HDL Function Versus Small Dense LDL: Cardiovascular Benefits and Implications
Abstract
1. Introduction
2. Biological Roles of HDL and sdLDL in Atherosclerosis
2.1. HDL: Reverse Cholesterol Transport and Atheroprotection
2.2. HDL Structure and Function in Health vs. Disease
2.3. sdLDL: Highly Atherogenic Lipoprotein
3. Interventions to Modify Quantity or Quality of HDL or sdLDL
3.1. Therapeutic Interventions to Raise HDL or Enhance HDL Function
3.1.1. Lifestyle Interventions and HDL Modulation
3.1.2. Pharmacologic Strategies Targeting HDL-C: Clinical Trials and Limitations
3.1.3. Emerging and Adjunct Therapies Targeting HDL
3.2. Targeting sdLDL Particles: Interventions and Outcomes
3.2.1. Statins
3.2.2. Fibrates
3.2.3. Niacin
3.2.4. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors
3.2.5. Omega-3 Fatty Acids
3.2.6. Other Interventions
4. Special Populations and Considerations
4.1. Dyslipidemia in Metabolic Syndrome and Type 2 Diabetes Mellitus: Pathophysiology and Therapeutic Strategies
4.1.1. Lifestyle Modification
4.1.2. Statin Therapy
4.1.3. Fibrate Therapy
4.1.4. Icosapent Ethyl (EPA)
4.1.5. Niacin
4.1.6. ApoB and Non-HDL Cholesterol Assessment
4.2. Management of Dyslipidemia in Statin-Intolerant Patients
4.2.1. Ezetimibe
4.2.2. PCSK9 Inhibitors
4.2.3. Bempedoic Acid
4.2.4. Lipoprotein Apheresis
4.2.5. Niacin and Fibrates
Niacin
Fibrates
4.2.6. Combination Strategies
5. Clinical Guidelines and Consensus Perspective
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC/AHA | American College of Cardiology/American Heart Association |
ACCORD | Action to Control Cardiovascular Risk in Diabetes |
AIM-HIGH | Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides and Impact on Global Health Outcomes |
ApoA-I | Apolipoprotein A-I |
ApoB | Apolipoprotein B |
ASCVD | Atherosclerotic Cardiovascular Disease |
CEC | Cholesterol Efflux Capacity |
CETP | Cholesteryl Ester Transfer Protein |
CSL112 | A reconstituted HDL/ApoA-I infusion therapy |
DHA | Docosahexaenoic Acid |
EPA | Eicosapentaenoic Acid |
ESC/EAS | European Society of Cardiology/European Atherosclerosis Society |
eNO | Endothelial Nitric Oxide |
EVOO | extra virgin olive oil |
FDA | Food and Drug Administration |
FIELD | Fenofibrate Intervention and Event Lowering in Diabetes |
FOURIER | Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk |
HDL | High-Density Lipoprotein |
HDL-C | High-Density Lipoprotein Cholesterol |
HF | Heart Failure |
HFpEF | Heart Failure with Preserved Ejection Fraction |
HPS2-THRIVE | Heart Protection Study 2–Treatment of HDL to Reduce the Incidence of Vascular Events |
IDL | Intermediate-Density Lipoprotein |
ILLUMINATE | Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events |
IMPROVE-IT | Improved Reduction of Outcomes: Vytorin Efficacy International Trial |
JACC | Journal of the American College of Cardiology |
LCAT | Lecithin–Cholesterol Acyltransferase |
LDL | Low-Density Lipoprotein |
LDL-C | Low-Density Lipoprotein Cholesterol |
Lp(a) | Lipoprotein(a) |
MetS | Metabolic Syndrome |
MPO | Myeloperoxidase |
Non-HDL-C | Non–High-Density Lipoprotein Cholesterol |
PCSK9 | Proprotein Convertase Subtilisin/Kexin Type 9 |
PON1 | Paraoxonase-1 |
RCT | Reverse Cholesterol Transport |
REVEAL | Randomized Evaluation of the Effects of Anacetrapib Through Lipid-modification |
REDUCE-IT | Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial |
S1P | Sphingosine-1-Phosphate |
SAA | Serum Amyloid A |
sdLDL | Small Dense Low-Density Lipoprotein |
sdLDL-C | Small Dense Low-Density Lipoprotein Cholesterol |
SR-BI | Scavenger Receptor Class B Type I |
T2DM | Type 2 Diabetes Mellitus |
TZDs | Thiazolidinediones |
