angiography Intra-Arterial Treatment Effect Patients Proximal Anterior Circulation Stroke. Stroke 2016, 47, 768–776. [Google Scholar] [CrossRef]
- Uniken Venema, S.M.; Dankbaar, J.W.; van der Lugt, A.; Dippel, D.W.J.; van der Worp, H.B. Cerebral collateral circulation in the era of reperfusion therapies for acute ischemic stroke. Stroke 2022, 53, 3222–3234. [Google Scholar] [CrossRef]
- Jansen, I.G.H.; van Vuuren, A.B.; van Zwam, W.V.; van den Wijngaard, I.R.; Berkhemer, O.A.; Lingsma, H.F.; Slump, C.H.; van Oostenbrugge, R.J.; Treurniet, K.M.; Dippel, D.W.J.; et al. Absence of cortical vein opacification is associated with lack of intra-arterial therapy benefit in stroke. Radiology 2017, 286, 643–650. [Google Scholar] [CrossRef]
- Maguida, G.; Shuaib, A. Collateral circulation in ischemic stroke: An updated review. J. Stroke 2023, 25, 179–198. [Google Scholar] [CrossRef]
- Anadani, M.; Finitsis, S.; Clarençon, F.; Richard, S.; Marnat, G.; Bourcier, R.; Sibon, I.; Dargazanli, C.; Arquizan, C.; Blanc, R.; et al. Collateral status reperfusion and outcomes after endovascular therapy: Insight from the endovascular treatment in ischemic stroke (ETIS) Registry. J. Neurointerv. Surg. 2022, 14, 551–557. [Google Scholar] [CrossRef]
- Liebeskind, D.S.; Saber, H.; Xiang, B.; Jadhav, A.P.; Jovin, T.G.; Haussen, D.C.; Budzik, R.F.; Bonafe, A.; Bhuva, P.; Yavagal, D.R.; et al. Collateral circulation in thrombectomy for stroke after 6 to 24 hours in the DAWN trial. Stroke 2022, 53, 742–748. [Google Scholar] [CrossRef]
- Román, L.S.; Menon, B.K.; Blasco, J.; Hernández-Pérez, M.; Dávalos, A.; Majoie, C.B.L.M.; Campbell, B.C.V.; Guillemin, F.; Lingsma, H.; Anxionnat, R.; et al. Imaging features and safety and efficacy of endovascular stroke treatment: A meta–analysis of individual patient–level data. Lancet Neurol. 2018, 17, 895–904. [Google Scholar] [CrossRef]
- Menon, B.K.; O’Brien, B.; Bivard, A.; Spratt, N.J.; Demchuk, A.M.; Miteff, F.; Lu, X.; Levi, C.; Parsons, M.W. Assessment of leptomeningeal collaterals using dynamic CT angiography in patients with acute ischemic stroke. J. Cereb. Blood Flow Metab. 2013, 33, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar]
- Chen, H.; Colasurdo, M. Endovascular thrombectomy for large ischemic strokes: Meta-analysis of six multicenter randomized controlled trials. J. Neurointerv. Surg. 2025, 17, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, S.; Cheng, X.D.; Sun, H.; Li, B.-H.; Yu, N.-W. Cerebral blood volume index can predict long-term prognosis after endovascular thrombectomy in patients with acute ischemic stroke due to large vessel occlusion. J. Clin. Neurosci. 2023, 117, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Bushnaq, S.; Hassan, A.E.; Delora, A.; Kerro, A.; Datta, A.; Ezzeldin, R.; Ali, Z.; Anwoju, T.; Nejad, L.; Silva, R.; et al. A comparison of CT perfusion output of RapidAI and Viz.ai software in the evaluation of acute ischemic stroke. AJNR Am. J. Neuroradiol. 2024, 45, 863–870. [Google Scholar] [CrossRef]
CT Perfusion Parameter | Definition |
---|---|
CBVI | Mean blood volume in hypoperfused tissue compared to normal tissue |
HIR | Tmax > 10 s divided by Tmax > 6 s |
COMPI | Tmax > 4 s divided by Tmax > 6 s |
DPI | Tmax > 4 s divided by Tmax > 10 s |
Total N = 302 | 90-Day mRS 0–2 N = 146 | 90-Day mRS 3–6 N = 156 | p-Value b | |
---|---|---|---|---|
