Can Double-Negative B Cells and Marginal Zone B Cells Have a Potential Impact on the Outcome of Kidney Transplantation?
Abstract
:1. Introduction
2. Methods
2.1. Study Patients
2.1.1. Inclusion Criteria
2.1.2. Exclusion Criteria
2.2. Study Schedule
2.3. Ethical Approval and Consent to Participate
2.4. Immunosuppressive Regimen
2.5. Flow Cytometry of B-Cell Subpopulations
- Anti-CD19 PC5.5 clone J3-119, Beckman Coulter, Beckman Coulter, Inc., Sykesville, MD, USA;
- Anti-CD27 PE-Dylight 594 clone LT27, EXBIO, Praha SA, Czech Republic;
- Anti-CD45-PC7 clone J33 Beckman Coulter, Beckman Coulter, Inc., Sykesville, MD, USA;
- Anti-IgD clone IA6-2 Thermo Scientific LSG, Lagoas Park, Porto Salvo, Portugal;
- Anti-IgM PE clone, SA-DA4 Beckman Coulter, Beckman Coulter, Inc., Sykesville, MD, USA.
2.6. Statistics
3. Results
3.1. Patient Characteristics
3.2. Differences in DN and MZB B-Cell Populations at Different Study Time Points: DN and MZ B Cells Underwent Changes During the 12-Month Follow-Up Period
3.3. How the DN and MZ Β Cell Populations Were Affected by Different Factors That Influence the Outcome of Kidney Transplantation
3.4. MZ B Cells in Relation to the Prediction of Rejection
3.5. Frequencies and Absolute Numbers of MZ and DN B Cells in Relation to Graft Function at Different Time Points During Study Follow-Up
3.6. Effect of Induction Immune Therapy on DN and MZ B Cells at Different Time Points
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inoue, T.; Kurosaki, T. Memory B cells. Nat. Rev. Immunol. 2024, 24, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Jung, J.; Sanz, I. OMIP-003: Phenotypic analysis of human memory B cells. Cytom. Part A J. Int. Soc. Anal. Cytol. 2011, 79, 894–896. [Google Scholar] [CrossRef] [PubMed]
- Jenks, S.A.; Cashman, K.S.; Woodruff, M.C.; Lee, F.E.; Sanz, I. Extrafollicular responses in humans and SLE. Immunol. Rev. 2019, 288, 136–148. [Google Scholar] [CrossRef]
- Sanz, I.; Wei, C.; Jenks, S.A.; Cashman, K.S.; Tipton, C.; Woodruff, M.C.; Hom, J.; Lee, F.E.-H. Challenges and Opportunities for Consistent Classification of Human B Cell and Plasma Cell Populations. Front. Immunol. 2019, 10, 2458. [Google Scholar] [CrossRef] [PubMed]
- Beckers, L.; Somers, V.; Fraussen, J. IgD− CD27− double negative (DN) B cells: Origins and functions in health and disease. Immunol. Lett. 2023, 255, 67–76. [Google Scholar] [CrossRef]
- Cervantes-Díaz, R.; Torres-Ruíz, J.; Romero-Ramírez, S.; Cañez-Hernández, M.; Pérez-Fragoso, A.; Páez-Franco, J.C.; Meza-Sánchez, D.E.; Pescador-Rojas, M.; Sosa-Hernández, V.A.; Gómez-Martín, D.; et al. Severity of SARS-CoV-2 infection is linked to double-negative (CD27− IgD−) B cell subset numbers. Inflamm. Res. 2022, 71, 131–140. [Google Scholar] [CrossRef]
