Factors Associated with Radiological Examination of Patients with Non-Specific Low Back Pain
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LBP | low back pain |
BMI | body mass index |
MRI | Magnetic Resonance Imaging |
CT | Computed Tomography |
PT | physiotherapy |
SD | standard deviation |
IQR | interquartile range |
References
- Ferreira, M.L.; De Luca, K.; Haile, L.M.; Steinmetz, J.D.; Culbreth, G.T.; Cross, M.; Kopec, J.A.; Ferreira, P.H.; Blyth, F.M.; Buchbinder, R.; et al. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e316–e329. [Google Scholar] [CrossRef]
- Fatoye, F.; Gebrye, T.; Ryan, C.G.; Useh, U.; Mbada, C. Global and regional estimates of clinical and economic burden of low back pain in high-income countries: A systematic review and meta-analysis. Front. Public Health 2023, 11, 1098100. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Fu, R.; Carrino, J.A.; Deyo, R.A. Imaging strategies for low-back pain: Systematic review and meta-analysis. Lancet 2009, 373, 463–472. [Google Scholar] [CrossRef]
- Flynn, T.W.; Smith, B.; Chou, R. Appropriate use of diagnostic imaging in low back pain: A reminder that unnecessary imaging may do as much harm as good. J. Orthop. Sports Phys. Ther. 2011, 41, 838–846. [Google Scholar] [CrossRef]
- Dagenais, S.; Tricco, A.C.; Haldeman, S. Synthesis of recommendations for the assessment and management of low back pain from recent clinical practice guidelines. Spine J. 2010, 10, 514–529. [Google Scholar] [CrossRef]
- Jenkins, H.J.; Downie, A.S.; Maher, C.G.; Moloney, N.A.; Magnussen, J.S.; Hancock, M.J. Imaging for low back pain: Is clinical use consistent with guidelines? A systematic review and meta-analysis. Spine J. 2018, 18, 2266–2277. [Google Scholar] [CrossRef]
- Fritz, J.M.; Childs, J.D.; Wainner, R.S.; Flynn, T.W. Primary care referral of patients with low back pain to physical therapy: Impact on future health care utilization and costs. Spine 2012, 37, 2114–2121. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.B.; Maher, C.G.; Pinto, R.Z.; Traeger, A.C.; Lin, C.-W.C.; Chenot, J.-F.; Van Tulder, M.; Koes, B.W. Clinical practice guidelines for the management of non-specific low back pain in primary care: An updated overview. Eur. Spine J. 2018, 27, 2791–2803. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Coombs, D.; Richmond, H.; Bursey, K.; Furlong, B.; Lawrence, R.; Kamper, S.J. What do the general public believe about the causes, prognosis and best management strategies for low back pain? A cross-sectional study. BMC Public Health 2021, 21, 682. [Google Scholar] [CrossRef]
- Alrushud, A.S.; Alamam, D.M.; Almurdi, M.M.; Almutairi, S.K.; Alzahrani, R.O.; Alanazi, M.S.; Dhahi, W.M.; Alshaiqy, D.M. Primary investigation of low back pain among Saudi Arabians: A cross-sectional study. Int. J. Environ. Res. Public Health 2022, 19, 12854. [Google Scholar] [CrossRef]
