Metformin’s Overall Effectiveness and Combined Action with Lifestyle Interventions in Preventing Type-2 Diabetes Mellitus in High-Risk Metformin-Naïve Patients: An Updated Systematic Review and Meta-Analysis of Published RCTs
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Quality Assessment of the Studies and Rating of Overall Evidence
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Eligible Studies
3.2. Characteristics of Participants
Risk Factors
3.3. Characteristics of Interventions and Comparators
3.3.1. Metformin
3.3.2. Lifestyle
3.3.3. Standard Care, Placebo
3.4. Effectiveness and Safety of Interventions
3.4.1. Effectiveness
Overall Effectiveness of Metformin
3.4.2. Subgroup and Sensitivity Analyses, and Meta-Regressions for Overall Effect of Metformin
Effectiveness of Metformin Plus Lifestyle Interventions Versus Standard Care
3.4.3. Subgroup and Sensitivity Analyses, and Meta-Regressions for Metformin Plus Lifestyle Interventions Versus Standard Care
Effectiveness of Metformin Versus Standard Care
3.4.4. Safety
4. Quality of Reporting, Potential Bias, and Quality of Evidence
5. Discussion
5.1. Rationale for Eligible Population
5.2. Existing Literature and Comparisons
5.3. Interpretation of the Results
5.3.1. Metformin’s Overall Effectiveness
5.3.2. Metformin and Prediabetes
5.3.3. Metformin and Participants’ Weight
5.3.4. Metformin and Cardiovascular Disease
5.3.5. Post-Intervention Effectiveness
5.4. Cost-Effectiveness
5.5. Clinical Recommendations and Differences
5.6. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gaglia, J.L.; Hilliard, M.E.; Isaacs, D.; et al. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46 (Suppl. 1), S19–S40. [Google Scholar] [CrossRef]
- Joseph, J.J.; Deedwania, P.; Acharya, T.; Aguilar, D.; Bhatt, D.L.; Chyun, D.A.; Di Palo, K.E.; Golden, S.H.; Sperling, L.S.; on behalf of the American Heart Association Diabetes Committee of the Council on Lifestyle and Cardiometabolic Health; et al. Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: A scientific statement from the American Heart Association. Circulation 2022, 145, e722–e759. [Google Scholar] [CrossRef]
- Tao, Z.; Shi, A. Epidemiological perspectives of diabetes. Cell Biochem. Biophys. 2015, 73, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of type 2 diabetes—Global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/diabetes/risk-factors/?CDC_AAref_Val (accessed on 1 February 2025).
- Moore, S.M.; Hardie, E.A.; Hackworth, N.J.; Critchley, C.R.; Kyrios, M.; Buzwell, S.A.; Crafti, N.A. Can the onset of type 2 diabetes be delayed by a group-based lifestyle intervention? A randomised control trial. Psychol. Health 2011, 26, 485–499. [Google Scholar] [CrossRef]
- Jia, Y.; Lao, Y.; Zhu, H.; Li, N.; Leung, S. Is metformin still the most efficacious first-line oral hypoglycaemic drug in treating type 2 diabetes? A network meta-analysis of randomized controlled trials. Obes. Rev. 2019, 20, 1–12. [Google Scholar]
- Hung, W.T.; Chen, Y.J.; Cheng, C.-Y.; Ovbiagele, B.; Lee, M.; Hsu, C.-Y. Metformin plus a low hypoglycemic risk antidiabetic drug vs. metformin monotherapy for untreated type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2022, 189, 109937. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, X.; Zhang, W. The effect of metformin therapy for preventing gestational diabetes mellitus in women with polycystic ovary syndrome: A meta-analysis. Exp. Clin. Endocrinol. Diabetes 2020, 128, 199–205. [Google Scholar] [CrossRef]
- Pani, A.; Gironi, I.; Di Vieste, G.; Mion, E.; Bertuzzi, F.; Pintaudi, B. From prediabetes to type 2 diabetes mellitus in women with polycystic ovary syndrome: Lifestyle and pharmacological management. Int. J. Endocrinol. 2020, 2020, 6276187. [Google Scholar] [CrossRef]