- Jenks, S.A.; Cashman, K.S.; Zumaquero, E.; Marigorta, U.M.; Patel, A.V.; Wang, X.; Tomar, D.; Woodruff, M.C.; Simon, Z.; Bugrovsky, R.; et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity 2018, 49, 725–739. [Google Scholar] [CrossRef]
- Woodruff, M.C.; Ramonell, R.P.; Nguyen, D.C.; Cashman, K.S.; Saini, A.S.; Haddad, N.S.; Ley, A.M.; Kyu, S.; Howell, J.C.; Ozturk, T.; et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 2020, 21, 1506–1516. [Google Scholar] [CrossRef]
- Isnardi, I.; Ng, Y.-S.; Menard, L.; Meyers, G.; Saadoun, D.; Srdanovic, I.; Samuels, J.; Berman, J.; Buckner, J.H.; Cunningham-Rundles, C.; et al. Complement receptor 2/CD21− human naive B cells contain mostly autoreactive unresponsive clones. Blood 2010, 115, 5026–5036. [Google Scholar] [CrossRef]
- Moir, S.; Ho, J.; Malaspina, A.; Wang, W.; DiPoto, A.C.; O’Shea, M.A.; Roby, G.; Kottilil, S.; Arthos, J.; Proschan, M.A.; et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 2008, 205, 1797–1805. [Google Scholar] [CrossRef]
- Frasca, D.; Diaz, A.; Romero, M.; Blomberg, B.B. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways. Exp. Gerontol. 2017, 87 Pt A, 113–120. [Google Scholar] [CrossRef]
- Schuller, M.; Pfeifer, V.; Kirsch, A.H.; Klötzer, K.A.; Mooslechner, A.A.; Rosenkranz, A.R.; Stiegler, P.; Schemmer, P.; Sourij, H.; Eller, P.; et al. B Cell Composition Is Altered After Kidney Transplantation and Transitional B Cells Correlate with SARS-CoV-2 Vaccination Response. Front. Med. 2022, 9, 818882. [Google Scholar] [CrossRef] [PubMed]
- Fouza, A.; Tagkouta, A.; Daoudaki, M.; Stangou, M.; Fylaktou, A.; Bougioukas, K.; Xochelli, A.; Vagiotas, L.; Kasimatis, E.; Nikolaidou, V.; et al. Exploring Perturbations in Peripheral B Cell Memory Subpopulations Early after Kidney Transplantation Using Unsupervised Machine Learning. J. Clin. Med. 2023, 12, 6331. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Uduman, M.; Siu, J.H.Y.; Tull, T.J.; Sanderson, J.D.; Wu, Y.-C.B.; Zhou, J.Q.; Petrov, N.; Ellis, R.; Todd, K.; et al. Spatiotemporal segregation of human marginal zone and memory B cell populations in lymphoid tissue. Nat. Commun. 2018, 21, 3857. [Google Scholar] [CrossRef]
- Palm, A.E.; Kleinau, S. Marginal zone B cells: From housekeeping function to autoimmunity? J. Autoimmun. 2021, 119, 102627. [Google Scholar] [CrossRef]
- Appelgren, D.; Eriksson, P.; Ernerudh, J.; Segelmark, M. Marginal-Zone B-Cells Are Main Producers of IgM in Humans, and Are Reduced in Patients with autoimmune Vasculitis. Front. Immunol. 2018, 9, 2242. [Google Scholar] [CrossRef]
- Asano, Y.; Daccache, J.; Jain, D.; Ko, K.; Kinloch, A.; Veselits, M.; Wolfgeher, D.; Chang, A.; Josephson, M.; Cunningham, P.; et al. Innate-like self-reactive B cells infiltrate human renal allografts during transplant rejection. Nat. Commun. 2021, 16, 4372. [Google Scholar] [CrossRef] [PubMed]
- Palm, A.K.; Friedrich, H.C.; Kleinau, S. Nodal marginal zone B cells in mice: A novel subset with dormant self-reactivity. Sci. Rep. 2016, 6, 27687. [Google Scholar] [CrossRef]