- Kamper, S.J.; Logan, G.; Copsey, B.; Thompson, J.; Machado, G.C.; Abdel-Shaheed, C.; Williams, C.M.; Maher, C.G.; Hall, A.M. What is usual care for low back pain? A systematic review of health care provided to patients with low back pain in family practice and emergency departments. Pain 2020, 161, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.M.; Scurrey, S.R.; Pike, A.E.; Albury, C.; Richmond, H.L.; Matthews, J.; Toomey, E.; Hayden, J.A.; Etchegary, H. Physician-reported barriers to using evidence-based recommendations for low back pain in clinical practice: A systematic review and synthesis of qualitative studies using the Theoretical Domains Framework. Implement. Sci. 2019, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Lemmers, G.; Van Lankveld, W.; Westert, G.; Van der Wees, P.; Staal, J. Imaging versus no imaging for low back pain: A systematic review, measuring costs, healthcare utilization and absence from work. Eur. Spine J. 2019, 28, 937–950. [Google Scholar] [CrossRef]
- Marrache, M.; Prasad, N.; Margalit, A.; Nayar, S.K.; Best, M.J.; Fritz, J.M.; Skolasky, R.L. Initial presentation for acute low back pain: Is early physical therapy associated with healthcare utilization and spending? A retrospective review of a National Database. BMC Health Serv. Res. 2022, 22, 851. [Google Scholar] [CrossRef]
- Dolot, J.; Hyland, M.; Shi, Q.; Kim, H.-Y.; Viola, D.; Hoekstra, C. Factors impacting physical therapy utilization for patients with nonspecific low back pain: Retrospective analysis of a clinical data set. Phys. Ther. 2020, 100, 1502–1515. [Google Scholar] [CrossRef]
- Andersen, R.M. Revisiting the behavioral model and access to medical care: Does it matter? J. Health Soc. Behav. 1995, 36, 1–10. [Google Scholar] [CrossRef]
- Shafshak, T.S.; Elnemr, R. The visual analogue scale versus numerical rating scale in measuring pain severity and predicting disability in low back pain. JCR J. Clin. Rheumatol. 2021, 27, 282–285. [Google Scholar] [CrossRef]
- Carey, T.S.; Garrett, J.; Jackman, A.; McLaughlin, C.; Fryer, J.; Smucker, D.R.; Project, N.C.B.P. The outcomes and costs of care for acute low back pain among patients seen by primary care practitioners, chiropractors, and orthopedic surgeons. N. Engl. J. Med. 1995, 333, 913–917. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Peat, J.; Barton, B. Medical Statistics: A Guide to Data Analysis and Critical Appraisal; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Downie, A.; Hancock, M.; Jenkins, H.; Buchbinder, R.; Harris, I.; Underwood, M.; Goergen, S.; Maher, C.G. How common is imaging for low back pain in primary and emergency care? Systematic review and meta-analysis of over 4 million imaging requests across 21 years. Br. J. Sports Med. 2020, 54, 642–651. [Google Scholar] [CrossRef]
- Jenkins, H.J.; Grace, K.; Young, A.; Parker, F.; Hartvigsen, J.; Rubinstein, S.M.; French, S.D.; de Luca, K. Diagnostic imaging in the management of older adults with low back pain: Analysis from the BAck Complaints in Elders: Chiropractic–Australia cohort study. Chiropr. Man. Ther. 2024, 32, 40. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.; Zhou, J.; Kuo, Y.-F.; Goodwin, J.S. Variation among primary care physicians in the use of imaging for older patients with acute low back pain. J. Gen. Intern. Med. 2016, 31, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Weisse, C.S.; Sorum, P.C.; Sanders, K.N.; Syat, B.L. Do gender and race affect decisions about pain management? J. Gen. Intern. Med. 2001, 16, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Samulowitz, A.; Gremyr, I.; Eriksson, E.; Hensing, G. “Brave men” and “emotional women”: A theory-guided literature review on gender bias in health care and gendered norms towards patients with chronic pain. Pain Res. Manag. 2018, 2018, 6358624. [Google Scholar] [CrossRef]
