Exploring the Importance of Corticalization Occurring in Alveolar Bone Surrounding a Dental Implant
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chęcińska, K.; Chęciński, M.; Sikora, M.; Nowak, Z.; Karwan, S.; Chlubek, D. The Effect of Zirconium Dioxide (ZrO2) Nanoparticles Addition on the Mechanical Parameters of Polymethyl Methacrylate (PMMA): A Systematic Review and Meta-Analysis of Experimental Studies. Polymers 2022, 14, 1047. [Google Scholar] [CrossRef] [PubMed]
- Pokrowiecki, R.; Szałaj, U.; Fudala, D.; Zaręba, T.; Wojnarowicz, J.; Łojkowski, W.; Tyski, S.; Dowgierd, K.; Mielczarek, A. Dental Implant Healing Screws as Temporary Oral Drug Delivery Systems for Decrease of Infections in the Area of the Head and Neck. Int. J. Nanomed. 2022, 17, 1679–1693. [Google Scholar] [CrossRef]
- Hadzik, J.; Kubasiewicz-Ross, P.; Simka, W.; Gębarowski, T.; Barg, E.; Cieśla-Niechwiadowicz, A.; Szajna, A.T.; Szajna, E.; Gedrange, T.; Kozakiewicz, M.; et al. Fractal Dimension and Texture Analysis in the Assessment of Experimental Laser-Induced Periodic Surface Structures (LIPSS) Dental Implant Surface—In Vitro Study Preliminary Report. Materials 2022, 15, 2713. [Google Scholar] [CrossRef] [PubMed]
- Wach, T.; Kozakiewicz, M. Comparison of Two Clinical Procedures in Patient Affected with Bone Deficit in Posterior Mandible. Dent. Med. Probl. 2016, 53, 22–28. [Google Scholar] [CrossRef]
- Dowgierd, K.; Borowiec, M.; Kozakiewicz, M. Bone changes on lateral cephalograms and CBCT during treatment of maxillary narrowing using palatal osteodistraction with bone-anchored appliances. J. Cranio-Maxillofac. Surg. 2018, 46, 2069–2081. [Google Scholar] [CrossRef] [PubMed]
- Dowgierd, K.; Lipowicz, A.; Kulesa-Mrowiecka, M.; Wolański, W.; Linek, P.; Myśliwiec, A. Efficacy of immediate physiotherapy after surgical release of zygomatico-coronoid ankylosis in a young child: A case report. Physiother. Theory Pract. 2022, 38, 3187–3193. [Google Scholar] [CrossRef] [PubMed]
- Dowgierd, K.; Pokrowiecki, R.; Borowiec, M.; Sokolowska, Z.; Dowgierd, M.; Wos, J.; Kozakiewicz, M.; Krakowczyk, Ł. Protocol and Evaluation of 3D-Planned Microsurgical and Dental Implant Reconstruction of Maxillary Cleft Critical Size Defects in Adolescents and Young Adults. J. Clin. Med. 2021, 10, 2267. [Google Scholar] [CrossRef] [PubMed]
- Michalak, P.; Wyszyńska-Pawelec, G.; Szuta, M.; Hajto-Bryk, J.; Zapała, J.; Zarzecka, J.K. Fractures of the Craniofacial Skeleton in the Elderly: Retrospective Studies. Int. J. Environ. Res. Public Health 2021, 18, 11219. [Google Scholar] [CrossRef]
- Iezzi, G.; Pecora, G.; Scarano, A.; Perrotti, V.; Piattelli, A. Immediately loaded screw implant retrieved after a 12-year loading period: A histologic and histomorphometric case report. J. Osseointegration 2009, 1, 54–59. [Google Scholar] [CrossRef]
- Tumedei, M.; Piattelli, A.; Degidi, M.; Mangano, C.; Iezzi, G. A Narrative Review of the Histological and Histomorphometrical Evaluation of the Peri-Implant Bone in Loaded and Unloaded Dental Implants. A 30-Year Experience (1988–2018). Int. J. Environ. Res. Public Health 2020, 17, 2088. [Google Scholar] [CrossRef]
- Yonezawa, D.; Piattelli, A.; Favero, R.; Ferri, M.; Iezzi, G.; Botticelli, D. Bone Healing at Functionally Loaded and Unloaded Screw-Shaped Implants Supporting Single Crowns: A Histomorphometric Study in Humans. Int. J. Oral Maxillofac. Implant. 2018, 33, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Mangano, F.G.; Pires, J.T.; Shibli, J.A.; Mijiritsky, E.; Iezzi, G.; Piattelli, A.; Mangano, C. Early Bone Response to Dual Acid-Etched and Machined Dental Implants Placed in the Posterior Maxilla: A Histologic and Histomorphometric Human Study. Implant Dent. 2017, 26, 24–29. [Google Scholar] [CrossRef]
- Mangano, C.; Piattelli, A.; Mortellaro, C.; Mangano, F.; Perrotti, V.; Iezzi, G. Evaluation of Peri-Implant Bone Response in Implants Retrieved for Fracture After More Than 20 Years of Loading: A Case Series. J. Oral Implantol. 2015, 41, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Traini, T.; Mangano, C.; Perrotti, V.; Caputi, S.; Coelho, P.; Piattelli, A.; Iezzi, G. Human bone reactions around implants with adverse interfacial bone strain over 20 years. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1342–1352. [Google Scholar] [CrossRef]