- Gorbacheva, V.; Fan, R.; Gaudette, B.; Baldwin, W.M.; Fairchild, R.L.; Valujskikh, A. Marginal zone B cells are required for optimal humoral responses to allograft. Am. J. Transplant. 2025, 25, 48–59. [Google Scholar] [CrossRef]
- Zhuang, Q.; Li, H.; Yu, M.; Peng, B.; Liu, S.; Luo, M.; Stefano, G.B.; Kream, R.M.; Ming, Y. Profiles of B-cell subsets in immunologically stable renal allograft recipients and end-stage renal disease patients. Transpl. Immunol. 2020, 58, 101249. [Google Scholar] [CrossRef]
- Segundo, D.S.; Rodrigo, E.; Fernández-Fresnedo, G. Decrease in Marginal Zone B-cells (CD27+IgD+CD38–) as Surrogate Marker of Rejection in Kidney Transplant Recipients. Trends Transpl. 2013, 7, 051–055. [Google Scholar]
- Alfaro, R.; Legaz, I.; González-Martínez, G.; Jimenez-Coll, V.; Martínez-Banaclocha, H.; Galián, J.A.; Botella, C.; de la Peña-Moral, J.; Moya-Quiles, M.R.; Campillo, J.A.; et al. Monitoring of B Cell in Kidney Transplantation: Development of a Novel Clusters Analysis and Role of Transitional B Cells in Transplant Outcome. Diagnostics 2021, 11, 641. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Rondaan, C.; de Joode, A.A.E.; Raveling-Eelsing, E.; Bos, N.A.; Westra, J. Changes in T and B cell subsets in end stage renal disease patients before and after kidney transplantation. Immun. Ageing 2021, 18, 43. [Google Scholar] [CrossRef] [PubMed]
- Stranavova, L.; Hruba, P.; Slatinska, J.; Sawitzki, B.; Reinke, P.; Volk, H.-D.; Viklicky, O. Dialysis therapy is associated with peripheral marginal zone B-cell augmentation. Transpl. Immunol. 2020, 60, 101289. [Google Scholar] [CrossRef] [PubMed]
- Fouza, A.; Fylaktou, A.; Tagkouta, A.; Daoudaki, M.; Vagiotas, L.; Kasimatis, E.; Xochelli, A.; Nikolaidou, V.; Katsanos, G.; Tsoulfas, G.; et al. Frequencies or Absolute Numbers? Cluster Analysis of Frequencies and Absolute Numbers of B-Cell Subsets in Dialysis Patients Who Are Candidates for Kidney Transplantation Reveals Different Profiles. J. Clin. Med. 2024, 13, 6454. [Google Scholar] [CrossRef]
- Hendricks, J.; Bos, N.A.; Kroese, F.G.M. Heterogeneity of Memory Marginal Zone B Cells. Crit. Rev. Immunol. 2018, 38, 145–158. [Google Scholar] [CrossRef]
- Kallarakal, M.A.B.; Cohen, G.S.B.; Ibukun, F.I.M.; Krummey, S.M. Marginal Zone B Cells Are Necessary for the Formation of Anti-donor IgG After Allogeneic Sensitization. Transplantation 2024, 108, 1357–1367. [Google Scholar] [CrossRef]
Study Sample | N: 71 |
---|---|
Characteristics of recipients | |
Sex | Female: 20/Male: 51 28.17/71.83% |
Age in years | 48.5 (39, 60) |
Type of donors | Deceased/brain death: 50 (70%) Living: 21 (30%) |
Preemptive recipients | 7 (9.86%) |
Dialysis patient candidates for transplantation | |
Type of dialysis | HD: 64 (81%) CAPD: 7 (19%) |
Duration of dialysis (months) | 87 (34–127) |