VA-HIT | Veterans Affairs High-Density Lipoprotein Intervention Trial |
VLDL | Very-Low-Density Lipoprotein |
References
- Al Zein, M.; Khazzeka, A.; El Khoury, A.; Al Zein, J.; Zoghaib, D.; Eid, A.H. Revisiting high-density lipoprotein cholesterol in cardiovascular disease: Is too much of a good thing always a good thing? Prog. Cardiovasc. Dis. 2024, 87, 50–59. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, E.; Hey, S.P.; Ramirez, C.L.; Kesselheim, A.S. Assessment of the Role of Niacin in Managing Cardiovascular Disease Outcomes: A Systematic Review and Meta-analysis. JAMA Netw. Open 2019, 2, e192224. [Google Scholar] [CrossRef] [PubMed]
- Razavi, A.C.; Jain, V.; Grandhi, G.R.; Patel, P.; Karagiannis, A.; Patel, N.; Dhindsa, D.S.; Liu, C.; Desai, S.R.; Almuwaqqat, Z.; et al. Does Elevated High-Density Lipoprotein Cholesterol Protect Against Cardiovascular Disease? J. Clin. Endocrinol. Metab. 2024, 109, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Mody, P.; Joshi, P.H.; Khera, A.; Ayers, C.R.; Rohatgi, A. Beyond Coronary Calcification, Family History, and C-Reactive Protein: Cholesterol Efflux Capacity and Cardiovascular Risk Prediction. J. Am. Coll. Cardiol. 2016, 67, 2480–2487. [Google Scholar] [CrossRef]
- Rohatgi, A.; Westerterp, M.; von Eckardstein, A.; Remaley, A.; Rye, K.A. HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation 2021, 143, 2293–2309. [Google Scholar] [CrossRef]
- Lee, J.J.; Chi, G.; Fitzgerald, C.; Kazmi, S.H.A.; Kalayci, A.; Korjian, S.; Duffy, D.; Shaunik, A.; Kingwell, B.; Yeh, R.W.; et al. Cholesterol Efflux Capacity and Its Association with Adverse Cardiovascular Events: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 774418. [Google Scholar] [CrossRef]
- Zannis, V.I.; Chroni, A.; Krieger, M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J. Mol. Med. 2006, 84, 276–294. [Google Scholar] [CrossRef]
- Superko, H.; Garrett, B. Small Dense LDL: Scientific Background, Clinical Relevance, and Recent Evidence Still a Risk Even with ‘Normal’ LDL-C Levels. Biomedicines 2022, 10, 829. [Google Scholar] [CrossRef]
- Stamatikos, A.; Dronadula, N.; Ng, P.; Palmer, D.; Knight, E.; Wacker, B.K.; Tang, C.; Kim, F.; Dichek, D.A. ABCA1 Overexpression in Endothelial Cells In Vitro Enhances ApoAI-Mediated Cholesterol Efflux and Decreases Inflammation. Hum. Gene Ther. 2019, 30, 236–248. [Google Scholar] [CrossRef]
- Schoch, L.; Badimon, L.; Vilahur, G. Unraveling the Complexity of HDL Remodeling: On the Hunt to Restore HDL Quality. Biomedicines 2021, 9, 805. [Google Scholar] [CrossRef]
- Denimal, D. Antioxidant and Anti-Inflammatory Functions of High-Density Lipoprotein in Type 1 and Type 2 Diabetes. Antioxidants 2023, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.; Frej, C.; Holmér, A.; Guo, L.J.; Tran, S.; Dahlbäck, B. High-Density Lipoprotein-Associated Apolipoprotein M Limits Endothelial Inflammation by Delivering Sphingosine-1-Phosphate to the Sphingosine-1-Phosphate Receptor 1. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Tosheska Trajkovska, K.; Topuzovska, S. High-density lipoprotein metabolism and reverse cholesterol transport: Strategies for raising HDL cholesterol. Anatol. J. Cardiol. 2017, 18, 149–154. [Google Scholar] [CrossRef]
- Madaudo, C.; Bono, G.; Ortello, A.; Astuti, G.; Mingoia, G.; Galassi, A.R.; Sucato, V. Dysfunctional High-Density Lipoprotein Cholesterol and Coronary Artery Disease: A Narrative Review. J. Pers. Med. 2024, 14, 996. [Google Scholar] [CrossRef]
- Stadler, J.T.; Lackner, S.; Mörkl, S.; Trakaki, A.; Scharnagl, H.; Borenich, A.; Wonisch, W.; Mangge, H.; Zelzer, S.; Meier-Allard, N.; et al. Obesity Affects HDL Metabolism, Composition and Subclass Distribution. Biomedicines 2021, 9, 242. [Google Scholar] [CrossRef]