- Piattelli, A.; Artese, L.; Penitente, E.; Iaculli, F.; Degidi, M.; Mangano, C.; Shibli, J.A.; Coelho, P.G.; Perrotti, V.; Iezzi, G. Osteocyte density in the peri-implant bone of implants retrieved after different time periods (4 weeks to 27 years). J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Iezzi, G.; Piattelli, A.; Mangano, C.; Shibli, J.A.; Vantaggiato, G.; Frosecchi, M.; Di Chiara, C.; Perrotti, V. Peri-implant bone tissues around retrieved human implants after time periods longer than 5 years: A retrospective histologic and histomorphometric evaluation of 8 cases. Odontology 2014, 102, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Mangano, C.; Piattelli, A.; Mangano, F.; Rustichelli, F.; Shibli, J.A.; Iezzi, G.; Giuliani, A. Histological and synchrotron radiation-based computed microtomography study of 2 human-retrieved direct laser metal formed titanium implants. Implant Dent. 2013, 22, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Mangano, C.; Perrotti, V.; Raspanti, M.; Mangano, F.; Luongo, G.; Piattelli, A.; Iezzi, G. Human Dental Implants with a Sandblasted, Acid-Etched Surface Retrieved After 5 and 10 Years: A Light and Scanning Electron Microscopy Evaluation of Two Cases. Int. J. Oral Maxillofac. Implant. 2013, 28, 917–920. [Google Scholar] [CrossRef][Green Version]
- Iezzi, G.; Degidi, M.; Shibli, J.; Vantaggiato, G.; Piattelli, A.; Perrotti, V. Bone Response to Dental Implants After a 3- to 10-Year Loading Period: A Histologic and Histomorphometric Report of Four Cases. Int. J. Periodontics Restor. Dent. 2013, 33, 755–761. [Google Scholar] [CrossRef]
- Iezzi, G.; Degidi, M.; Piattelli, A.; Shibli, J.A.; Perrotti, V. A Histological and Histomorphometrical Evaluation of Retrieved Human Implants with a Wettable, Highly Hydrophilic, Hierarchically Microstructured Surface: A retrospective analysis of 14 implants. Implant Dent. 2013, 22, 138–142. [Google Scholar] [CrossRef]
- Iezzi, G.; Vantaggiato, G.; Shibli, J.A.; Fiera, E.; Falco, A.; Piattelli, A.; Perrotti, V. Machined and sandblasted human dental implants retrieved after 5 years: A histologic and histomorphometric analysis of three cases. Quintessence Int. 2012, 43, 287–292. [Google Scholar] [PubMed]
- Degidi, M.; Perrotti, V.; Piattelli, A.; Iezzi, G. Mineralized bone-implant contact and implant stability quotient in 16 human implants retrieved after early healing periods: A histologic and histomorphometric evaluation. Int. J. Oral Maxillofac. Implant. 2010, 25, 45–48. [Google Scholar]
- Shibli, J.A.; Mangano, C.; D’Avila, S.; Piattelli, A.; Pecora, G.E.; Mangano, F.; Onuma, T.; Cardoso, L.A.; Ferrari, D.S.; Aguiar, K.C.; et al. Influence of direct laser fabrication implant topography on type IV bone: A histomorphometric study in humans. J. Biomed. Mater. Res. Part A 2010, 93, 607–614. [Google Scholar] [CrossRef]
- Shibli, J.A.; Grassi, S.; Piattelli, A.; Pecora, G.E.; Ferrari, D.S.; Onuma, T.; D’Avila, S.; Coelho, P.G.; Barros, R.; Iezzi, G. Histomorphometric Evaluation of Bioceramic Molecular Impregnated and Dual Acid-Etched Implant Surfaces in the Human Posterior Maxilla. Clin. Implant Dent. Relat. Res. 2010, 12, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Vantaggiato, G.; Iezzi, G.; Fiera, E.; Perrotti, V.; Piattelli, A. Histologic and Histomorphometric Report of Three Immediately Loaded Screw Implants Retrieved from Man After a Three-Year Loading Period. Implant Dent. 2008, 17, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, D.; Iezzi, G.; Scarano, A.; Perrotti, V.; Piattelli, A. Immediately Loaded Blade Implant Retrieved from a Man After a 20-year Loading Period: A Histologic and Histomorphometric Case Report. J. Oral Implantol. 2006, 32, 171–176. [Google Scholar] [CrossRef]
- Romanos, G.E.; Testori, T.; Degidi, M.; Piattelli, A. Histologic and Histomorphometric Findings from Retrieved, Immediately Occlusally Loaded Implants in Humans. J. Periodontol. 2005, 76, 1823–1832. [Google Scholar] [CrossRef]