Demographics | ||||
Age, years, median (IQR) | 69.0 (57.0–78.0) | 65.0 (54.0–74.0) | 71.0 (60.0–82.0) | <0.001 |
Sex, male, n (%) | 159 (52.6%) | 77 (52.7%) | 82 (52.6%) | 0.98 |
Race, n (%) | 0.81 | |||
Black | 92 (30.5%) | 44 (30.1%) | 48 (30.8%) | |
White | 194 (64.2%) | 93 (63.7%) | 101 (64.7%) | |
Other/unknown | 16 (5.3%) | 9 (6.2%) | 7 (4.5%) | |
Medical history | ||||
Pre-morbid mRS, median (IQR) | 0 (0–0) | 0 (0–0) | 0 (0–1) | 0.002 |
Hypertension, n (%) | 218 (72.2%) | 104 (71.2%) | 114 (73.1%) | 0.72 |
Hyperlipidemia, n (%) | 136 (45.0%) | 68 (46.6%) | 68 (43.6%) | 0.60 |
Diabetes mellitus, n (%) | 75 (24.8%) | 26 (17.8%) | 49 (31.4%) | 0.006 |
Coronary artery disease, n (%) | 57 (18.9%) | 27 (18.5%) | 30 (19.2%) | 0.87 |
Atrial fibrillation, n (%) | 82 (27.2%) | 30 (20.5%) | 52 (33.3%) | 0.013 |
Smoking, n (%) | 131 (43.4%) | 72 (49.3%) | 59 (37.8%) | 0.044 |
Presentation Details | ||||
Initial NIHSS, median (IQR) | 15.0 (10.0–19.5) | 13.0 (8.0–18.0) | 17.0 (11.0–21.0) | <0.001 |
Glucose (mg/dL), mean ± SD | 133.4 (49.8) | 124.4 (35.4) | 142.0 (59.2) | 0.002 |
Site of occlusion, n (%) | 0.19 | |||
Internal carotid artery | 72 (23.8%) | 31 (21.2%) | 41 (26.3%) | |
Middle cerebral artery—M1 | 158 (52.3%) | 74 (50.7%) | 84 (53.8%) | |
Middle cerebral artery—M2 | 71 (23.5%) | 41 (28.1%) | 30 (19.2%) | |
Other (distal MCA or ACA) | 1 (0.3%) | 0 (0.0%) | 1 (0.6%) | |
CT ASPECTS, median (IQR) | 10.0 (8.0–10.0) | 10.0 (9.0–10.0) | 10.0 (8.0–10.0) | 0.29 |
IV thrombolysis, n (%) | 99 (32.8%) | 61 (41.8%) | 38 (24.4%) | 0.001 |
TLKW to skin puncture (min), median (IQR) | 287.5 (179.0–636.0) | 240.0 (171.0–509.0) | 325.0 (190.0–751.0) | 0.016 |
CTP Parameters | ||||
HIR, median (IQR) | 0.4 (0.2–0.6) | 0.4 (0.2–0.6) | 0.5 (0.3–0.7) | 0.047 |
CBVI, median (IQR) | 0.7 (0.6–0.8) | 0.8 (0.7–0.9) | 0.7 (0.6–0.8) | <0.001 |
COMPI, median (IQR) | 1.9 (1.5–2.5) | 1.9 (1.5–2.4) | 1.9 (1.5–2.5) | 0.82 |
DPI, median (IQR) | 4.1 (2.6–8.0) | 4.4 (2.8–9.0) | 3.9 (2.5–7.7) | 0.42 |
Odds Ratio | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
Compensation index | 0.987 | 0.902 | 1.081 | 0.783 |
Delayed perfusion index | 1.000 | 1.000 | 1.001 | 0.46 |
CBVI, per 0.1 increase | 1.296 | 1.097 | 1.530 | 0.002 |
Hypoperfusion intensity ratio | 0.410 | 0.143 | 1.177 | 0.097 |
Age | 0.969 | 0.953 | 0.985 | <0.001 |
Initial NIHSS | 0.932 | 0.899 | 0.966 | <0.001 |
Initial glucose | 0.993 | 0.987 | 0.999 | <0.001 |
CT ASPECTS | 1.134 | 0.968 | 1.328 | 0.120 |
Tmax > 4 s volume | 0.999 | 0.998 | 1.001 | 0.45 |
Tmax > 6 s volume | 0.999 | 0.997 | 1.002 | 0.597 |
Tmax > 10 s volume | 0.998 | 0.994 | 1.001 | 0.174 |
TLKW to puncture | 1.000 | 0.999 | 1.000 | 0.149 |
Male sex | 1.029 | 0.656 | 1.614 | 0.901 |
Race, Black as reference | ||||
White | 1.011 | 0.613 | 1.667 | 0.966 |
Other/unknown | 1.476 | 0.515 | 4.225 | 0.468 |
Premorbid mRS, 0 as reference | ||||
1 | 0.305 | 0.142 | 0.654 | 0.002 |
2 | 0.544 | 0.260 | 1.140 | 0.107 |
Hypertension | 0.897 | 0.540 | 1.489 | 0.673 |
Hyperlipidemia | 1.138 | 0.724 | 1.789 | 0.575 |
Diabetes | 0.476 | 0.277 | 0.818 | 0.007 |
CAD | 0.964 | 0.543 | 1.709 | 0.899 |
Atrial Fibrillation | 0.523 | 0.310 | 0.880 | 0.015 |
Smoking | 1.498 | 0.950 | 2.361 | 0.082 |
IV thrombolysis | 2.168 | 1.313 | 3.581 | 0.003 |
Site of occlusion, ICA as reference | ||||
Middle cerebral artery–M1 | 1.157 | 0.660 | 2.026 | 0.611 |