- Zheng, C.; Aikawa, M. High-density lipoproteins: From function to therapy. J. Am. Coll. Cardiol. 2012, 60, 2380–2383. [Google Scholar] [CrossRef]
- Mishra, M.; De Geest, B. High-Density Lipoprotein-Targeted Therapies for Heart Failure. Biomedicines 2020, 8, 620. [Google Scholar] [CrossRef]
- Fadaei, R.; Davies, S.S. Oxidative modification of HDL by lipid aldehydes impacts HDL function. Arch. Biochem. Biophys. 2022, 730, 109397. [Google Scholar] [CrossRef]
- Nissen, S.E.; Tardif, J.C.; Nicholls, S.J.; Revkin, J.H.; Shear, C.L.; Duggan, W.T.; Ruzyllo, W.; Bachinsky, W.B.; Lasala, G.P.; Tuzcu, E.M.; et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 2007, 356, 1304–1316. [Google Scholar] [CrossRef]
- Khera, A.V.; Cuchel, M.; de la Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 2011, 364, 127–135. [Google Scholar] [CrossRef]
- Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 2014, 371, 2383–2393. [Google Scholar] [CrossRef] [PubMed]
- Saleheen, D.; Scott, R.; Javad, S.; Zhao, W.; Rodrigues, A.; Picataggi, A.; Lukmanova, D.; Mucksavage, M.L.; Luben, R.; Billheimer, J.; et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: A prospective case-control study. Lancet Diabetes Endocrinol. 2015, 3, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Austin, M.A.; King, M.C.; Vranizan, K.M.; Krauss, R.M. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 1990, 82, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Liou, L.; Kaptoge, S. Association of small, dense LDL-cholesterol concentration and lipoprotein particle characteristics with coronary heart disease: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0241993. [Google Scholar] [CrossRef]
- Jin, J.L.; Zhang, H.W.; Cao, Y.X.; Liu, H.H.; Hua, Q.; Li, Y.F.; Zhang, Y.; Wu, N.-Q.; Zhu, C.-G.; Xu, R.-X.; et al. Association of small dense low-density lipoprotein with cardiovascular outcome in patients with coronary artery disease and diabetes: A prospective, observational cohort study. Cardiovasc. Diabetol. 2020, 19, 45. [Google Scholar] [CrossRef]
- Ishii, J.; Kashiwabara, K.; Ozaki, Y.; Takahashi, H.; Kitagawa, F.; Nishimura, H.; Ishii, H.; Iimuro, S.; Kawai, H.; Muramatsu, T.; et al. Small Dense Low-Density Lipoprotein Cholesterol and Cardiovascular Risk in Statin-Treated Patients with Coronary Artery Disease. J. Atheroscler. Thromb. 2021, 29, 1458–1474. [Google Scholar] [CrossRef]
- Kodama, S.; Tanaka, S.; Saito, K.; Shu, M.; Sone, Y.; Onitake, F.; Suzuki, E.; Shimano, H.; Yamamoto, S.; Kondo, K.; et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: A meta-analysis. Arch. Intern. Med. 2007, 167, 999–1008. [Google Scholar] [CrossRef]
- Ros, E. Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef]
- Mero, N.; Syvänne, M.; Taskinen, M.R. Postprandial lipid metabolism in diabetes. Atherosclerosis 1998, 141 (Suppl. S1), S53–S55. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez Gracia, E.; Ruiz Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, 2441–2452. [Google Scholar] [CrossRef]
- Hernáez, Á.; Fernández-Castillejo, S.; Farràs, M.; Catalán, Ú.; Subirana, I.; Montes, R.; Solà, R.; Muñoz-Aguayo, D.; Gelabert-Gorgues, A.; Díaz-Gil, O.; et al. Olive oil polyphenols enhance high-density lipoprotein function in humans: A randomized controlled trial. Circulation 2017, 135, 1576–1587. [Google Scholar] [CrossRef] [PubMed]