- Bartley, E.J.; Fillingim, R.B. Sex differences in pain: A brief review of clinical and experimental findings. Br. J. Anaesth. 2013, 111, 52–58. [Google Scholar] [CrossRef]
- Forsythe, L.P.; Thorn, B.; Day, M.; Shelby, G. Race and sex differences in primary appraisals, catastrophizing, and experimental pain outcomes. J. Pain 2011, 12, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Riley, J.L., III; Robinson, M.E.; Wise, E.A.; Myers, C.D.; Fillingim, R.B. Sex differences in the perception of noxious experimental stimuli: A meta-analysis. Pain 1998, 74, 181–187. [Google Scholar] [CrossRef]
- Unruh, A.M. Gender variations in clinical pain experience. Pain 1996, 65, 123–167. [Google Scholar] [CrossRef]
- Gatchel, R.J.; Ray, C.T.; Kishino, N.; Brindle, A. The biopsychosocial model. In The Wiley Encyclopedia of Health Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 1–8. [Google Scholar]
- Shiri, R.; Karppinen, J.; Leino-Arjas, P.; Solovieva, S.; Viikari-Juntura, E. The association between obesity and low back pain: A meta-analysis. Am. J. Epidemiol. 2010, 171, 135–154. [Google Scholar] [CrossRef]
- Hamberg, K.; Risberg, G.; Johansson, E.E.; Westman, G. Gender bias in physicians’ management of neck pain: A study of the answers in a Swedish national examination. J. Women’s Health Gend.-Based Med. 2002, 11, 653–666. [Google Scholar] [CrossRef]
- Müskens, J.L.; Kool, R.B.; van Dulmen, S.A.; Westert, G.P. Overuse of diagnostic testing in healthcare: A systematic review. BMJ Qual. Saf. 2022, 31, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Qaseem, A.; Owens, D.K.; Shekelle, P. Diagnostic imaging for low back pain: Advice for high-value health care from the American College of Physicians. Ann. Intern. Med. 2011, 154, 181–189. [Google Scholar] [CrossRef]
- Cherkin, D.C.; Deyo, R.A.; Wheeler, K.; Ciol, M.A. Physician variation in diagnostic testing for low back pain. Who you see is what you get. Arthritis Rheum. 1994, 37, 15–22. [Google Scholar] [CrossRef]
- Williams, C.M.; Maher, C.G.; Hancock, M.J.; McAuley, J.H.; McLachlan, A.J.; Britt, H.; Fahridin, S.; Harrison, C.; Latimer, J. Low back pain and best practice care: A survey of general practice physicians. Arch. Intern. Med. 2010, 170, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, I.A.; Malik, Q.; Carville, S.; Ward, S. Low back pain and sciatica: Summary of NICE guidance. BMJ 2017, 356, i6748. [Google Scholar] [CrossRef] [PubMed]
- Buchbinder, R.; Underwood, M.; Hartvigsen, J.; Maher, C.G. The Lancet Series call to action to reduce low value care for low back pain: An update. Pain 2020, 161, S57–S64. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total Sample (n = 179) | Had Radiological Tests (n = 159) | No Radiological Test (n = 20) | p Value * |
---|---|---|---|---|
Age | ||||
Mean (SD) | 43.51 (13.60) | 43.12 (13.4) | 48.55 (13.57) | |
Median (IQR) | 42 (23) | 41 (23) | 50.5 (21) | |
Minimum–Maximum | 18–70 | 18–70 | 25–70 | 0.130 |
BMI | ||||
Mean (SD) | 28.87 (6.44) | 28.7 (6.58) | 29.89 (3.33) | |
Median (IQR) | 28.67 (8.40) | 28.3 (8.6) | 30.4 (3.57) | |
Minimum–Maximum | 14.60–53.01 | 14.6–53.01 | 23.46–35.65 | 0.258 |
Gender n (%) | ||||
Male | 39 (21.8) | 31 (19.5) | 8 (40.0) | |