- Degidi, M.; Scarano, A.; Iezzi, G.; Piattelli, A. Histologic and Histomorphometric Analysis of an Immediately Loaded Implant Retrieved from Man after 14 Months of Loading. J. Long-Term Eff. Med. Implant. 2005, 15, 489–498. [Google Scholar] [CrossRef]
- Degidi, M.; Petrone, G.; Iezzi, G.; Piattelli, A. Histologic evaluation of a human immediately loaded titanium implant with a porous anodized surface. Clin. Implant Dent. Relat. Res. 2002, 4, 110–114. [Google Scholar] [CrossRef]
- Piattelli, A.; Scarano, A.; Piattelli, M.; Bertolai, R.; Panzoni, E. Histologic Aspects of the Bone and Soft Tissues Surrounding Three Titanium Non-Submerged Plasma-Sprayed Implants Retrieved at Autopsy: A Case Report. J. Periodontol. 1997, 68, 694–700. [Google Scholar] [CrossRef]
- Trisi, P.; Quaranta, M.; Emanuelli, M.; Piattelli, A. A Light Microscopy, Scanning Electron Microscopy, and Laser Scanning Microscopy Analysis of Retrieved Blade Implants After 7 to 20 Years of Clinical Function. A Report of 3 Cases. J. Periodontol. 1993, 64, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Shibli, J.A.; Mangano, C.; Mangano, F.; Rodrigues, J.A.; Cassoni, A.; Bechara, K.; Ferreia, J.D.B.; Dottore, A.M.; Iezzi, G.; Piattelli, A. Bone-to-Implant Contact Around Immediately Loaded Direct Laser Metal-Forming Transitional Implants in Human Posterior Maxilla. J. Periodontol. 2013, 84, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Degidi, M.; Piattelli, A.; Shibli, J.A.; Perrotti, V.; Iezzi, G. Early bone formation around immediately restored implants with and without occlusal contact: A human histologic and histomorphometric evaluation. Case report. Int. J. Oral Maxillofac. Implant. 2009, 24, 734–739. [Google Scholar]
- Degidi, M.; Piattelli, A.; Shibli, J.A.; Perrotti, V.; Iezzi, G. Bone formation around immediately loaded and submerged dental implants with a modified sandblasted and acid-etched surface after 4 and 8 weeks: A human histologic and histomorphometric analysis. Int. J. Oral Maxillofac. Implant. 2009, 24, 896–901. [Google Scholar]
- Degidi, M.; Scarano, A.; Petrone, G.; Piattelli, A. Histologic Analysis of Clinically Retrieved Immediately Loaded Titanium Implants: A Report of 11 Cases. Clin. Implant Dent. Relat. Res. 2003, 5, 89–94. [Google Scholar] [CrossRef]
- Piattelli, A.; Trisi, P.; Romasco, N.; Emanuelli, M. Histologic analysis of a screw implant retrieved from man: Influence of early loading and primary stability. J. Oral Implantol. 1993, 19, 303–306. [Google Scholar]
- Rasperini, G.; Siciliano, V.I.; Cafiero, C.; Salvi, G.E.; Blasi, A.; Aglietta, M. Crestal Bone Changes at Teeth and Implants in Periodontally Healthy and Periodontally Compromised Patients. A 10-Year Comparative Case-Series Study. J. Periodontol. 2014, 85, e152–e159. [Google Scholar] [CrossRef]
- Degidi, M.; Scarano, A.; Iezzi, G.; Piattelli, A. Histologic Analysis of an Immediately Loaded Implant Retrieved after 2 Months. J. Oral Implantol. 2005, 31, 247–254. [Google Scholar] [CrossRef]
- Traini, T.; Pecora, G.; Iezzi, G.; Piattelli, A. Preferred Collagen Fiber Orientation in Human Peri-implant Bone After a Short- and Long-term Loading Period: A Case Report. J. Oral Implantol. 2006, 32, 177–181. [Google Scholar] [CrossRef]
- Traini, T.; Degidi, M.; Caputi, S.; Strocchi, R.; Di Iorio, D.; Piattelli, A. Collagen Fiber Orientation in Human Peri-Implant Bone Around Immediately Loaded and Unloaded Titanium Dental Implants. J. Periodontol. 2005, 76, 83–89. [Google Scholar] [CrossRef]
- Traini, T.; Degidi, M.; Iezzi, G.; Artese, L.; Piattelli, A. Comparative evaluation of the peri-implant bone tissue mineral density around unloaded titanium dental implants. J. Dent. 2007, 35, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.G.; Zamparini, F.; Iezzi, G.; Degidi, M.; Botticelli, D.; Piattelli, A.; Prati, C. Microchemical and Micromorphologic ESEM-EDX Analysis of Bone Mineralization at the Thread Interface in Human Dental Implants Retrieved for Mechanical Complications after 2 Months to 17 Years. Int. J. Periodontics Restor. Dent. 2018, 38, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.; Harrison, J.; Reed, R.; Cruickshank, B. Bone apposition rate as an index of bone metabolism. Metabolism 1978, 27, 143–150. [Google Scholar] [CrossRef]