- Covas, M.I.; Nyyssönen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, H.J.; Kiesewetter, H.; Gaddi, A.; de la Torre, R.; Mursu, J.; Bäumler, H.; et al. The effect of polyphenols in olive oil on heart disease risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Fitó, M.; Guxens, M.; Corella, D.; Sáez, G.; Estruch, R.; de la Torre, R.; Francés, F.; Cabezas, C.; del Carmen López-Sabater, M.; Marrugat, J.; et al. Effect of a traditional Mediterranean diet on lipoprotein oxidation: A randomized controlled trial. Arch. Intern. Med. 2007, 167, 1195–1203. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M. Monounsaturated fatty acids and risk of cardiovascular disease. Circulation 1999, 100, 1253–1258. [Google Scholar] [CrossRef]
- Ruano, J.; López-Miranda, J.; Fuentes, F.; Moreno, J.A.; Bellido, C.; Pérez-Martínez, P.; Remaley, A.T.; Covas, M.-I.; Fitó, M.; Motilva, M.J.; et al. Consumption of phenol-rich olive oil improves the HDL antioxidant and anti-inflammatory function in hypercholesterolemic subjects. Atherosclerosis 2005, 181, 115–124. [Google Scholar]
- Kontogianni, M.D.; Panagiotakos, D.B.; Chrysohoou, C.; Pitsavos, C.; Stefanadis, C. Adherence to the Mediterranean diet and HDL-cholesterol levels in healthy adults: The ATTICA study. Lipids Health Dis. 2009, 8, 30. [Google Scholar]
- AIM-HIGH Investigators; Boden, W.E.; Probstfield, J.L.; Anderson, T.; Chaitman, B.R.; Desvignes-Nickens, P.; Koprowicz, K.; McBride, R.; Teo, K.; Weintraub, W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 2011, 365, 2255–2267. [Google Scholar]
- HPS2-THRIVE Collaborative Group; Landray, M.J.; Haynes, R.; Hopewell, J.C.; Parish, S.; Aung, T.; Tomson, J.; Wallendszus, K.; Craig, M.; Jiang, L.; et al. Effects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med. 2014, 371, 203–212. [Google Scholar]
- Barter, P.J.; Caulfield, M.; Eriksson, M.; Grundy, S.M.; Kastelein, J.J.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.C.; Waters, D.D.; et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 2007, 357, 2109–2122. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Olsson, A.G.; Abt, M.; Ballantyne, C.M.; Barter, P.J.; Brumm, J.; Chaitman, B.R.; Holme, I.M.; Kallend, D.; Leiter, L.A.; et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 2012, 367, 2089–2099. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Nicholls, S.J.; Riesmeyer, J.S.; Barter, P.J.; Brewer, H.B.; Fox, K.A.A.; Gibson, C.M.; Granger, C.; Menon, V.; Montalescot, G.; et al. Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. N. Engl. J. Med. 2017, 376, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- HPS3/TIMI55–REVEAL Collaborative Group; Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; et al. Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease. N. Engl. J. Med. 2017, 377, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Rubins, H.B.; Robins, S.J.; Collins, D.; Fye, C.L.; Anderson, J.W.; Elam, M.B.; Faas, F.H.; Linares, E.; Schaefer, E.J.; Schectman, G.; et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N. Engl. J. Med. 1999, 341, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Keech, A.; Simes, R.J.; Barter, P.; Best, J.; Scott, R.; Taskinen, M.R.; Forder, P.; Pillai, A.; Davis, T.; Glasziou, P.; et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet 2005, 366, 1849–1861. [Google Scholar] [CrossRef]
- Toth, P.P.; Barter, P.J.; Rosenson, R.S.; Boden, W.E.; Chapman, M.J.; Cuchel, M.; D’Agostino, R.B., Sr.; Davidson, M.H.; Davidson, W.S.; Heinecke, J.W.; et al. High-density lipoproteins: A consensus statement from the National Lipid Association. J. Clin. Lipidol. 2013, 7, 484–525. [Google Scholar] [CrossRef]
- ACCORD Study Group; Ginsberg, H.N.; Elam, M.B.; Lovato, L.C.; Crouse, J.R., 3rd; Leiter, L.A.; Linz, P.; Friedewald, W.T.; Buse, J.B.; Gerstein, H.C.; et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 2010, 362, 1563–1574. [Google Scholar]