Other (distal MCA or ACA) | 1.691 | 0.875 | 3.268 | 0.118 |
Odds Ratio | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
CBVI, per 0.1 increase | 1.349 | 1.099 | 1.655 | 0.004 |
Age | 0.965 | 0.945 | 0.985 | 0.001 |
Initial NIHSS | 0.937 | 0.900 | 0.976 | 0.002 |
First blood glucose level | 0.995 | 0.988 | 1.001 | 0.114 |
Pre-morbid mRS, 0 as reference | ||||
1 | 0.309 | 0.130 | 0.736 | 0.008 |
2 | 0.969 | 0.407 | 2.307 | 0.943 |
Diabetes | 0.641 | 0.331 | 1.242 | 0.187 |
Atrial fibrillation | 0.848 | 0.450 | 1.599 | 0.61 |
IV thrombolysis | 3.038 | 1.689 | 5.465 | <0.001 |
Odds Ratio | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
CBVI, per 0.1 increase | 1.340 | 1.094 | 1.641 | 0.005 |
Age | 0.965 | 0.944 | 0.986 | 0.001 |
Initial NIHSS | 0.936 | 0.896 | 0.978 | 0.003 |
First blood glucose level | 0.994 | 0.987 | 1.000 | 0.054 |
Pre-morbid mRS, 0 as reference | ||||
1 | 0.277 | 0.111 | 0.691 | 0.006 |
2 | 0.985 | 0.409 | 2.370 | 0.972 |
Diabetes | 0.720 | 0.361 | 1.437 | 0.352 |
Atrial fibrillation | 0.797 | 0.409 | 1.553 | 0.505 |
IV thrombolysis | 2.719 | 1.508 | 4.902 | 0.001 |
Within | Between | Total | Relative Variance Increase | Fraction of Missing Information | Relative Efficiency | |
---|---|---|---|---|---|---|
CBVI, per 0.1 increase | 0.0076 | 0.0031 | 0.0108 | 0.4251 | 0.3026 | 0.99 |
Age | 0.0001 | 0 | 0.0001 | 0.0807 | 0.075 | 0.9975 |
Initial NIHSS | 0.0004 | 0 | 0.0004 | 0.0531 | 0.0506 | 0.9983 |
First blood glucose level | 0 | 0 | 0 | 0.3004 | 0.2338 | 0.9923 |
Premorbid mRS | ||||||
1 | 0.1855 | 0.0104 | 0.1962 | 0.058 | 0.055 | 0.9982 |
2 | 0.1729 | 0.0221 | 0.1957 | 0.1319 | 0.1173 | 0.9961 |
Diabetes | 0.1099 | 0.0039 | 0.1139 | 0.0369 | 0.0356 | 0.9988 |
Atrial fibrillation | 0.098 | 0.0065 | 0.1048 | 0.0689 | 0.0647 | 0.9978 |
IV thrombolysis | 0.0797 | 0.0097 | 0.0897 | 0.1254 | 0.1122 | 0.9963 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karamchandani, R.R.; Wang, L.; Yang, H.; Patel, S.T.; Tarasaria, K.N.; Strong, D.; Rhoten, J.B.; Clemente, J.D.; Defilipp, G.; Asimos, A.W. Association of Computed Tomography Perfusion Parameters with 90-Day Functional Independence After Endovascular Thrombectomy. J. Clin. Med. 2025, 14, 7268. https://doi.org/10.3390/jcm14207268
Karamchandani RR, Wang L, Yang H, Patel ST, Tarasaria KN, Strong D, Rhoten JB, Clemente JD, Defilipp G, Asimos AW. Association of Computed Tomography Perfusion Parameters with 90-Day Functional Independence After Endovascular Thrombectomy. Journal of Clinical Medicine. 2025; 14(20):7268. https://doi.org/10.3390/jcm14207268
Chicago/Turabian StyleKaramchandani, Rahul R., Liang Wang, Hongmei Yang, Shraddha T. Patel, Karan N. Tarasaria, Dale Strong, Jeremy B. Rhoten, Jonathan D. Clemente, Gary Defilipp, and Andrew W. Asimos. 2025. "Association of Computed Tomography Perfusion Parameters with 90-Day Functional Independence After Endovascular Thrombectomy" Journal of Clinical Medicine 14, no. 20: 7268. https://doi.org/10.3390/jcm14207268
APA StyleKaramchandani, R. R., Wang, L., Yang, H., Patel, S. T., Tarasaria, K. N., Strong, D., Rhoten, J. B., Clemente, J. D., Defilipp, G., & Asimos, A. W. (2025). Association of Computed Tomography Perfusion Parameters with 90-Day Functional Independence After Endovascular Thrombectomy. Journal of Clinical Medicine, 14(20), 7268. https://doi.org/10.3390/jcm14207268