Heterologous Cortical Lamina vs. Titanium Preformed Mesh Reconstruction in Orbital Fracture: A Retrospective Observational Study
Abstract
1. Introduction
2. Materials and Methods
Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luibil, N.; Lopez, M.J.; Patel, B.C. Anatomy, Head and Neck, Orbit. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- El-Hadad, C.; Deschênes, J.; Arthurs, B. Orbital Floor Fracture. Can. Med Assoc. J. CMAJ 2021, 193, E289. [Google Scholar] [CrossRef] [PubMed]
- Bataineh, A.B. The Pattern of Orbital Walls Fractures in North of Jordan. J. Clin. Exp. Dent. 2023, 15, e850–e854. [Google Scholar] [CrossRef] [PubMed]
- Asiri, M.; Aldowah, O. Ocular Findings in Patients with Orbital Fractures: A 1-Year Prospective Study in a Tertiary Center. Medicina 2023, 59, 1091. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, M.; Canner, J.K.; Hall, L.; Ahmad, M.; Srikumaran, D.; Woreta, F.A. Characteristics of Orbital Floor Fractures in the United States from 2006 to 2017. Ophthalmology 2021, 128, 463–470. [Google Scholar] [CrossRef]
- Joseph, J.M.; Glava, I.P. Orbital Fractures: A Review. Clin. Ophthalmol. 2011, 5, 95–100. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, J.; Liu, L.; Lin, Y.; Li, X.; Tang, W.; Wang, H.; Long, J.; Zheng, X.; Tian, W. Orbital Floor Reconstruction: A Retrospective Study of 21 Cases. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 106, 324–330. [Google Scholar] [CrossRef]
- Baek, W.I.; Kim, H.K.; Kim, W.S.; Bae, T.H. Comparison of Absorbable Mesh Plate versus Titanium-Dynamic Mesh Plate in Reconstruction of Blow-Out Fracture: An Analysis of Long-Term Outcomes. Arch. Plast. Surg. 2014, 41, 355–361. [Google Scholar] [CrossRef]
- Muñoz Guerra, M.F.; Pérez, J.S.; Rodriguez-Campo, F.J.; Gías, L.N. Reconstruction of Orbital Fractures with Dehydrated Human Dura Mater. J. Oral Maxillofac. Surg. 2000, 58, 1361–1366. [Google Scholar] [CrossRef]
- Terenzi, V.; Dell’Aquila, A.; Giovannetti, F.; Cascino, F.; Pesce, A.; Cassoni, A.; Battisti, A.; Di Giorgio, D.; Della Monaca, M.; Lupi, E.; et al. Orbital Roof Fractures: Considerations for Reconstruction. Adv. Oral Maxillofac. Surg. 2025, 17, 100516. [Google Scholar] [CrossRef]
- Chattopadhyay, C.; Dev, V.; Pilania, D.; Harsh, A. Reconstruction of Orbital Floor Fractures with Titanium Micromesh: Our Experience. J. Maxillofac. Oral Surg. 2022, 21, 369–378. [Google Scholar] [CrossRef]
- Jaquiéry, C.; Aeppli, C.; Cornelius, P.; Palmowsky, A.; Kunz, C.; Hammer, B. Reconstruction of Orbital Wall Defects: Critical Review of 72 Patients. Int. J. Oral Maxillofac. Surg. 2007, 36, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.A.V.; Eichenberger, G.C.D. Epidemiology and Management of Orbital Fractures. Curr. Opin. Ophthalmol. 2004, 15, 416–421. [Google Scholar] [CrossRef]
- Spallaccia, F.; Vellone, V.; Colangeli, W.; De Tomaso, S. Maxillofacial Fractures in the Province of Terni (Umbria, Italy) in the Last 11 Years: Impact of COVID-19 Pandemic. J. Craniofacial Surg. 2022, 33, E853–E858. [Google Scholar] [CrossRef] [PubMed]
- Khojastepour, L.; Moannaei, M.; Eftekharian, H.R.; Khaghaninejad, M.S.; Mahjoori-Ghasrodashti, M.; Tavanafar, S. Prevalence and Severity of Orbital Blowout Fractures. Br. J. Oral Maxillofac. Surg. 2020, 58, e93–e97. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.-E.; Lee, J.; Lee, H.; Chang, M.; Park, M.; Baek, S. The Paradoxical Predominance of Medial Wall Injuries in Blowout Fracture. J. Craniofacial Surg. 2015, 26, e752–e755. [Google Scholar] [CrossRef]
- Gierloff, M.; Karl Seeck, N.G.; Springer, I.; Becker, S.; Kandzia, C.; Wiltfang, J. Orbital Floor Reconstruction with Resorbable Polydioxanone Implants. J. Craniofacial Surg. 2012, 23, 161–164. [Google Scholar] [CrossRef]