Female | 140 (78.2) | 128 (80.5) | 12 (60.0) | 0.036 |
Marital Status n (%) | ||||
Married | 136 (76.0) | 121 (76.1) | 15 (75.0) | |
Single | 39 (21.8) | 34 (21.4) | 5 (25.0) | |
Unknown | 4 (2.2) | 4 (2.5) | 0 | 0.736 |
Working Status n (%) | ||||
Professionals | 16 (8.9) | 15 (9.4) | 1 (5.0) | |
Clerical and skilled labor | 8 (4.5) | 6 (3.8) | 2 (10.0) | |
Unemployed | 155 (86.6) | 138 (86.8) | 17 (85.0) | 0.379 |
Total Sample (n = 179) | Radiological Test (n = 159) | No Radiological Test (n = 20) | p-Value * | |
---|---|---|---|---|
LBP duration (in months) | ||||
Mean (SD) | 11.81 (16.12) | 11.68 (16.04) | 12.84 (17.19) | |
Median (IQR) | 6 (10.0) | 6 (10.0) | 4 (10.0) | |
Minimum–Maximum | 0.1–120 | 0.1–120 | 0.50–60 | 0.347 |
Occurrence of LBP n (%) | ||||
1st episode | 159 (88.8) | 141 (88.7) | 18 (90.0) | |
Recurrence | 20 (11.2) | 18 (11.3) | 2 (10.0) | 0.834 |
Taking LBP medication n (%) | ||||
Yes | 135 (75.4) | 123 (77.4) | 12 (60.0) | |
No | 44 (24.6) | 36 (22.6) | 8 (40.0) | 0.089 |
Presence of comorbidities n (%) | ||||
Yes | 47 (26.3) | 40 (25.2) | 7 (35.0) | |
No | 127 (70.9) | 116 (73.0) | 11 (55.0) | |
Unknown | 5 (2.8) | 3 (1.8) | 2 (10.0) | 0.059 |
Total Sample (n = 179) | Radiological Test (n = 159) | No Radiological Test (n = 20) | p-Value * | |
---|---|---|---|---|
Number of PT sessions per week | ||||
Mean (SD) | 1.54 (0.54) | 1.52 (0.53) | 1.70 (0.57) | |
Median (IQR) | 2 (1) | 2 (1) | 2 (1) | |
Minimum–Maximum | 1–3 | 1–3 | 1–3 | 0.184 |
Number of PT sessions per LBP episode | ||||
Mean (SD) | 5.19 (2.59) | 5.14 (2.19) | 5.55 (4.80) | |
Median (IQR) | 5 (2) | 5 (2) | 4 (3) | |
Minimum–Maximum | 2–23 | 2–13 | 2–23 | 0.372 |
Time gap between referral and PT (days) | ||||
Mean (SD) | 5.83 (1.35) | 5.83 (1.37) | 5.85 (1.22) | |
Median (IQR) | 6 (2) | 6 (2) | 6 (1) | |
Minimum–Maximum | 2–10 | 2–10 | 3–8 | 0.942 |
Pre-PT pain score | ||||
Mean (SD) | 2.06 (1.61) | 2.06 (1.61) | 2.00 (1.62) | |
Median (IQR) | 2 (2) | 2 (2) | 2 (2) | |
Minimum–Maximum | 0–7 | 0–7 | 0–6 | 0.905 |
Physiotherapist experience (years) | ||||
Mean (SD) | 4.82 (2.35) | 4.89 (2.34) | 4.25 (2.40) | |
Median (IQR) | 4 (3) | 4 (3) | 4 (3) | |
Minimum–Maximum | 2–12 | 2–12 | 2–12 | 0.181 |
Perceived functional improvement n (%) | ||||
Yes | 26 (14.5) | 24 (15.1) | 2 (10.0) | |
No | 153 (85.5) | 135 (84.9) | 18 (90.0) | 0.542 |
Compliance with PT session n (%) | ||||
Yes | 106 (59.2) | 94 (59.1) | 12 (60.0) | |
No | 73 (40.8) | 65 (40.9) | 8 (40.0) | 0.940 |
History of PT before LBP n (%) | ||||
Yes | 156 (87.2) | 138 (86.8) | 18 (90.0) | |
No | 23 (12.8) | 21 (13.2) | 2 (10.0) | 0.686 |
Variable | Characteristic | Number of Performed Radiological Procedures |
---|---|---|
n | 179 | |
Age | Correlation | 0.890 |
p value | 0.234 | |
n | 166 | |
Body Mass Index (BMI) | Correlation | 0.240 |
p value | 0.002 | |
n | 171 | |
Duration of LBP | Correlation | 0.142 |
p value | 0.064 | |
n | 179 | |
Gap between referral and 1st session | Correlation | −0.012 |
p value | 0.872 | |
n | 179 | |
Number of PT sessions per week | Correlation | −0.103 |
p value | 0.169 | |
n | 179 | |
Number of PT sessions per episode | Correlation | 0.089 |
p value | 0.237 | |
n | 179 | |
Pre-pain VAS | Correlation | 0.078 |
p value | 0.300 | |
n | 179 | |
Post pain VAS | Correlation | 0.073 |