Distribution of underlying kidney disease | |
Polycystic kidney disease | 14 (19.7%) |
Primary glomerulonephritis IgA nephropathy Membranous nephropathy Focal segmental glomerulosclerosis Membranoproliferative glomerulonephritis | 12 (17%) 5 (7%) 3 (4.25%) 2 (2.83%) 2 (2.83%) |
Reflux nephropathy | 6 (8.4%) |
Diabetes mellitus | 6 (8.4%) |
Nephrosclerosis/hypertension | 8 (11.25%) |
Urinary tract infections/stones | 5 (7%) |
Other | 12 (17%) |
Unknown | 8 (11.25%) |
Information on transplantation, graft function | |
Delayed graft function | Yes: 12 (24%) No: 38 (76%) |
Cold ischemia time (hours) | 19.2 (4.6) |
eGFR (mL/min/1.73 m2) | 52 (36–89) |
Recipients with rejection | 11 (15.5%) |
Induction therapy | |
Basiliximab, N (%) | 63 (88.7%) |
Anti-thymocyte globulin, N(%) | 8 (11.3%) |
T0 1 | T3 1 | T6 1 | T12 1 | p 2 | Post Hoc 3 Comparison | |
---|---|---|---|---|---|---|
%Double negative, (CD19+IgD−CD27), DN | 11.9 (7.8, 18.6) | 10.1 (7.7, 13.8) | 13.1 (8.8, 18.8) | 13.6 (9.2, 17.7) | 0.004 | ns |
#Double negative (CD19+IgD−CD27−), DN | 10 (5.8, 19) | 11 (5.3, 18) | 11 (6.1, 17.5) | 12 (7.9, 21) | ns | ns |
%Marginal zone B cells (CD19+IgD+IgM+CD27+), MZB | 26.6 (11.2, 38.1) | 25.6 (14.4, 42.2) | 22.8 (11.3, 41.6) | 30 (19.5, 44.3) | ns | ns |
#(CD19+IgD+IgM+CD27+), MZB | 5 (1.7, 10.4) | 6 (2.8, 15) | 3 (1, 10) | 7 (5, 11) | 0.005 | ns |
Univariate Regression | |||||
---|---|---|---|---|---|
Frequency of Cell Population | 95% Confidence Interval | ||||
β | Ν | p | Lower | Upper | |
Double negative, DN | |||||
Age of the recipient | −0.04 | 71 | 0.5 | −0.17 | 0.09 |
Type of donor (deceased/living) | 1.6 | 71 | 0.3 | −1.8 | 5 |
Cold ischemia time, CIT | −0.04 | 71 | 0.7 | −0.20 | 0.13 |
Delayed graft function, DGF | 2.8 | 71 | 0.093 | −0.49 | 6.1 |
Dialysis vintage | −0.01 | 64 | 0.05 | −0.04 | 0.02 |
Marginal zone B cells, MZB | |||||
Age of the recipient | 0.07 | 71 | 0.7 | −0.27 | 0.42 |
Type of donor (deceased/living) | −1.2 | 71 | 0.8 | −10 | 8 |
Cold ischemia time, CIT | −0.19 | 71 | 0.5 | −0.28 | 0.6 |
DGF | −4.1 | 71 | 0.4 | −13 | 4.7 |
Dialysis vintage | 0.04 | 64 | 0.4 | −0.04 | 0.12 |
Univariate Regression | Multivariate Regression | ||||||||
---|---|---|---|---|---|---|---|---|---|
Absolute Numbers of Cells | 95% Confidence Interval | 95% Confidence Interval | |||||||
β | Ν | p | Lower | Upper | β | p | Lower | Upper | |
Double negative, DN | |||||||||
Age of the recipient | −0.47 | 71 | 0.01 | −0.47 | −0.82 | −0.27 | 0.3 | −0.75 | 0.21 |
Type of donor (deceased/living) | 11 | 71 | 0.023 | 1.5 | 20 | 5.9 | 0.6 | −15 | 27 |
Cold ischemia time, CIT | −0.49 | 71 | 0.031 | −0.94 | −0.05 | −0.1 | 0.8 | −1 | 0.84 |
Delayed graft function, DGF | −2.0 | 71 | 0.7 | −12 | 7.5 | ||||
Dialysis vintage | −0.12 | 64 | 0.005 | −0.12 | −0.21 | −0.05 | 0.4 | −0.17 | 0.07 |
Marginal zone B cells, MZB | |||||||||