- Yu, H.; Sun, J.; Hu, H. Prophylactic administration of metformin reduces gestational diabetes mellitus incidence in high-risk populations: A meta-analysis. Ir. J. Med. Sci. 2024, 193, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Salpeter, S.R.; Buckley, N.S.; Kahn, J.A.; Salpeter, E.E. Meta-analysis: Metformin treatment in persons at risk for diabetes mellitus. Am. J. Med. 2008, 121, 149–157.e2. [Google Scholar] [CrossRef]
- Yamaoka, K.; Nemoto, A.; Tango, T. Comparison of the effectiveness of lifestyle modification with other treatments on the incidence of type 2 diabetes in people at high risk: A network meta-analysis. Nutrients 2019, 11, 1373. [Google Scholar] [CrossRef]
- Pang, B.; Zhao, L.H.; Li, X.; Song, J.; Li, Q.; Liao, X.; Feng, S.; Zhao, X.; Zheng, Y.; Gou, X.; et al. Different intervention strategies for preventing type 2 diabetes mellitus in China: A systematic review and network meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2018, 20, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Cao, J.Y.; Pang, Y.-C.; Xu, H.-C.; Chen, J.-W.; Yuan, J.-H.; Wang, R.; Zhang, C.-S.; Wang, L.-X.; Dong, J. Effects of lifestyle modification and anti-diabetic medicine on prediabetes progress: A systematic review and meta-analysis. Front. Endocrinol 2019, 10, 455. [Google Scholar] [CrossRef] [PubMed]
- Jonas, D.E.; Crotty, K.; Yun, J.D.Y.; Middleton, J.C.; Feltner, C.; Taylor-Phillips, S.; Barclay, C.; Dotson, A.; Baker, C.; Balio, C.P.; et al. Screening for prediabetes and type 2 diabetes: Updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 2021, 326, 744–760. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.; Mu, Y.M.; Huang, Y.; Xuan, J. Network meta-analysis of the therapeutic effects of hypoglycemic drugs and intensive lifestyle modification on impaired glucose tolerance. Clin. Ther. 2021, 43, 1524–1556. [Google Scholar] [CrossRef]
- Patel, D.; Ayesha, I.E.; Monson, N.R.; Klair, N.; Saxena, A. The Effectiveness of Metformin in Diabetes Prevention: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e46108. [Google Scholar] [CrossRef]
- Schellenberg, E.S.; Dryden, D.M.; Vandermeer, B.H.C.; Korownyk, C. Lifestyle interventions for patients with and at risk for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 2013, 159, 543–551. [Google Scholar] [CrossRef]
- Gillies, C.L.; Abrams, K.R.; Lambert, P.C.; Cooper, N.J.; Sutton, A.J.; Hsu, R.T.; Khunti, K. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: Systematic review and meta-analysis. BMJ 2007, 334, 299. [Google Scholar] [CrossRef]
- Chatterjee, S.; Davies, M.; Khunti, K. Pharmaceutical interventions for diabetes prevention in patients at risk. Am. J. Cardiovasc. Drugs 2018, 18, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Nimitphong, H.; Jiriyasin, S.; Kasemasawachanon, P.; Sungkanuparph, S. Metformin for preventing progression from prediabetes to diabetes mellitus in people living with human immunodeficiency virus. Cureus 2022, 14, e24540. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Shen, S.; Wang, X.; Dong, L.; Li, Q.; Ren, W.; Li, Y.; Bai, J.; Gong, Q.; et al. Safety and effectiveness of metformin plus lifestyle intervention compared with lifestyle intervention alone in preventing progression to diabetes in a Chinese population with impaired glucose regulation: A multicentre, open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2023, 11, 567–577. [Google Scholar] [PubMed]
- Garrib, A.; Kivuyo, S.; Bates, K.; Ramaiya, K.; Wang, D.; Majaliwa, E.; Simbauranga, R.; Charles, G.; van Widenfelt, E.; Luo, H.; et al. Metformin for the prevention of diabetes among people with HIV and either impaired fasting glucose or impaired glucose tolerance (prediabetes) in Tanzania: A Phase II randomised placebo-controlled trial. Diabetologia 2023, 66, 1882–1896. [Google Scholar] [CrossRef]
- Open Science Framework. Available online: https://osf.io/d4mrh (accessed on 24 May 2025).