- Chait, A.; Bornfeldt, K.E. Thiazolidinediones and atherosclerosis: Is there a role for HDL? Arterioscler. Thromb. Vasc. Biol. 2009, 29, 3–5. [Google Scholar]
- Nissen, S.E.; Tsunoda, T.; Tuzcu, E.M.; Schoenhagen, P.; Cooper, C.J.; Yasin, M.; Eaton, G.M.; Lauer, M.A.; Sheldon, W.S.; Grines, C.L.; et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: A randomized controlled trial. JAMA 2003, 290, 2292–2300. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Andrews, J.; Kastelein, J.J.P.; Merkely, B.; Nissen, S.E.; Ray, K.K.; Schwartz, G.G.; Worthley, S.G.; Keyserling, C.; Dasseux, J. L et al. Effect of infusion of reconstituted high-density lipoprotein (CSL112) on cholesterol efflux capacity in patients with atherosclerotic disease. Eur. Heart J. 2018, 39, 256–263. [Google Scholar]
- Nishikido, T.; Oyama, J.; Keida, T.; Ohira, H.; Node, K. High-dose statin therapy with rosuvastatin reduces small dense LDL and MDA-LDL: The Standard versus high-dose therapy with Rosuvastatin for lipiD lowering (SARD) trial. J. Cardiol. 2016, 67, 340–346. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Lamarche, B.; Tchernof, A.; Moorjani, S.; Cantin, B.; Dagenais, G.R.; Lupien, P.J.; Després, J.P. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Québec Cardiovascular Study. Circulation 1997, 95, 69–75. [Google Scholar] [CrossRef]
- Nissen, S.E.; Lincoff, A.M.; Brennan, D.; Ray, K.K.; Mason, D.; Kastelein, J.J.P.; Thompson, P.D.; Libby, P.; Cho, L.; Plutzky, J.; et al. Bempedoic Acid and Cardiovascular Outcomes in Statin-Intolerant Patients. N. Engl. J. Med. 2023, 388, 1353–1364. [Google Scholar] [CrossRef]
- Taskinen, M.R. Diabetic dyslipidemia. Atheroscler. Suppl. 2002, 3, 47–51. [Google Scholar] [CrossRef]
- Sniderman, A.D.; St-Pierre, A.C.; Cantin, B.; Dagenais, G.R.; Després, J.-P.; Lamarche, B. Concordance/discordance between plasma apolipoprotein B levels and the cholesterol indexes of atherogenic particles in the prediction of ischemic heart disease risk. Circulation 2003, 107, 516–521. [Google Scholar]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef]
- Voutyritsa, E.; Damaskos, C.; Farmaki, P.; Kyriakos, G.; Diamantis, E.; Quiles-Sánchez, L.V.; Garmpi, A.; Garmpis, N.; Patsouras, A.; Stelianidi, A.; et al. PCSK9 Antibody-based Treatment Strategies for Patients with Statin Intolerance. In Vivo 2021, 35, 61–68. [Google Scholar] [CrossRef]
- Thompson, G.R.; Catapano, A.; Saheb, S.; Lowenthal, R.; Myant, N.B.; Maher, V.M.; Matthews, S.; Kitano, Y.; Neuwirth, C.; Shortt, M.B.; et al. Familial Hypercholesterolemia and Lipoprotein Apheresis. Curr. Atheroscler. Rep. 2019, 21, 23. [Google Scholar] [CrossRef]
- Canner, P.L.; Berge, K.G.; Wenger, N.K.; Stamler, J.; Friedman, L.; Prineas, R.J.; Friedewald, W. Fifteen year mortality in Coronary Drug Project patients: Long-term benefit with niacin. J. Am. Coll. Cardiol. 1986, 8, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Parhofer, K.G. Oral Lipid-Lowering Treatments Beyond Statins: Too Old and Outdated or Still Useful? Curr. Atheroscler. Rep. 2021, 23, 74. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.C.; Kris-Etherton, P.M.; et al. Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2011, 123, 2292–2333. [Google Scholar] [CrossRef] [PubMed]
- Scandinavian Simvastatin Survival Study Group (4S). Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994, 344, 1383–1389. [Google Scholar]
- Heart Protection Study Collaborative Group (HPS). MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 20,536 high-risk individuals: A randomised placebo-controlled trial. Lancet 2002, 360, 7–22. [Google Scholar] [CrossRef]
