Resistance to Antimalarial Monotherapy Is Cyclic
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- White, N.J. Antimalarial drug resistance. J. Clin. Investig. 2004, 113, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Plowe, C.V. Combination Therapy for Malaria: Mission Accomplished? Clin. Infect. Dis. 2007, 44, 1075–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; et al. Artemisinin Resistance in Plasmodium falciparum Malaria. N. Engl. J. Med. 2009, 361, 455–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, R.N.; Dorsey, G.; Ashley, E.A.; Barnes, K.I.; Baird, J.K.; d’Alessandro, U.; Guerin, P.J.; Laufer, M.K.; Naidoo, I.; Nosten, F.; et al. World Antimalarial Resistance Network I: Clinical efficacy of antimalarial drugs. Malar. J. 2007, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menard, D.; Dondorp, A. Antimalarial Drug Resistance: A Threat to Malaria Elimination. Cold Spring Harb. Perspect. Med. 2017, 7, a025619. [Google Scholar] [CrossRef] [Green Version]
- Buyon, L.E.; Elsworth, B.; Duraisingh, M.T. The molecular basis of antimalarial drug resistance in Plasmodium vivax. Int. J. Parasitol. Drugs Drug Resist. 2021, 16, 23–37. [Google Scholar] [CrossRef]
- Eastman, R.T.; Fidock, D.A. Artemisinin-based combination therapies: A vital tool in efforts to eliminate malaria. Nat. Rev. Genet. 2009, 7, 864–874. [Google Scholar] [CrossRef] [Green Version]
- Hempelmann, E. Hemozoin Biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors. Parasitol. Res. 2006, 100, 671–676. [Google Scholar] [CrossRef]
- Cravo, P.; Napolitano, H.; Culleton, R. How genomics is contributing to the fight against artemisinin-resistant malaria parasites. Acta Trop. 2015, 148, 1–7. [Google Scholar] [CrossRef]
- Hess, K.M.; Goad, J.A.; Arguin, P.M. Intravenous Artesunate for the Treatment of Severe Malaria. Ann. Pharmacother. 2010, 44, 1250–1258. [Google Scholar] [CrossRef]
- Warhurst, D.; Adagu, I.; Beck, H.; Duraisingh, M.; Kirby, G.; von Seidlein, L.; Wright, C. Mode of action of artemether lumefantrine (COARTEM): The sole, fixed, oral ADCC and its role in combatting multidrug resistance. Southeast Asian J. Trop. Med. Public Health 2001, 32, 4–8. [Google Scholar]
- Goodson, J.R.; Klupt, S.; Zhang, C.; Straight, P.; Winkler, W.C. LoaP is a broadly conserved antiterminator protein that regulates antibiotic gene clusters in Bacillus amyloliquefaciens. Nat. Microbiol. 2017, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, T.; Madamet, M.; Pradines, B. Tetracyclines in malaria. Malar. J. 2015, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Matondo, S.I.; Temba, G.S.; Kavishe, A.A.; Kauki, J.S.; Kalinga, A.; van Zwetselaar, M.; Reyburn, H.; Kavishe, R.A. High levels of sulphadoxine-pyrimethamine resistance Pfdhfr-Pfdhps quintuple mutations: A cross sectional survey of six regions in Tanzania. Malar. J. 2014, 13, 152. [Google Scholar] [CrossRef] [Green Version]
- Nixon, G.L.; Moss, D.M.; Shone, A.E.; Lalloo, D.G.; Fisher, N.; O’Neill, P.M.; Ward, S.A.; Biagini, G.A. Antimalarial pharmacology and therapeutics of atovaquone. J. Antimicrob. Chemother. 2013, 68, 977–985. [Google Scholar] [CrossRef] [Green Version]
- Dziekan, J.M.; Yu, H.; Chen, D.; Dai, L.; Wirjanata, G.; Larsson, A.; Prabhu, N.; Sobota, R.M.; Bozdech, Z.; Nordlund, P. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay. Sci. Transl. Med. 2019, 11, eaau3174. [Google Scholar] [CrossRef] [Green Version]
- Dabour, R.; Meirson, T.; Samson, A.O. Global antibiotic resistance is mostly periodic. J. Glob. Antimicrob. Resist. 2016, 7, 132–134. [Google Scholar] [CrossRef]
- Yayan, J.; Ghebremedhin, B.; Rasche, K. Antibiotic Resistance of Pseudomonas aeruginosa in Pneumonia at a Single University Hospital Center in Germany over a 10-Year Period. PLoS ONE 2015, 10, e0139836. [Google Scholar] [CrossRef] [Green Version]
- Rhomberg, P.; Jones, R.N. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program: A 10-year experience in the United States (1999–2008). Diagn. Microbiol. Infect. Dis. 2009, 65, 414–426. [Google Scholar] [CrossRef]
- Asbell, P.A.; Sanfilippo, C.M. Antibiotic Resistance Trends Among Ocular Pathogens in the US—Cumulative Results from the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) Surveillance Study. US Ophthalmic Rev. 2017, 10. [Google Scholar] [CrossRef]
- Kuhn, M.; Campillos, M.; Letunic, I.; Jensen, L.J.; Bork, P. A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 2010, 6, 343. [Google Scholar] [CrossRef]
- Pletscher-Frankild, S.; Pallejà, A.; Tsafou, K.; Binder, J.X.; Jensen, L.J. DISEASES: Text mining and data integration of disease–gene associations. Methods 2015, 74, 83–89. [Google Scholar] [CrossRef]