- Pazzaglia, U.E.; Congiu, T.; Marchese, M.; Spagnuolo, F.; Quacci, D. Morphometry and Patterns of Lamellar Bone in Human Haversian Systems. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012, 295, 1421–1429. [Google Scholar] [CrossRef]
- Kungsadalpipob, K.; Supanimitkul, K.; Manopattanasoontorn, S.; Sophon, N.; Tangsathian, T.; Arunyanak, S.P. The lack of keratinized mucosa is associated with poor peri-implant tissue health: A cross-sectional study. Int. J. Implant Dent. 2020, 6, 28. [Google Scholar] [CrossRef]
- Albrektsson, T.; Brånemark, P.-I.; Hansson, H.-A.; Lindström, J. Osseointegrated Titanium Implants: Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man. Acta Orthop. Scand. 1981, 52, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Brånemark, P.; Adell, R.; Albrektsson, T.; Lekholm, U.; Lundkvist, S.; Rockler, B. Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials 1983, 4, 25–28. [Google Scholar] [CrossRef]
- Linkevicius, T.; Puisys, A.; Linkeviciene, L.; Peciuliene, V.; Schlee, M. Crestal Bone Stability around Implants with Horizontally Matching Connection after Soft Tissue Thickening: A Prospective Clinical Trial. Clin. Implant Dent. Relat. Res. 2015, 17, 497–508. [Google Scholar] [CrossRef]
- Vlachodimou, E.; Fragkioudakis, I.; Vouros, I. Is There an Association between the Gingival Phenotype and the Width of Keratinized Gingiva? A Systematic Review. Dent. J. 2021, 9, 34. [Google Scholar] [CrossRef]
- Baer, R.A.; Nölken, R.; Colic, S.; Heydecke, G.; Mirzakhanian, C.; Behneke, A.; Behneke, N.; Gottesman, E.; Ottria, L.; Pozzi, A.; et al. Immediately provisionalized tapered conical connection implants for single-tooth restorations in the maxillary esthetic zone: A 5-year prospective single-cohort multicenter analysis. Clin. Oral Investig. 2022, 26, 3593–3604. [Google Scholar] [CrossRef]
- Kinaia, B.M.; Shah, M.; Neely, A.L.; Goodis, H.E. Crestal Bone Level Changes Around Immediately Placed Implants: A Systematic Review and Meta-Analyses With at Least 12 Months’ Follow-Up After Functional Loading. J. Periodontol. 2014, 85, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
- Linkevicius, T.; Linkevicius, R.; Gineviciute, E.; Alkimavicius, J.; Mazeikiene, A.; Linkeviciene, L. The influence of new immediate tissue level abutment on crestal bone stability of subcrestally placed implants: A 1-year randomized controlled clinical trial. Clin. Implant Dent. Relat. Res. 2021, 23, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Linkevicius, T.; Puisys, A.; Linkevicius, R.; Alkimavicius, J.; Gineviciute, E.; Linkeviciene, L. The influence of submerged healing abutment or subcrestal implant placement on soft tissue thickness and crestal bone stability. A 2-year randomized clinical trial. Clin. Implant Dent. Relat. Res. 2020, 22, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Kołaciński, M.; Kozakiewicz, M.; Materka, A. Textural entropy as a potential feature for quantitative assessment of jaw bone healing process. Arch. Med. Sci. 2015, 11, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Dewan, H.; Robaian, A.; Divakar, D.D.; Hegde, S.M.R.; Shankar, S.M.; Poojari, B. Levels of peri-implant sulcular fluid levels of soluble urokinase plasminogen activator receptor and TNF-α among cigarette smokers and non-smokers with peri-implantitis. Technol. Health Care 2022. epub ahead of print. [Google Scholar] [CrossRef]
- Naveau, A.; Shinmyouzu, K.; Moore, C.; Avivi-Arber, L.; Jokerst, J.; Koka, S. Etiology and Measurement of Peri-Implant Crestal Bone Loss (CBL). J. Clin. Med. 2019, 8, 166. [Google Scholar] [CrossRef]
- Bohner, L.; Tortamano, P.; Meier, N.; Gremse, F.; Kleinheinz, J.; Hanisch, M. Trabecular Bone Assessment Using Magnetic-Resonance Imaging: A Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 9282. [Google Scholar] [CrossRef]
- Guenoun, D.; Fouré, A.; Pithioux, M.; Guis, S.; Le Corroller, T.; Mattei, J.-P.; Pauly, V.; Guye, M.; Bernard, M.; Chabrand, P.; et al. Correlative Analysis of Vertebral Trabecular Bone Microarchitecture and Mechanical Properties: A Combined Ultra-High Field (7 Tesla) MRI and Biomechanical Investigation. Spine 2017, 42, E1165–E1172. [Google Scholar] [CrossRef]