- Guise, J.M.; Butler, M.E.; Chang, C.; Viswanathan, M.; Pigott, T.; Tugwell, P. AHRQ series on complex intervention systematic reviews—Paper 6: PRISMA-CI extension statement and checklist. J. Clin. Epidemiol. 2017, 90, 43–50. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Engels, E.A.; Schmid, C.H.; Terrin, N.; Olkin, I.; Lau, J. Heterogeneity and statistical significance in meta-analysis: An empirical study of 125 meta-analyses. Stat. Med. 2000, 19, 1707–1728. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V. Introduction to Meta-Analysis; John Wiley & Sons: West Sussex, UK, 2009; pp. 124–125, 192–200. [Google Scholar]
- Higgins, J.P.; Thompson, S.G. Controlling the risk of spurious findings from meta-regression. Stat. Med. 2004, 23, 1663–1682. [Google Scholar] [CrossRef]
- Lin, L.; Chu, H. Quantifying publication bias in meta-analysis. Biometrics 2018, 74, 785–794. [Google Scholar] [CrossRef]
- Fontbonne, A.; Charles, M.A.; Juhan-Vague, I.; Bard, J.M.; André, P.; Isnard, F.; Cohen, J.M.; Grandmottet, P.; Vague, P.; Safar, M.E.; et al. The effect of metformin on the metabolic abnormalities associated with upper-body fat distribution. BIGPRO Study Group. Diabetes Care 1996, 19, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Pan, C.Y.; Lu, J.M.; Zhu, Y.; Wang, J.H.; Deng, X.X.; Xia, F.C.; Wang, H.Y. Effect of metformin on patients with impaired glucose tolerance. Diabet. Med. 1999, 16, 477–481. [Google Scholar] [CrossRef]
- Lehtovirta, M.; Forsén, B.; Gullström, M.; Häggblom, M.; Eriksson, J.G.; Taskinen, M.; Groop, L. Metabolic effects of metformin in patients with impaired glucose tolerance. Diabet. Med. 2001, 18, 578–583. [Google Scholar] [CrossRef]
- Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, A.; Snehalatha, C.; Mary, S.; Mukesh, B.; Bhaskar, A.D.; Vijay, V.; Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006, 49, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.H.; Lu, J.M.; Wang, S.-Y.; Li, C.-L.; Zheng, R.-P.; Tian, H.; Wang, X.-L. Outcome of intensive integrated intervention in participants with impaired glucose regulation in China. Adv. Ther. 2011, 28, 511–519. [Google Scholar] [CrossRef]
- Iqbal Hydrie, M.Z.; Basit, A.; Shera, A.S.; Hussain, A. Effect of intervention in subjects with high risk of diabetes mellitus in Pakistan. J. Nutr. Metab. 2012, 2012, 867604. [Google Scholar] [CrossRef]
- Preiss, D.; Lloyd, S.M.; Ford, I.; McMurray, J.J.; Holman, R.R.; Welsh, P.; Fisher, M.; Packard, C.J.; Sattar, N. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): A randomised controlled trial. Lancet Diabetes Endocrinol. 2014, 2, 116–124. [Google Scholar] [CrossRef]
- Lexis, C.P.; van der Horst-Schrivers, A.N. The effect of metformin on cardiovascular risk profile in patients without diabetes presenting with acute myocardial infarction: Data from the Glycometabolic Intervention as adjunct to Primary Coronary Intervention in ST Elevation Myocardial Infarction (GIPS-III) trial. BMJ Open Diabetes Res. Care 2015, 3, e000090. [Google Scholar]
- Weber, M.B.; Ranjani, H.; Staimez, L.R.; Anjana, R.M.; Ali, M.K.; Narayan, K.V.; Mohan, V. The stepwise approach to diabetes prevention: Results from the D-CLIP randomized controlled trial. Diabetes Care 2016, 39, 1760–1767. [Google Scholar] [CrossRef]