Age of the recipient | −0.19 | 71 | 0.079 | −0.19 | 0.02 | −0.11 | 0.3 | −0.35 | 0.12 |
Type of donor (deceased/living) | 5.6 | 71 | 0.052 | −0.05 | 11 | 6.4 | 0.3 | −5 | 18 |
Cold ischemia time, CIT | −0.20 | 71 | 0.2 | −0.47 | 0.07 | 0.2 | 0.5 | −0.34 | 0.74 |
DGF | −5.4 | 71 | 0.047 | −11 | −0.07 | −4.4 | 0.12 | −10 | 1.2 |
Dialysis vintage | 0.00 | 64 | >0.9 | −0.04 | 0.03 |
Kidney Transplant Recipients (N: 71) | Recipients Experiencing Rejection (N: 11) | Recipients Free of Rejection (N: 60) | p-Value * | |
---|---|---|---|---|
Age of recipients | 49 (40, 57) | 49 (38.25, 57) | 48 (43, 52) | 0.968 |
Sex (female/male) | 19/52 | 3/8 | 16/44 | 1.000 |
Donor type (deceased/living) | 50/21 | 7/4 | 43/17 | 0.721 |
DGF | 21/71 | 6/11 | 15/60 | 0.072 |
Frequency and Absolute Number of Cells at Pre-Transplant Time (T0) | Rejection | p-Value Wilcoxon Rank Sum Test | |
---|---|---|---|
Rejection Free, (N = 60) Median (IQR) | Rejection, (N = 11) Median (IQR) | ||
% DN | 12 (8, 19) | 9 (7, 15) | 0.5 |
# DN | 10 (6, 19) | 9 (6, 18) | 0.8 |
% MZB | 31 (9, 39) | 17 (9, 27) | 0.5 |
# MZB | 5.2 (1.1, 11.8) | 4.2 (1.8, 6.3) | 0.7 |
Cell Population at 12 Months Post-Transplant | Rejection | p-Value Wilcoxon Rank Sum Test | |
---|---|---|---|
Rejection Free, N = 60 Median (IQR) | Rejection, N = 11 Median (IQR) | ||
% DN | 12.9 (8.7, 17.9) | 14.4 (12.7, 17.6) | 0.2 |
# DN | 12 (8, 21) | 11 (9, 25) | 0.7 |
% MZB | 31 (20, 45) | 20 (13, 26) | 0.064 |
# MZB | 7 (5, 11) | 9 (6, 10) | >0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fouza, A.; Fylaktou, A.; Daoudaki, M.; Talimtzi, P.; Tagkouta, A.; Vagiotas, L.; Katsanos, G.; Tsoulfas, G.; Antoniadis, N. Can Double-Negative B Cells and Marginal Zone B Cells Have a Potential Impact on the Outcome of Kidney Transplantation? J. Clin. Med. 2025, 14, 3312. https://doi.org/10.3390/jcm14103312
Fouza A, Fylaktou A, Daoudaki M, Talimtzi P, Tagkouta A, Vagiotas L, Katsanos G, Tsoulfas G, Antoniadis N. Can Double-Negative B Cells and Marginal Zone B Cells Have a Potential Impact on the Outcome of Kidney Transplantation? Journal of Clinical Medicine. 2025; 14(10):3312. https://doi.org/10.3390/jcm14103312
Chicago/Turabian StyleFouza, Ariadni, Asimina Fylaktou, Maria Daoudaki, Persefoni Talimtzi, Anneta Tagkouta, Lampros Vagiotas, Georgios Katsanos, Georgios Tsoulfas, and Nikolaos Antoniadis. 2025. "Can Double-Negative B Cells and Marginal Zone B Cells Have a Potential Impact on the Outcome of Kidney Transplantation?" Journal of Clinical Medicine 14, no. 10: 3312. https://doi.org/10.3390/jcm14103312
APA StyleFouza, A., Fylaktou, A., Daoudaki, M., Talimtzi, P., Tagkouta, A., Vagiotas, L., Katsanos, G., Tsoulfas, G., & Antoniadis, N. (2025). Can Double-Negative B Cells and Marginal Zone B Cells Have a Potential Impact on the Outcome of Kidney Transplantation? Journal of Clinical Medicine, 14(10), 3312. https://doi.org/10.3390/jcm14103312