- Singhasivanon, P. Mekong malaria. Malaria, multi-drug resistance and economic development in the greater Mekong subregion of Southeast Asia. Southeast Asian J. Trop. Med. Public Health 1999, 30, i–iv. [Google Scholar]
- Frosch, A.E.; Venkatesan, M.; Laufer, M.K. Patterns of chloroquine use and resistance in sub-Saharan Africa: A systematic review of household survey and molecular data. Malar. J. 2011, 10, 116. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, C.; Liao, F.L.; Jiang, T.; Krishna, S.; Tu, Y. A Temporizing Solution to “Artemisinin Resistance”. N. Engl. J. Med. 2019, 380, 2087–2089. [Google Scholar] [CrossRef]
- Pelleau, S.; Moss, E.L.; Dhingra, S.; Volney, B.; Casteras, J.; Gabryszewski, S.J.; Volkman, S.K.; Wirth, D.F.; Legrand, E.; Fidock, D.; et al. Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in pfcrt. Proc. Natl. Acad. Sci. USA 2015, 112, 11672–11677. [Google Scholar] [CrossRef] [Green Version]
- Carrara, V.; Lwin, K.M.; Phyo, A.P.; Ashley, E.; Wiladphaingern, J.; Sriprawat, K.; Rijken, M.; Boel, M.; Mcgready, R.; Proux, S.; et al. Malaria Burden and Artemisinin Resistance in the Mobile and Migrant Population on the Thai–Myanmar Border, 1999–2011: An Observational Study. PLoS Med. 2013, 10, e1001398. [Google Scholar] [CrossRef] [Green Version]
- White, L.J.; Flegg, J.A.; Phyo, A.P.; Wiladpai-Ngern, J.H.; Bethell, D.; Plowe, C.; Anderson, T.; Nkhoma, S.; Nair, S.; Tripura, R.; et al. Defining the In Vivo Phenotype of Artemisinin-Resistant Falciparum Malaria: A Modelling Approach. PLoS Med. 2015, 12, e1001823. [Google Scholar] [CrossRef] [Green Version]
- Hemming-Schroeder, E.; Umukoro, E.; Lo, E.; Fung, B.; Tomás-Domingo, P.; Zhou, G.; Zhong, D.; Dixit, A.; Atieli, H.; Githeko, A.; et al. Impacts of Antimalarial Drugs on Plasmodium falciparum Drug Resistance Markers, Western Kenya, 2003–2015. Am. J. Trop. Med. Hyg. 2018, 98, 692–699. [Google Scholar] [CrossRef]
- Aweeka, F.T.; German, P.I. Clinical Pharmacology of Artemisinin-Based Combination Therapies. Clin. Pharmacokinet. 2008, 47, 91–102. [Google Scholar] [CrossRef]
- van der Pluijm, R.W.; Tripura, R.; Hoglund, R.M.; Phyo, A.P.; Lek, D.; Islam, A.U.; Anvikar, A.R.; Satpathi, P.; Satpathi, S.; Behera, P.K.; et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: A multicentre, open-label, randomised clinical trial. Lancet 2020, 395, 1345–1360. [Google Scholar] [CrossRef]
- Alven, S.; Aderibigbe, B. Combination Therapy Strategies for the Treatment of Malaria. Molecules 2019, 24, 3601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathmes, G.; Rumisha, S.F.; Lucas, T.C.D.; Twohig, K.A.; Python, A.; Nguyen, M.; Nandi, A.K.; Keddie, S.H.; Collins, E.L.; Rozier, J.A.; et al. Global estimation of anti-malarial drug effectiveness for the treatment of uncomplicated Plasmodium falciparum malaria 1991–2019. Malar. J. 2020, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Biswas, A.; Ahrens, J. Multivariate Pointwise Information-Driven Data Sampling and Visualization. Entropy 2019, 21, 699. [Google Scholar] [CrossRef] [Green Version]
Antimalarial Drug | Mechanism of Action | Yearly Frequency |
---|---|---|
Pyrimethamine, Sulfadoxine | Folic acid synthesis inhibitors | ~0.3 |
Doxycycline (prophylactic) | Protein synthesis inhibitors | ~0.2 |
Atovaquone | Electron transport chain inhibitor | ~0.15 |
Quinine, Chloroquine, Piperaquine, Halofantrine, Mefloquine | Heme biocrystallization inhibitors | ~0.15 |
Artemether, Artemisinin, Dihydroartemisinin, Artesunate, | Binds to hemozoin and releases toxic free radicals | ~0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weitzman, R.; Calfon-Peretz, O.; Saha, T.; Bloch, N.; Ben Zaken, K.; Rosenfeld, A.; Amitay, M.; Samson, A.O. Resistance to Antimalarial Monotherapy Is Cyclic. J. Clin. Med. 2022, 11, 781. https://doi.org/10.3390/jcm11030781
Weitzman R, Calfon-Peretz O, Saha T, Bloch N, Ben Zaken K, Rosenfeld A, Amitay M, Samson AO. Resistance to Antimalarial Monotherapy Is Cyclic. Journal of Clinical Medicine. 2022; 11(3):781. https://doi.org/10.3390/jcm11030781
Chicago/Turabian StyleWeitzman, Rachel, Ortal Calfon-Peretz, Trishna Saha, Naamah Bloch, Karin Ben Zaken, Avi Rosenfeld, Moshe Amitay, and Abraham O. Samson. 2022. "Resistance to Antimalarial Monotherapy Is Cyclic" Journal of Clinical Medicine 11, no. 3: 781. https://doi.org/10.3390/jcm11030781
APA StyleWeitzman, R., Calfon-Peretz, O., Saha, T., Bloch, N., Ben Zaken, K., Rosenfeld, A., Amitay, M., & Samson, A. O. (2022). Resistance to Antimalarial Monotherapy Is Cyclic. Journal of Clinical Medicine, 11(3), 781. https://doi.org/10.3390/jcm11030781