- O’Brien, M.J.; Perez, A.; Scanlan, A.B.; Alos, V.A.; Whitaker, R.C.; Foster, G.D.; Ackermann, R.T.; Ciolino, J.D.; Homko, C. PREVENT-DM comparative effectiveness trial of lifestyle intervention and metformin. Am. J. Prev. Med. 2017, 52, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Hartman, M.H.T.; Prins, J.K.B.; Schurer, R.A.J.; Lipsic, E.; Lexis, C.P.H.; van der Horst-Schrivers, A.N.A.; van Veldhuisen, D.J.; van der Horst, I.C.C.; van der Harst, P. Two-year follow-up of 4 months metformin treatment vs. placebo in ST-elevation myocardial infarction: Data from the GIPS-III RCT. Clin. Res. Cardiol. 2017, 106, 939–946. [Google Scholar] [CrossRef]
- Mohan, M.; Al-Talabany, S.; McKinnie, A.; Mordi, I.R.; Singh, J.S.S.; Gandy, S.J.; Baig, F.; Hussain, M.S.; Bhalraam, U.; Khan, F.; et al. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: The MET-REMODEL trial. Eur. Heart J. 2019, 40, 3409–3417. [Google Scholar] [CrossRef] [PubMed]
- Amer, B.E.; Abdelgalil, M.S.; Hamad, A.A.; Abdelsayed, K.; Elaraby, A.; Abozaid, A.M.; Abd-ElGawad, M. Metformin plus lifestyle interventions versus lifestyle interventions alone for the delay or prevention of type 2 diabetes in individuals with prediabetes: A meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 2024, 16, 273. [Google Scholar] [CrossRef] [PubMed]
- Knowler, W.C.; Fowler, S.E. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009, 374, 1677–1686. [Google Scholar]
- Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: The Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015, 3, 866–875. [Google Scholar] [CrossRef]
- Madsen, K.S.; Chi, Y.; Metzendorf, M.-I.; Richter, B.; Hemmingsen, B.; Cochrane Metabolic and Endocrine Disorders Group. Metformin for prevention or delay of type 2 diabetes mellitus and its associated complications in persons at increased risk for the development of type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2019, 12, CD008558. [Google Scholar]
- Mousavi, S.S.; Namayandeh, S.M.; Fallahzadeh, H.; Rahmanian, M.; Mollahosseini, M. Comparing the effectiveness of metformin with lifestyle modification for the primary prevention of type 2 diabetes: A systematic review and meta-analysis. BMC Endocr. Disord. 2023, 23, 198. [Google Scholar] [CrossRef]
- Vajje, J.; Khan, S.; Kaur, A.; Kataria, H.; Sarpoolaki, S.; Goudel, A.; Bhatti, A.H.; Allahwala, D. Comparison of the efficacy of metformin and lifestyle modification for the primary prevention of type 2 diabetes: A meta-analysis of randomized controlled trials. Cureus 2023, 15, e47105. [Google Scholar] [CrossRef]
- Caballero, A.E.; Delgado, A.; Aguilar-Salinas, C.A.; Herrera, A.N.; Castillo, J.L.; Cabrera, T.; Gomez-Perez, F.J.; Rull, J.A. The differential effects of metformin on markers of endothelial activation and inflammation in subjects with impaired glucose tolerance: A placebo-controlled, randomized clinical trial. J. Clin. Endocrinol. Metab. 2004, 89, 3943–3948. [Google Scholar] [CrossRef]
- Glechner, A.; Keuchel, L.; Affengruber, L.; Titscher, V.; Sommer, I.; Matyas, N.; Wagner, G.; Kien, C.; Klerings, I.; Gartlehner, G. Effects of lifestyle changes on adults with prediabetes: A systematic review and meta-analysis. Prim. Care Diabetes 2018, 12, 393–408. [Google Scholar] [CrossRef]
- Haber, R.; Zarzour, F.; Ghezzawi, M.; Saadeh, N.; Bacha, D.S.; Al Jebbawi, L.; Chakhtoura, M.; Mantzoros, C.S. The impact of metformin on weight and metabolic parameters in patients with obesity: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2024, 26, 1850–1867. [Google Scholar] [CrossRef]