- ASCOT-LLA (Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm); Sever, P.S.; Dahlof, B.; Poulter, N.R.; Wedel, H.; Beevers, G.; Caulfield, M.; Collins, R.; Kjeldsen, S.E.; Kristinsson, A.; et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients with average or lower-than-average cholesterol concentrations. Lancet 2003, 361, 1149–1158. [Google Scholar] [CrossRef]
- STRENGTH Trial; Nicholls, S.J.; Lincoff, A.M.; Garcia, M.; Bash, D.; Ballantyne, C.M.; Barter, P.J.; Davidson, M.H.; Kastelein, J.J.P.; Koenig, W.; et al. Effect of high-dose omega-3 fatty acids vs. corn oil on major adverse cardiovascular events in patients at high cardiovascular risk. JAMA 2020, 324, 2268–2280. [Google Scholar] [CrossRef]
- CLEAR Harmony Trial; Ray, K.K.; Bays, H.E.; Catapano, A.L.; Lalwani, N.D.; Bloedon, L.T.; Sterling, L.R.; Robinson, P.L.; Ballantyne, C.M. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N. Engl. J. Med. 2019, 380, 1022–1032. [Google Scholar] [CrossRef]
- CLEAR Wisdom Trial; Goldberg, A.C.; Leiter, L.A.; Stroes, E.S.G.; Baum, S.J.; Hanselman, J.C.; Bloedon, L.T.; Lalwani, N.D.; Patel, P.M.; Zhao, X.; et al. Effect of bempedoic acid vs. placebo added to maximally tolerated statins on LDL cholesterol. JAMA 2019, 322, 1780–1788.78. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar]
- Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis 2019, 290, 140–205, Erratum in Atherosclerosis 2020, 292, 160–162. [Google Scholar] [CrossRef] [PubMed]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Trigatti, B.L.; Poon, S.; Chan, J. HDL in heart failure: More than just cholesterol transport. Atherosclerosis 2021, 334, 30–40. [Google Scholar]
- Koba, S.; Hirano, T.; Kondo, T.; Shibata, M.; Suzuki, H.; Murakami, M.; Geshi, E.; Katagiri, T. Small LDL-cholesterol is a risk factor for cardiovascular events in patients with coronary artery disease. J. Atheroscler. Thromb. 2006, 13, 95–100. [Google Scholar]
- Kitzman, D.W.; Upadhya, B.; Vasu, S. Pathophysiological importance of lipid abnormalities in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2021, 23, 1430–1441. [Google Scholar]
- Preiss, D.; Packard, C.J. Statins and heart failure: Trials and tribulations. Eur. Heart J. 2015, 36, 1440–1445. [Google Scholar]
- Adamo, L.; Rocha-Resende, C.; Prabhu, S.D.; Mann, D.L. Pathophysiology of cardiac remodeling in heart failure. Nat. Rev. Cardiol. 2020, 17, 769–785. [Google Scholar]
Drug | Mechanism of Action | Recommended Dosage | Interactions | Key Clinical Trials and Outcomes |
---|---|---|---|---|
Statins | Inhibit HMG-CoA reductase, reducing hepatic cholesterol synthesis, upregulate LDL receptors | Atorvastatin 10–80 mg/day; Rosuvastatin 5–40 mg/day | CYP3A4 inhibitors (e.g., grapefruit, some antibiotics), fibrates ↑ myopathy risk | 4S, HPS, ASCOT-LLA [64,65,66]: Showed significant reduction in LDL and cardiovascular events |
Fibrates | Activate PPAR-α, increase fatty acid oxidation, decrease triglycerides, modest HDL increase | Fenofibrate 145 mg/day; Gemfibrozil 600 mg BID | Statins ↑ myopathy risk, anticoagulants ↑ bleeding | FIELD, ACCORD Lipid [44,46]: Showed triglyceride reduction; cardiovascular benefits in dyslipidemic subgroups |
Niacin | Inhibits hepatic synthesis of VLDL, reduces LDL and TG, increases HDL by reducing hepatic uptake | Niacin 500–2000 mg/day (ER form) | Statins ↑ myopathy risk; antihypertensives may enhance flushing | AIM-HIGH, HPS2-THRIVE [37,38]: No added CV benefit when added to statins; increased side effects |
PCSK9 Inhibitors | Inhibit PCSK9 binding to LDL receptors, increase LDL clearance | Alirocumab 75–150 mg SC every 2–4 weeks; Evolocumab 140 mg SC every 2 weeks | No major interactions; safe with statins | FOURIER, ODYSSEY OUTCOMES [51,52]: Significant LDL reduction and reduced cardiovascular events in high-risk patients |