- Jazayeri, H.E.; Khavanin, N.; Yu, J.W.; Lopez, J.; Ganjawalla, K.P.; Shamliyan, T.; Tannyhill, R.J.; Dorafshar, A.H. Does Early Repair of Orbital Fractures Result in Superior Patient Outcomes? A Systematic Review and Meta-Analysis. J. Oral Maxillofac. Surg. 2020, 78, 568–577. [Google Scholar] [CrossRef]
- Sivam, A.; Enninghorst, N. The Dilemma of Reconstructive Material Choice for Orbital Floor Fracture: A Narrative Review. Medicines 2022, 9, 6. [Google Scholar] [CrossRef]
- Holtmann, H.; Eren, H.; Sander, K.; Kübler, N.R.; Handschel, J. Orbital Floor Fractures—Short—and Intermediate-Term Complications Depending on Treatment Procedures. Head Face Med. 2016, 12, 1. [Google Scholar] [CrossRef]
- Avashia, Y.J.; Sastry, A.; Fan, K.L.; Mir, H.S.; Thaller, S.R. Materials Used for Reconstruction after Orbital Floor Fracture. J. Craniofacial Surg. 2012, 23, S49–S55. [Google Scholar] [CrossRef]
- Courtney, D.J.; Thomas, S.; Whitfield, P.H. Isolated Orbital Blowout Fractures: Survey and Review. Br. J. Oral Maxillofac. Surg. 2000, 38, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Potter, J.K.; Malmquist, M.; Ellis, E. Biomaterials for Reconstruction of the Internal Orbit. Oral Maxillofac. Surg. Clin. North Am. 2012, 24, 609–627. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.A.; Shipchandler, T.Z.; Sufyan, A.S.; Nunery, W.R.; Lee, H.B.H. Use of Fracture Size and Soft Tissue Herniation on Computed Tomography to Predict Diplopia in Isolated Orbital Floor Fractures. Am. J. Otolaryngol. 2013, 34, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Converse, J.M.; Smith, B.; Obear, M.F.; Wood-Smith, D.; Converse, J.M. Orbital Blowout Fractures: A Ten-Year Survey. Plast. Reconstr. Surg. 1967, 39, 20–36. [Google Scholar] [CrossRef]
- Chowdhury, K.; Krause, G.E. Selection of Materials for Orbital Floor Reconstruction. Arch. Otolaryngol. Head Neck Surg. 1998, 124, 1398–1401. [Google Scholar] [CrossRef]
- Constantian, M.B. Use of Auricular Cartilage in Orbital Floor Reconstruction. Plast. Reconstr. Surg. 1982, 69, 951–955. [Google Scholar] [CrossRef]
- Neigel, J.M.; Ruzicka, P.O. Use of Demineralized Bone Implants in Orbital and Craniofacial Reconstruction and a Review of the Literature. Ophthalmic Plast. Reconstr. Surg. 1996, 12, 108–120. [Google Scholar] [CrossRef]
- Schubert, W.; Gear, A.J.L.; Lee, C.; Hilger, P.A.; Haus, E.; Migliori, M.R.; Mann, D.A.; Benjamin, C.I. Incorporation of Titanium Mesh in Orbital and Midface Reconstruction. Plast. Reconstr. Surg. 2002, 110, 1022–1030. [Google Scholar] [CrossRef]
- Romano, J.J.; Iliff, N.T.; Manson, P.N. Use of Medpor Porous Polyethylene Implants in 140 Patients with Facial Fractures. J. Craniofacial Surg. 1993, 4, 142–147. [Google Scholar] [CrossRef]
- Hollier, L.H.; Rogers, N.; Berzin, E.; Stal, S. Resorbable Mesh in the Treatment of Orbital Floor Fractures. J. Craniofacial Surg. 2001, 12, 242–246. [Google Scholar] [CrossRef]
- Mauriello, J.A.; Wasserman, B.; Kraut, R. Use of Vicryl (Polyglactin-910) Mesh Implant for Repair of Orbital Floor Fracture Causing Diplopia. Ophthalmic Plast. Reconstr. Surg. 1993, 9, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Kontio, R.; Suuronen, R.; Salonen, O.; Paukku, P.; Konttinen, Y.T.; Lindqvist, C. Effectiveness of Operative Treatment of Internal Orbital Wall Fracture with Polydioxanone Implant. Int. J. Oral Maxillofac. Surg. 2001, 30, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Al-Sukhun, J.; Törnwall, J.; Lindqvist, C.; Kontio, R. Bioresorbable Poly-l/Dl-Lactide (P[L/DL]LA 70/30) Plates Are Reliable for Repairing Large Inferior Orbital Wall Bony Defects: A Pilot Study. J. Oral Maxillofac. Surg. 2006, 64, 47–55. [Google Scholar] [CrossRef]
- Xu, Q.-H.; Yu, J.-H.; Wang, Y.-H.; Wang, A.-A.; Liao, H.-F. Analysis of the Effect of Repair Materials for Orbital Blowout Fracture on Complications. Int. J. Ophthalmol. 2019, 12, 1746–1750. [Google Scholar] [CrossRef] [PubMed]