- Wang, W.; Wei, R.; Huang, Z.; Luo, J.; Pan, Q.; Guo, L. Effects of treatment with Glucagon-like peptide-1 receptor agonist on prediabetes with overweight/obesity: A systematic review and meta-analysis. Diabetes Metab. Res. Rev. 2023, 39, e3680. [Google Scholar] [CrossRef] [PubMed]
- Salamah, H.M.; Marey, A.; Abugdida, M.; Abualkhair, K.A.; Elshenawy, S.; Elhassan, W.A.F.; Naguib, M.M.; Malnev, D.; Durrani, J.; Bailey, R.; et al. Efficacy and safety of glucagon-like peptide-1 receptor agonists on prediabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 2024, 16, 129. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Zhang, Y.; Sun, W.; Kang, X.; Ji, H.; Sun, Y.; Jiang, L.; Zhao, X.; Gao, Q.; Lian, F.; et al. Early effective intervention can significantly reduce all-cause mortality in prediabetic patients: A systematic review and meta-analysis based on high-quality clinical studies. Front. Endocrinol. 2024, 15, 1294819. [Google Scholar] [CrossRef] [PubMed]
- James, S.; Erlinge, D.; Storey, R.F.; McGuire, D.K.; de Belder, M.; Eriksson, N.; Andersen, K.; Austin, D.; Arefalk, G.; Carrick, D.; et al. Dapagliflozin in Myocardial Infarction without Diabetes or Heart Failure. NEJM Evid. 2024, 3, EVIDoa2300286. [Google Scholar] [CrossRef]
- Kahn, S.E.; Deanfield, J.E.; Jeppesen, O.K.; Emerson, S.S.; Boesgaard, T.W.; Colhoun, H.M.; Kushner, R.F.; Lingvay, I.; Burguera, B.; Gajos, G.; et al. Effect of Semaglutide on Regression and Progression of Glycemia in People with Overweight or Obesity but Without Diabetes in the SELECT Trial. Diabetes Care 2024, 47, 1350–1359. [Google Scholar] [CrossRef]
- Diabetes Prevention Program Research Group. Effects of withdrawal from metformin on the development of diabetes in the diabetes prevention program. Diabetes Care 2003, 26, 977–980. [Google Scholar] [CrossRef]
- Gillett, M.; Royle, P.; Snaith, A.; Scotland, G.; Imamura, M.; Black, C.; Jick, S.; Wyness, L.; McNamee, P.; Waugh, N. Non-pharmacological interventions to reduce the risk of diabetes in people with impaired glucose regulation: A systematic review and economic evaluation. Health Technol. Assess. 2012, 16, 1–236. [Google Scholar] [CrossRef]
- Moin, T.; Schmittdiel, J.A. Review of metformin use for type 2 diabetes prevention. Am. J. Prev. Med. 2018, 55, 565–574. [Google Scholar] [CrossRef]
- Islek, D.; Weber, M.B.; Mohan, A.R.; Mohan, V.; Staimez, L.R.; Harish, R.; Narayan, K.M.V.; Laxy, M.; Ali, M.K. Cost-effectiveness of a Stepwise Approach vs. Standard Care for Diabetes Prevention in India. JAMA Netw. Open 2020, 3, e207359. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.J.; Tucker, D.M.D. Cost and clinical implications of diabetes prevention in an Australian setting: A long-term modeling analysis. Prim. Care Diabetes 2012, 6, 109–121. [Google Scholar] [CrossRef] [PubMed]
First Author’s Name, Publication Year | Country | No of Arms | No of Centers | Study Duration (mo) | Post-Intervention Follow-Up Duration (mo) | Drop-Out Rate % |
---|---|---|---|---|---|---|
Fontbonne, 1996 [34] | France | 2 | >1, NR | 12 | 0 | 29 |
Li, 1999 [35] | China | 2 | 1 | 12 | 0 | 22 |
Lehtovirta, 2001 [36] | Finland | 2 | 1 | 18 | 0 | 0 |
Knowler, 2002 [37] | USA | 3 | 27 | 33.6 | 0 | 10 |
Ramachandran, 2006 [38] | India | 4 | 1 | 30 | 0 | 0 |
Lu, 2011 [39] | China | 2 | 1 | 24 | 0 | 13 |
Iqbal Hydrie, 2012 [40] | Pakistan | 3 | 1 | 18 | 0 | 14 |
Preiss, 2014 [41] | Scotland, UK | 2 | 1 | 18 | 0 | 8 |
Lexis, 2015 [42] | The Netherlands | 2 | 1 | 4 | 0 | 0 |
Weber, 2016 [43] | India | 2 | 1 | 36 | 30 | 5 |