- Hadrowicz, J.; Hadrowicz, P.; Gesing, A.; Kozakiewicz, M. Age dependent alteration in bone surrounding dental implant. Dent. Med. Probl. 2014, 51, 27–34. [Google Scholar]
- Hadrowicz, P.; Hadrowicz, J.; Kozakiewicz, M.; Gesing, A. Assessment of Parathyroid Hormone Serum Level as a Predictor for Bone Condition Around Dental Implants. Int. J. Oral Maxillofac. Implant. 2017, 32, e207–e212. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Szyszkowski, A. Evaluation of selected prognostic factors in dental implant treatment–two-year follow-up. Dent. Med. Probl. 2014, 51, 439–447. [Google Scholar]
- Rózyło-Kalinowska, I. Digital radiography density measurements in differentiation between periapical granulomas and radicular cysts. Med. Sci. Monit. 2007, 13 (Suppl. 1), 129–136. [Google Scholar] [PubMed]
- Szyszkowski, A.; Kozakiewicz, M. Effect of Implant-Abutment Connection Type on Bone Around Dental Implants in Long-Term Observation: Internal cone versus internal hex. Implant Dent. 2019, 28, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Wach, T.; Kozakiewicz, M. Are recent available blended collagen-calcium phosphate better than collagen alone or crystalline calcium phosphate? Radiotextural analysis of a 1-year clinical trial. Clin. Oral Investig. 2021, 25, 3711–3718. [Google Scholar] [CrossRef] [PubMed]
- Grocholewicz, K.; Janiszewska-Olszowska, J.; Aniko-Włodarczyk, M.; Preuss, O.; Trybek, G.; Sobolewska, E.; Lipski, M. Panoramic radiographs and quantitative ultrasound of the radius and phalanx III to assess bone mineral status in postmenopausal women. BMC Oral Health 2018, 18, 127. [Google Scholar] [CrossRef] [PubMed]
- Bayrakdar, I.S.; Orhan, K.; Çelik, Ö.; Bilgir, E.; Sağlam, H.; Kaplan, F.A.; Görür, S.A.; Odabaş, A.; Aslan, A.F.; Różyło-Kalinowska, I. A U-Net Approach to Apical Lesion Segmentation on Panoramic Radiographs. BioMed Res. Int. 2022, 2022, 7035367. [Google Scholar] [CrossRef] [PubMed]
- Bilgir, E.; Bayrakdar, I.; Çelik, Ö.; Orhan, K.; Akkoca, F.; Sağlam, H.; Odabaş, A.; Aslan, A.F.; Ozcetin, C.; Kıllı, M.; et al. An artificial intelligence approach to automatic tooth detection and numbering in panoramic radiographs. BMC Med. Imaging 2021, 21, 124. [Google Scholar] [CrossRef] [PubMed]
- Srebrzyńska-Witek, A.; Koszowski, R.; Różyło-Kalinowska, I. Relationship between anterior mandibular bone thickness and the angulation of incisors and canines—A CBCT study. Clin. Oral Investig. 2018, 22, 1567–1578. [Google Scholar] [CrossRef]
- Moshfeghi, M.; Safi, Y.; Różyło-Kalinowska, I.; Gandomi, S. Does the size of an object containing dental implant affect the expression of artifacts in cone beam computed tomography imaging? Head Face Med. 2022, 18, 20. [Google Scholar] [CrossRef]
- Bohner, L.; Hanisch, M.; Sesma, N.; Blanck-Lubarsch, M.; Kleinheinz, J. Artifacts in magnetic resonance imaging caused by dental materials: A systematic review. Dentomaxillofacial Radiol. 2022, 51, 20210450. [Google Scholar] [CrossRef]
- Chang, G.; Honig, S.; Liu, Y.; Chen, C.; Chu, K.K.; Rajapakse, C.S.; Egol, K.; Xia, D.; Saha, P.K.; Regatte, R.R. 7 Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density. J. Bone Miner. Metab. 2015, 33, 285–293. [Google Scholar] [CrossRef][Green Version]
- Guenoun, D.; Pithioux, M.; Souplet, J.-C.; Guis, S.; Le Corroller, T.; Fouré, A.; Pauly, V.; Mattei, J.-P.; Bernard, M.; Guye, M.; et al. Assessment of proximal femur microarchitecture using ultra-high field MRI at 7 Tesla. Diagn. Interv. Imaging 2020, 101, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Krug, R.; Carballido-Gamio, J.; Banerjee, S.; Burghardt, A.J.; Link, T.M.; Majumdar, S. In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. J. Magn. Reson. Imaging 2008, 27, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, C.S.; Magland, J.; Zhang, X.H.; Liu, X.S.; Wehrli, S.L.; Guo, X.E.; Wehrli, F.W. Implications of noise and resolution on mechanical properties of trabecular bone estimated by image-based finite-element analysis. J. Orthop. Res. 2009, 27, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, C.S.; Kobe, E.; Batzdorf, A.S.; Hast, M.W.; Wehrli, F.W. Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing. Bone 2018, 108, 71–78. [Google Scholar] [CrossRef]