p value | 0.331 | |
n | 179 | |
Physiotherapist’s years of experience | Correlation | 0.245 |
p value | <0.001 | |
n | 179 | |
Gender | Correlation | 0.349 |
p value | <0.001 | |
n | 179 | |
Occurrence of LBP | Correlation | 0.113 |
p value | 0.132 | |
n | 179 | |
Medications for LBP | Correlation | −0.161 |
p value | 0.032 | |
n | 174 | |
Presence of comorbidities | Correlation | 0.173 |
p value | 0.023 | |
n | 179 | |
Had previous PT | Correlation | −0.145 |
p value | 0.052 | |
n | 179 | |
Perceived functional improvement | Correlation | 0.008 |
p value | 0.917 | |
n | 179 | |
Complete PT session | Correlation | 0.048 |
p value | 0.521 |
Predictor Variable | β Coefficient 1 | SE | t-Value | p Value |
---|---|---|---|---|
Gender (female vs. male) | 1.232 | 0.332 | 3.715 | <0.001 |
Marital status (married vs. not married) | 0.400 | 0.286 | 1.402 | 0.163 |
Occurrence (recurrence vs. 1st episode) | 0.236 | 0.528 | 0.446 | 0.656 |
Medication for LBP (taking medication vs. not) | −0.267 | 0.289 | −0.924 | 0.357 |
Presence of comorbidities (yes vs. no) | 0.398 | 0.280 | 1.421 | 0.157 |
Having previous PT sessions (yes vs. no) | −0.526 | 0.495 | −1.063 | 0.289 |
Perceived functional improvement (yes vs. no) | 0.000 | 0.350 | −0.001 | 0.999 |
Compliance with PT session (yes vs. no) | −0.004 | 0.247 | −0.017 | 0.987 |
Predictor Variable | β Coefficient 1 | SE | t-Value | p Value |
---|---|---|---|---|
Age (years) | 0.003 | 0.011 | 0.315 | 0.753 |
BMI (kg m−2) | 0.057 | 0.022 | 2.544 | 0.012 |
LBP duration (months) | 0.003 | 0.008 | 0.356 | 0.722 |
Time gap between referral and PT (days) | 0.002 | 0.012 | 0.165 | 0.869 |
Pre-PT pain score (VAS) | 0.009 | 0.106 | 0.084 | 0.933 |
Post-PT pain score (VAS) | 0.112 | 0.095 | 1.177 | 0.241 |
Physiotherapist’s years of experience | 0.137 | 0.058 | 2.375 | 0.019 |
Number of PT sessions per week | −0.189 | 0.258 | −0.732 | 0.465 |
Number of PT sessions per episode | 0.016 | 0.056 | 0.279 | 0.780 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrushud, A.S.; Alqarni, M.J.; Albeshan, S.; Aloufi, A.S.; Aljohani, M.H.; Alqarni, M.A.; Alhazmi, S.A.; Alashban, Y.I.; Alimam, D.M. Factors Associated with Radiological Examination of Patients with Non-Specific Low Back Pain. J. Clin. Med. 2025, 14, 7187. https://doi.org/10.3390/jcm14207187
Alrushud AS, Alqarni MJ, Albeshan S, Aloufi AS, Aljohani MH, Alqarni MA, Alhazmi SA, Alashban YI, Alimam DM. Factors Associated with Radiological Examination of Patients with Non-Specific Low Back Pain. Journal of Clinical Medicine. 2025; 14(20):7187. https://doi.org/10.3390/jcm14207187
Chicago/Turabian StyleAlrushud, Asma S., Muteb J. Alqarni, Salman Albeshan, Areej S. Aloufi, Mawaddah H. Aljohani, Mohammed A. Alqarni, Somyah A. Alhazmi, Yazeed I. Alashban, and Dalia M. Alimam. 2025. "Factors Associated with Radiological Examination of Patients with Non-Specific Low Back Pain" Journal of Clinical Medicine 14, no. 20: 7187. https://doi.org/10.3390/jcm14207187
APA StyleAlrushud, A. S., Alqarni, M. J., Albeshan, S., Aloufi, A. S., Aljohani, M. H., Alqarni, M. A., Alhazmi, S. A., Alashban, Y. I., & Alimam, D. M. (2025). Factors Associated with Radiological Examination of Patients with Non-Specific Low Back Pain. Journal of Clinical Medicine, 14(20), 7187. https://doi.org/10.3390/jcm14207187