O’Brien, 2017 [44] | USA | 3 | 1 | 12 | 0 | 2 |
Hartman, 2017 [45] | The Netherlands | 2 | 1 | 28 | 24 | 0 |
Mohan, 2019 [46] | Scotland, UK | 2 | 1 | 12 | 0 | 7 |
Nimitphong, 2022 [23] | Thailand | 2 | 1 | 12 | 0 | 0 |
Zhang, 2023 [24] | China | 2 | 1 | 48 | 0 | 5 |
Garrib, 2023 [25] | Tanzania | 2 | >1, NR | 12 | 0 | 19 |
First Author’s Name, Publication Year | Sample Size | Male/Female % | Mean Age in Years | Ethnicities (%) | Risk Factors for T2DM | |
---|---|---|---|---|---|---|
Overall | Probable Coexistence | |||||
Fontbonne, 1996 [34] | 457 | 33/67 | 49.5 | NR | Overweight/obesity, central adiposity | Family history of T2DM |
Li, 1999 [35] | 90 | 71/29 | 49.5 | Asian Chinese (100) | Prediabetes (IGT) | Family history of T2DM |
Lehtovirta, 2001 [36] | 40 | 63/37 | 57.9 | Caucasian (100) | First-degree relatives with T2DM, prediabetes (IGT), overweight/obesity | N/A |
Knowler, 2002 [37] | 3234 | 34/66 | 67.5 | Caucasian (54.7), African American (19.9), Hispanic (15.7), American Indian (5.3), Asian (4.4) 1 | Overweight/obesity, prediabetes (IFG and/or IGT) | Family history of T2DM, history of GDM |
Ramachandran, 2006 [38] | 531 | 79/21 | 45.9 | Asian Indian (100) | Prediabetes (IGT) | HY, family history of T2DM |
Lu, 2011 [39] | 110 | 52/48 | 63.6 | Asian Chinese (100) | Prediabetes (IFG and/or IGT) | N/A |
Iqbal Hydrie, 2012 [40] | 317 | 75/25 | 43.6 | Asian Pakistani (100) | Prediabetes (IGT) | N/A |
Preiss, 2014 [41] | 173 | 55/45 | 63.5 | Caucasian (100) | CHD, central adiposity | N/A |
Lexis, 2015 [42] | 346 | 13/87 | 58.1 | Caucasian (97), Asian (2), African (1) | CAD (STEMI) | N/A |
Weber, 2016 [43] | 576 | 63/37 | 44.4 | Asian Indian (100) | Overweight/obesity, central adiposity, prediabetes (IGT) | Family history of T2DM |
O’Brien, 2017 [44] | 92 | 0/100 | 45.1 | Hispanic (100) | Prediabetes (IFG, and/or elevated HbA1C) | N/A |
Hartman, 2017 [45] | 379 | 75/25 | 58.1 | Caucasian (97), Asian (2), African (1) | CAD (STEMI) | N/A |
Mohan, 2019 [46] | 68 | 47/53 | 64.5 | Caucasian (100) | CAD | Prediabetes (IGT), HY |
Nimitphong, 2022 [23] | 74 | 69/31 | 49.5 | Asian Thailand (100) | HIV infection, Prediabetes (IFG and/or IGT) | HY, low HDL cholesterol, elevated TG, family history of T2DM, history of GDM |
Zhang, 2023 [24] | 1678 | 47/53 | 53.0 | Asian Chinese (100) | Prediabetes (IGT) | N/A |
Garrib, 2023 [25] | 364 | 82/18 | 46.5 | African (100) | HIV infection, prediabetes (IFG and/or IGT) | Overweight/obesity |
First Author’s Name, Publication Year | Characteristics of Compared Arms | |||
---|---|---|---|---|
Component of Compared Arms | Dosage, Description | Duration (mo) | Assessment of Adherence | |
Fontbonne, 1996 [34] | Metformin plus Sd Care | Metformin 850 mg twice daily | 12 | NR |
Sd Care plus Placebo | Lifestyle counseling and matching placebo | |||
Li, 1999 [35] | Metformin | Metformin 250 mg three times daily | 12 | NR |
Placebo | Matching placebo | |||
Lehtovirta, 2001 [36] | Metformin | Metformin 500 mg twice daily | 6 | NR |
Placebo | Matching placebo | |||
Knowler, 2002 [37] | Metformin plus Sd Care | Metformin 850 mg twice daily; initial dose 850 mg once daily for one mo. | 33.6 1 | Pill counts and structured interview |
Written information, annual individual lifestyle counseling. | ||||
Lifestyle | Ιntensive face-to-face and group program. Low-calorie and low-fat diet. Moderate aerobic PA for 150 min per wk. Motivational strategies. | Self-reported, questionaires | ||