- Seifert, A.C.; Wehrli, F.W. Solid-State Quantitative 1H and 31P MRI of Cortical Bone in Humans. Curr. Osteoporos. Rep. 2016, 14, 77–86. [Google Scholar] [CrossRef]
- Dudek, D.; Kozakiewicz, M. Szerokość beleczek kostnych w szczęce i żuchwie człowieka na podstawie cyfrowych radiologicznych zdjęć wewnąrzustnych [Bone trabecula width in the human maxilla and mandible based on digital intraoral radiographs]. Mag. Stomatol. 2012, 236, 77–80. [Google Scholar]
- Rózyło-Kalinowska, I.; Michalska, A.; Burdan, F. Optimization of analysis of skeletal ossification of laboratory animals by means of digital radiography software options. Ann. Univ. Mariae Curie-Sklodowska 2003, 58, 95–100. [Google Scholar]
- Kozakiewicz, M.; Skorupska, M.; Wach, T. What Does Bone Corticalization around Dental Implants Mean in Light of Ten Years of Follow-Up? J. Clin. Med. 2022, 11, 3545. [Google Scholar] [CrossRef]
- Kozakiewicz, M. Measures of Corticalization. J. Clin. Med. 2022, 11, 5463. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Wilamski, M. Technika standaryzacji wewnątrzustnych zdjęć rentgenowskich [Standardization technique for intraoral radiographs]. Czas. Stomatol. 1999, 52, 673–677. [Google Scholar]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda–The Software Package for Textural Analysis of Biomedical Images. In Computers in Medical Activity; Advances in Intelligent and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 65, pp. 73–84. [Google Scholar]
- Kozakiewicz, M.; Bogusiak, K.; Hanclik, M.; Denkowski, M.; Arkuszewski, P. Noise in subtraction images made from pairs of intraoral radiographs: A comparison between four methods of geometric alignment. Dentomaxillofacial Radiol. 2008, 37, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Kozakiewicz, M.; Szymor, P.; Wach, T. Influence of General Mineral Condition on Collagen-Guided Alveolar Crest Augmentation. Materials 2020, 13, 3649. [Google Scholar] [CrossRef] [PubMed]
- Kozakiewicz, M.; Wach, T. New Oral Surgery Materials for Bone Reconstruction—A Comparison of Five Bone Substitute Materials for Dentoalveolar Augmentation. Materials 2020, 13, 2935. [Google Scholar] [CrossRef]
- Wach, T.; Kozakiewicz, M. Fast-Versus Slow-Resorbable Calcium Phosphate Bone Substitute Materials—Texture Analysis after 12 Months of Observation. Materials 2020, 13, 3854. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Materka, A.; Strzelecki, M. Texture Analysis Methods–A Review, COST B11 Report. Presented at MC Meeting and Workshop, Brussels, Belgium, 25 June 1998; Technical University of Lodz: Lodz, Poland, 1998. [Google Scholar]
- Eriksson, R.A.; Albrektsson, T.; Magnusson, B. Assessment of Bone Viability After Heat Trauma: A Histological, Histochemical and Vital Microscopic Study in the Rabbit. Scand. J. Plast. Reconstr. Surg. 1984, 18, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Dahlin, C.; Jemt, T.; Sennerby, L.; Turri, A.; Wennerberg, A. Is Marginal Bone Loss around Oral Implants the Result of a Provoked Foreign Body Reaction? Clin. Implant. Dent. Relat. Res. 2014, 16, 155–165. [Google Scholar] [CrossRef]
- Buser, D.; Janner, S.F.M.; Wittneben, J.-G.; Brägger, U.; Ramseier, C.A.; Salvi, G.E. 10-Year Survival and Success Rates of 511 Titanium Implants with a Sandblasted and Acid-Etched Surface: A Retrospective Study in 303 Partially Edentulous Patients. Clin. Implant. Dent. Relat. Res. 2012, 14, 839–851. [Google Scholar] [CrossRef]
- Szczypinski, P.M.; Klepaczko, A.; Kociolek, M. QMaZda—Software tools for image analysis and pattern recognition. In Proceedings of the 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 20–22 September 2017; pp. 217–221. [Google Scholar] [CrossRef]
- Albrektsson, T.; Tengvall, P.; Amengual-Peñafiel, L.; Coli, P.; Kotsakis, G.; Cochran, D.L. Implications of considering peri-implant bone loss a disease, a narrative review. Clin. Implant Dent. Relat. Res. 2022, 24, 532–543. [Google Scholar] [CrossRef]