- Kersey, T.L.; Ng, S.G.J.; Rosser, P.; Sloan, B.; Hart, R. Orbital Adherence with Titanium Mesh Floor Implants: A Review of 10 Cases. Orbit 2013, 32, 8–11. [Google Scholar] [CrossRef]
- Lee, H.B.H.; Nunery, W.R. Orbital Adherence Syndrome Secondary to Titanium Implant Material. Ophthalmic Plast. Reconstr. Surg. 2009, 25, 33–36. [Google Scholar] [CrossRef]
Class | Description |
---|---|
I | Isolated defect of the orbital floor or the medial wall, 1–2 cm2, in the anterior two-thirds |
II | Defect of the orbital floor or medial wall, >2 cm2, in the anterior two-thirds Bony ledge preserved at the medial margin of the infraorbital fissure |
III | Defect of the orbital floor or medial wall, >2 cm2, in the anterior two-thirds Missing bony ledge medial to the infraorbital fissure |
IV | Defect of the entire orbital floor and the medial wall, extending into the posterior third |
V | Same as Class IV, defect extending into the orbital roof |
Variable | All (n = 67) | No Complications (n = 57) | Complications (n = 10) | p-Value |
---|---|---|---|---|
Age (mean ± SD) | 53.4 (21.0) | 55 (20.0) | 44.2 (25.3) | 0.173 |
Age (median [IQR]) | 56 (34–70) | 57 (39–71) | 40 (21–66) | |
Sex (Female) | 24 (35.8%) | 21 (36.8%) | 3 (30.0%) | 0.953 |
Fracture Site | 0.679 | |||
Floor | 56 (83.6%) | 48 (84.2%) | 8 (80.0%) | |
Medial wall | 1 (1.5%) | 1 (1.8%) | 0 (0.0%) | |
Floor + Medial wall | 7 (10.4%) | 6 (10.5%) | 1 (10.0%) | |
Floor + Medial + Lateral walls | 1 (1.5%) | 1 (1.8%) | 0 (0.0%) | |
Floor + Lateral wall | 2 (3.0%) | 1 (1.8%) | 1 (10.0%) | |
Fracture Classification | 0.068 | |||
Class I | 6 (12.2%) | 6 (14.3%) | 0 (0.0%) | |
Class II | 28 (57.1%) | 25 (59.5%) | 3 (42.9%) | |
Class III | 12 (24.5%) | 9 (21.4%) | 3 (42.9%) | |
Class IV | 2 (4.1%) | 2 (4.8%) | 0 (0.0%) | |
Class V | 1 (2.0%) | 0 (0.0%) | 1 (14.3%) | |
Timing of Surgery | 0.140 | |||
0–24 h | 22 (32.8%) | 16 (28.1%) | 6 (60.0%) | |
24–72 h | 22 (32.8%) | 20 (35.1%) | 2 (20.0%) | |
>72 h | 23 (34.3%) | 21 (36.8%) | 2 (20.0%) |
Variable | OR | 95% CI | p-Value |
---|---|---|---|
Preoperative complications | 8.596 | 1.400–167.345 | 0.052 |
Treatment with bone graft (floor) | 0.171 | 0.023–0.799 | 0.040 |
Symptom | Preoperative (n = 67) | Postoperative (n = 67) |
---|---|---|
Diplopia | 32 (47.8%) | 7 (10.4%) |
Enophthalmos | 1 (1.5%) | 0 (0.0%) |
Motility restriction (MOE) | 6 (9.0%) | 1 (1.5%) |
Sensory impairment | 18 (26.9%) | 3 (4.5%) |
Ectropion | - | 1 (1.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vellone, V.; Giovannoni, M.E.; Ricciardi, A.; Committeri, U.; Alunni Fegatelli, D.; Spallaccia, F. Heterologous Cortical Lamina vs. Titanium Preformed Mesh Reconstruction in Orbital Fracture: A Retrospective Observational Study. J. Clin. Med. 2025, 14, 4668. https://doi.org/10.3390/jcm14134668
Vellone V, Giovannoni ME, Ricciardi A, Committeri U, Alunni Fegatelli D, Spallaccia F. Heterologous Cortical Lamina vs. Titanium Preformed Mesh Reconstruction in Orbital Fracture: A Retrospective Observational Study. Journal of Clinical Medicine. 2025; 14(13):4668. https://doi.org/10.3390/jcm14134668
Chicago/Turabian StyleVellone, Valentino, Maria Elisa Giovannoni, Antonio Ricciardi, Umberto Committeri, Danilo Alunni Fegatelli, and Fabrizio Spallaccia. 2025. "Heterologous Cortical Lamina vs. Titanium Preformed Mesh Reconstruction in Orbital Fracture: A Retrospective Observational Study" Journal of Clinical Medicine 14, no. 13: 4668. https://doi.org/10.3390/jcm14134668
APA StyleVellone, V., Giovannoni, M. E., Ricciardi, A., Committeri, U., Alunni Fegatelli, D., & Spallaccia, F. (2025). Heterologous Cortical Lamina vs. Titanium Preformed Mesh Reconstruction in Orbital Fracture: A Retrospective Observational Study. Journal of Clinical Medicine, 14(13), 4668. https://doi.org/10.3390/jcm14134668