Sd Care plus Placebo | Written information, annual individual lifestyle counseling. | Pill counts and structured interview | ||
Matching placebo | ||||
Ramachandran, 2006 [38] | Metformin plus Lifestyle | Metformin 250 mg twice daily; 500 mg twice daily for the first 50 subjects for 40 days during the last 12 mo. | 30 | Diaries, pill count, self-reported |
Low-calorie diet with refined carbohydrates and fats, fiber-rich foods and avoidance of sugar. Moderate aerobic PA for 30 min daily at least. Motivation strategies. | Self-reported | |||
Metformin | Metformin 250 mg twice daily; 500 mg twice daily for the first 50 subjects for 40 days during the last 12 mo. | Pill count | ||
Lifestyle | Low-calorie diet with refined carbohydrates and fats, fiber-rich foods and avoidance of sugar. Moderate aerobic PA for 30 min daily at least. Motivation strategies. | Self-reported | ||
Sd Care | Lifestyle counseling | N/A | ||
Lu, 2011 [39] | Metformin plus Lifestyle | Metformin 250 mg three times daily | 24 | NR |
Lectures on diet and exercise given face-to-face once every 3 mo and by telephone once per mo. Motivation strategies. | ||||
Sd Care | Health education and follow-up | |||
Iqbal Hydrie, 2012 [40] | Metformin plus Lifestyle | Metformin 500 mg twice daily | 18 | MD |
Intensive program. Dietary modification with total fat intake < 30% of total daily energy consumed and fiber intake of 15 g/1000 kcal. Moderate aerobic PA for 30 min daily at least. Motivation strategies. | ||||
Lifestyle | Dietary modification with total fat intake < 30% of total daily energy consumed and fiber intake of 15 g/1000 kcal. Moderate aerobic PA for 30 min daily at least. Motivation strategies. | MD | ||
Sd Care | Lifestyle counseling | N/A | ||
Preiss, 2014 [41] | Metformin | 850 mg twice daily; initial dose 850 mg once daily for one wk. | 18 | Tablet counts of numbered bottles |
Placebo | Matching placebo | |||
Lexis, 2015 [42] | Metformin plus Sd Care | Metformin 500 mg twice daily | 4 | NR |
Sd care | ||||
Sd Care | Sd care | N/A | ||
Weber, 2016 [43] | Metformin plus Lifestyle | Metformin 500 mg twice daily | 6 | Pill count |
Adaption of the US DPP lifestyle program, including motivational strategies [29]. | Self-reported, questionaires | |||
Sd Care | Lifestyle counseling | N/A | ||
O’Brien, 2017 [44] | Metformin | Metformin 850 mg twice daily | 12 | Pill counts and structured interview |
Lifestyle | Adaption of the US DPP lifestyle program, including motivational strategies [29] | Self-reported | ||
Sd Care | Written information, annual individual lifestyle counseling. | N/A | ||
Hartman, 2017 [45] | Metformin plus Sd Care | Metformin 500 mg twice daily | 4 | NR |
Sd care | ||||
Sd Care | Sd care | N/A | ||
Mohan, 2019 [46] | Metformin | Metformin 1000 mg twice daily; initial dosage 500 mg twice daily for two wks. | 12 | NR |
Placebo | Matching placebo | |||
Nimitphong, 2022 [23] | Metformin plus Sd Care | Metformin 500 mg twice daily | 12 | Pill count |
Lifestyle counseling | ||||
Sd Care | Lifestyle counseling | N/A | ||
Zhang, 2023 [24] | Metformin plus Lifestyle | Metformin 850 mg twice daily; initial dosage 850 mg daily for two wks. | 24 | Pill count |
Dietary modification with vegetable intake ≥500 g daily, reduced carboxylate intake by 50 g per meal for participants’ BMI ≥ 25 kg/m2, no consumption of sugar-sweetened beverages, no food intake after dinner and eating out up to one time per wk. Moderate aerobic PA for 30 min daily at least, five days per wk. | Self-reported, questionnaires | |||