- Roccuzzo, M.; De Angelis, N.; Bonino, L.; Aglietta, M. Ten-year results of a three-arm prospective cohort study on implants in periodontally compromised patients. Part 1: Implant loss and radiographic bone loss. Clin. Oral Implant. Res. 2010, 21, 490–496. [Google Scholar] [CrossRef]
- Pandey, C.; Rokaya, D.; Bhattarai, B.P. Contemporary Concepts in Osseointegration of Dental Implants: A Review. BioMed Res. Int. 2022, 2022, 6170452. [Google Scholar] [CrossRef] [PubMed]
- Papaspyridakos, P.; Chen, C.-J.; Singh, M.; Weber, H.-P.; Gallucci, G.O. Success criteria in implant dentistry: A systematic review. J. Dent. Res. 2012, 91, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Amengual-Peñafiel, L.; Córdova, L.A.; Jara-Sepúlveda, M.C.; Brañes-Aroca, M.; Marchesani-Carrasco, F.; Cartes-Velásquez, R. Osteoimmunology drives dental implant osseointegration: A new paradigm for implant dentistry. Jpn. Dent. Sci. Rev. 2021, 57, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wu, C.; Xiao, Y. Convergence of Osteoimmunology and Immunomodulation for the Development and Assessment of Bone Biomaterials. In The Immune Response to Implanted Materials and Devices; Corradetti, B., Ed.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Negrescu, A.-M.; Cimpean, A. The State of the Art and Prospects for Osteoimmunomodulatory Biomaterials. Materials 2021, 14, 1357. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Li, Q.; Zhang, D.; Zhang, X.; Qi, X.; Wang, Q.; Chen, Y.; Liu, C.; Li, H.; Zhang, S.; et al. Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution. Bone Res. 2021, 9, 17. [Google Scholar] [CrossRef]
- Atcha, H.; Meli, V.S.; Davis, C.T.; Brumm, K.T.; Anis, S.; Chin, J.; Jiang, K.; Pathak, M.M.; Liu, W.F. Crosstalk Between CD11b and Piezo1 Mediates Macrophage Responses to Mechanical Cues. Front. Immunol. 2021, 12, 689397. [Google Scholar] [CrossRef]
- Refai, A.K.; Cochran, D.L. Harnessing Omics Sciences and Biotechnologies in Understanding Osseointegration—Personalized Dental Implant Therapy. Int. J. Oral Maxillofac. Implant. 2020, 35, e27–e39. [Google Scholar] [CrossRef]
- Tengvall, P.; Skoglund, B.; Askendal, A.; Aspenberg, P. Surface immobilized bisphosphonate improves stainless-steel screw fixation in rats. Biomaterials 2004, 25, 2133–2138. [Google Scholar] [CrossRef]
- Abtahi, J.; Henefalk, G.; Aspenberg, P. Impact of a zoledronate coating on early post-surgical implant stability and marginal bone resorption in the maxilla—A Split-Mouth Randomized Clinical Trial. Clin. Oral Implant. Res. 2019, 30, 49–58. [Google Scholar] [CrossRef]
- Abtahi, J.; Henefalk, G.; Aspenberg, P. Randomised trial of bisphosphonate-coated dental implants: Radiographic follow-up after five years of loading. Int. J. Oral Maxillofac. Surg. 2016, 45, 1564–1569. [Google Scholar] [CrossRef]
- Kim, J.-J.; Lee, J.-H.; Kim, J.C.; Lee, J.-B.; Yeo, I.-S.L. Biological Responses to the Transitional Area of Dental Implants: Material- and Structure-Dependent Responses of Peri-Implant Tissue to Abutments. Materials 2020, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Garzón, N.; Velasco-Ortega, E.; López-López, J. Bone Loss in Implants Placed at Subcrestal and Crestal Level: A Systematic Review and Meta-Analysis. Materials 2019, 12, 154. [Google Scholar] [CrossRef] [PubMed]
- Piattelli, A.; Vrespa, G.; Petrone, G.; Iezzi, G.; Annibali, S.; Scarano, A. Role of the Microgap Between Implant and Abutment: A Retrospective Histologic Evaluation in Monkeys. J. Periodontol. 2003, 74, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Linkevicius, T.; Apse, P.; Grybauskas, S.; Puisys, A. The influence of soft tissue thickness on crestal bone changes around implants: A 1-year prospective controlled clinical trial. Int. J. Oral Maxillofac. Implant. 2009, 24, 712–719. [Google Scholar]
- Aslroosta, H.; Akbari, S.; Naddafpour, N.; Adnaninia, S.T.; Khorsand, A.; Esfahani, N.N. Effect of microthread design on the preservation of marginal bone around immediately placed implants: A 5-years prospective cohort study. BMC Oral Health 2021, 21, 541. [Google Scholar] [CrossRef] [PubMed]