Ezetimibe | Inhibits NPC1L1 cholesterol transporter in the intestine, reduces cholesterol absorption | 10 mg/day | Synergistic with statins, no CYP interactions | IMPROVE-IT [58]: Demonstrated incremental LDL-C lowering and event reduction when added to statin therapy |
Omega-3 Fatty Acids | Reduce hepatic VLDL-TG synthesis and increase TG clearance, may raise HDL modestly | EPA/DHA 2–4 g/day | May enhance anticoagulant effect; careful with bleeding risk | REDUCE-IT (EPA), STRENGTH (EPA+DHA) [53,67]: REDUCE-IT showed cardiovascular benefit; STRENGTH did not |
Bempedoic Acid | Inhibits ATP citrate lyase, reducing cholesterol synthesis upstream of HMG-CoA reductase | 180 mg/day | Statins (no increased risk); gout meds due to uric acid elevation | CLEAR Harmony, CLEAR Wisdom [55,68,69]: Showed modest LDL-C reduction; well-tolerated as adjunct to statins |
Drug | Low Dose Side Effects | High Dose Side Effects | Race Considerations | Sex Considerations | BMI Considerations |
---|---|---|---|---|---|
Statins [65] | Generally well tolerated; mild myalgias | Myopathy, elevated liver enzymes, increased diabetes risk | Asians may require lower doses due to increased sensitivity | Equally effective; women may have higher rates of side effects | Obese patients may need higher doses; response preserved |
Fibrates [44] | Mild GI upset, rash | Myopathy (esp. with statins), gallstones, liver enzyme elevation | No major race-specific considerations | Similar effects in both sexes | More effective in hypertriglyceridemic obese individuals |
Niacin [37] | Flushing, GI discomfort | Hepatotoxicity, hyperglycemia, gout, severe flushing | Limited data; similar efficacy across groups | More flushing reported in women | Higher side effect risk with obesity |
PCSK9 Inhibitors [51] | Injection site reactions | Rare neurocognitive effects, injection site pain | Effective across races; used in statin-intolerant populations | Effective in both sexes | Effective regardless of BMI |
Ezetimibe [58] | Mild GI discomfort | Minimal; rare hepatic enzyme elevations | Consistent efficacy across races | No sex-based differences reported | No major impact of BMI |
Omega-3 Fatty Acids [53] | Mild GI symptoms, fishy aftertaste | Increased bleeding risk, possible atrial fibrillation | Similar efficacy across races | No sex-based differences reported | Greater benefit in high-TG obese patients |
Bempedoic Acid [68] | Generally well tolerated; mild muscle symptoms | Elevated uric acid, tendon rupture risk | Limited race-specific data; presumed similar efficacy | No significant differences observed | Efficacy maintained in obesity; uric acid monitoring important |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoicescu, C.; Vacarescu, C.; Cozma, D. HDL Function Versus Small Dense LDL: Cardiovascular Benefits and Implications. J. Clin. Med. 2025, 14, 4945. https://doi.org/10.3390/jcm14144945
Stoicescu C, Vacarescu C, Cozma D. HDL Function Versus Small Dense LDL: Cardiovascular Benefits and Implications. Journal of Clinical Medicine. 2025; 14(14):4945. https://doi.org/10.3390/jcm14144945
Chicago/Turabian StyleStoicescu, Claudiu, Cristina Vacarescu, and Dragos Cozma. 2025. "HDL Function Versus Small Dense LDL: Cardiovascular Benefits and Implications" Journal of Clinical Medicine 14, no. 14: 4945. https://doi.org/10.3390/jcm14144945
APA StyleStoicescu, C., Vacarescu, C., & Cozma, D. (2025). HDL Function Versus Small Dense LDL: Cardiovascular Benefits and Implications. Journal of Clinical Medicine, 14(14), 4945. https://doi.org/10.3390/jcm14144945