Lifestyle | Dietary modification with vegetable intake ≥500 g daily, reduced carboxylate intake by 50 g per meal for participants’ BMI ≥ 25 kg/m2, no consumption of sugar-sweetened beverages, no food intake after dinner, and eating out up to one time per wk. Moderate aerobic PA for 30 min daily at least, five days per wk. | Self-reported questionnaires | ||
Garrib, 2023 [25] | Metformin plus Sd Care | Metformin 2000 mg daily, dispensed in 500 mg tablets. | 12 | Medicine adherence at every visit |
Lifestyle counseling | ||||
Sd Care | Lifestyle counseling | N/A |
Evidence of metformin-including interventions for Type-2 Diabetes Mellitus prevention | ||||||
Patient or population: patients at risk for Type-2 Diabetes Mellitus Settings: randomized controlled trials Intervention–Control: (1) metformin’s overall effect, (2) metformin plus lifestyle–standard care, (3) metformin–standard care | ||||||
Outcomes | Illustrative comparative risks * (95% CI) | Relative effect (95% CI) | No. of participants (studies) | Quality of the evidence (GRADE) | Comments | |
Assumed risk | Corresponding risk | |||||
Placebo | Metformin | |||||
(1) Type-2 Diabetes | Study population | OR 0.76 (0.67 to 0.86) | 5329 (13 studies) | moderate | ||
290 per 1000 | 237 per 1000 (215 to 260) | |||||
(2) Type-2 Diabetes | Study population | OR 0.48 (0.30 to 0.77) | 687 (4 studies) | moderate | ||
344 per 1000 | 201 per 1000 (136 to 288) | |||||
(3) Type-2 Diabetes | Study population | OR 0.56 (0.34 to 0.90) | 316 (2 studies) | low | ||
460 per 1000 | 323 per 1000 (224 to 434) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsironikos, G.I.; Tsolaki, V.; Zakynthinos, G.E.; Rammou, V.; Kyprianidou, D.; Antonogiannis, T.; Zakynthinos, E.; Bargiota, A. Metformin’s Overall Effectiveness and Combined Action with Lifestyle Interventions in Preventing Type-2 Diabetes Mellitus in High-Risk Metformin-Naïve Patients: An Updated Systematic Review and Meta-Analysis of Published RCTs. J. Clin. Med. 2025, 14, 4947. https://doi.org/10.3390/jcm14144947
Tsironikos GI, Tsolaki V, Zakynthinos GE, Rammou V, Kyprianidou D, Antonogiannis T, Zakynthinos E, Bargiota A. Metformin’s Overall Effectiveness and Combined Action with Lifestyle Interventions in Preventing Type-2 Diabetes Mellitus in High-Risk Metformin-Naïve Patients: An Updated Systematic Review and Meta-Analysis of Published RCTs. Journal of Clinical Medicine. 2025; 14(14):4947. https://doi.org/10.3390/jcm14144947
Chicago/Turabian StyleTsironikos, Georgios I., Vasiliki Tsolaki, George E. Zakynthinos, Vasiliki Rammou, Despoina Kyprianidou, Thomas Antonogiannis, Epaminondas Zakynthinos, and Alexandra Bargiota. 2025. "Metformin’s Overall Effectiveness and Combined Action with Lifestyle Interventions in Preventing Type-2 Diabetes Mellitus in High-Risk Metformin-Naïve Patients: An Updated Systematic Review and Meta-Analysis of Published RCTs" Journal of Clinical Medicine 14, no. 14: 4947. https://doi.org/10.3390/jcm14144947
APA StyleTsironikos, G. I., Tsolaki, V., Zakynthinos, G. E., Rammou, V., Kyprianidou, D., Antonogiannis, T., Zakynthinos, E., & Bargiota, A. (2025). Metformin’s Overall Effectiveness and Combined Action with Lifestyle Interventions in Preventing Type-2 Diabetes Mellitus in High-Risk Metformin-Naïve Patients: An Updated Systematic Review and Meta-Analysis of Published RCTs. Journal of Clinical Medicine, 14(14), 4947. https://doi.org/10.3390/jcm14144947