- Covani, U.; Chiappe, G.; Bosco, M.; Orlando, B.; Quaranta, A.; Barone, A. A 10-Year Evaluation of Implants Placed in Fresh Extraction Sockets: A Prospective Cohort Study. J. Periodontol. 2012, 83, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Sheikhan, E.; Kadkhodazadeh, M.; Amid, R.; Lafzi, A. Interactive Effects of Five Dental Implant Design Parameters on the Peak Strains at the Interfacial Bone: A Finite Element Study. Int. J. Oral Maxillofac. Implant. 2022, 37, 302–310. [Google Scholar] [CrossRef]
- Bryant, S.R. Oral Implant Outcomes Predicted by Age- and Site-Specific Aspects of Bone Condition. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2001. [Google Scholar]
- Linkevicius, T.; Puisys, A.; Vindasiute, E.; Linkeviciene, L.; Apse, P. Does residual cement around implant-supported restorations cause peri-implant disease? A retrospective case analysis. Clin. Oral Implant. Res. 2013, 24, 1179–1184. [Google Scholar] [CrossRef]
- Carcuac, O.; Jansson, L. Peri-implantitis in a specialist clinic of periodontology. Clinical features and risk indicators. Swed. Dent. J. 2010, 34, 53–61. [Google Scholar]
- Roos-Jansåker, A.-M. Long time follow up of implant therapy and treatment of peri-implantitis. Swed. Dent. J. Suppl. 2007, 188, 7–66. [Google Scholar]
- Fransson, C.; Lekholm, U.; Jemt, T.; Berglundh, T. Prevalence of subjects with progressive bone loss at implants. Clin. Oral Implant. Res. 2005, 16, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Gesing, A. The thyroid gland and the process of aging. Thyroid Res. 2015, 8, A8. [Google Scholar] [CrossRef]
- Biondi, B.; Cooper, D.S. The Clinical Significance of Subclinical Thyroid Dysfunction. Endocr. Rev. 2008, 29, 76–131. [Google Scholar] [CrossRef] [PubMed]
- Borowska, M.; Bębas, E.; Szarmach, J.; Oczeretko, E. Multifractal characterization of healing process after bone loss. Biomed. Signal Process. Control 2019, 52, 179–186. [Google Scholar] [CrossRef]
- Borowska, M.; Szarmach, J.; Oczeretko, E. Fractal texture analysis of the healing process after bone loss. Comput. Med. Imaging Graph. 2015, 46, 191–196. [Google Scholar] [CrossRef]
- Pociask, E.; Nurzynska, K.; Obuchowicz, R.; Bałon, P.; Uryga, D.; Strzelecki, M.; Izworski, A.; Piórkowski, A. Differential Diagnosis of Cysts and Granulomas Supported by Texture Analysis of Intraoral Radiographs. Sensors 2021, 21, 7481. [Google Scholar] [CrossRef]
Manufacturer Implant Type | Titanium Alloy | Level | Connection Type | Connection Shape | Neck Shape | Neck Microthreads | Body Shape | Body Threads | Apex Shape | Apex Hole | Apex Groove |
---|---|---|---|---|---|---|---|---|---|---|---|
AB Dental Devices I5 | Grade 5 | Bone Level | Internal | Hexagon | Straight | No | Tapered | Square | Flat | No Hole | Yes |
ADIN Dental Implants Touareg | Grade 5 | Bone Level | Internal | Hexagon | Straight | Yes | Tapered | Square | Flat | No Hole | Yes |
Alpha Bio ARRP | Grade 5 | Tissue Level | Custom | One Piece Abutment | Straight | No | Tapered | Reverse Buttress | Cone | No Hole | No |
Alpha Bio ATI | Grade 5 | Bone Level | Internal | Hexagon | Straight | Yes | Straight | Square | Flat | No Hole | Yes |
Alpha Bio DFI | Grade 5 | Bone Level | Internal | Hexagon | Straight | Yes | Tapered | Square | Flat | No Hole | Yes |
Alpha Bio OCI | Grade 5 | Bone Level | Internal | Hexagon | Straight | No | Straight | No Threads | Dome | Round | No |
Alpha Bio SFB | Grade 5 | Bone Level | Internal | Hexagon | Straight | No | Tapered | V Shaped | Flat | No Hole | Yes |
Alpha Bio SPI | Grade 5 | Bone Level | Internal | Hexagon | Straight | Yes | Tapered | Square | Flat | No Hole | Yes |
Argon Medical Prod. K3pro Rapid | Grade 4 | Subcrestal | Internal | Conical | Straight | Yes | Tapered | V Shaped | Dome | No Hole | Yes |
Bego Semados RI | Grade 4 | Bone Level | Internal | Hexagon | Straight | Yes | Tapered | Reverse Buttress | Cone | No Hole | Yes |
Dentium Super Line | Grade 5 | Bone Level | Internal | Conical | Straight | No | Tapered | Buttress | Dome | No Hole | Yes |
Friadent Ankylos C/X | Grade 4 | Subcrestal | Internal | Conical | Straight | No | Tapered | V Shaped | Dome | No Hole | Yes |
Implant Direct InterActive | Grade 5 | Bone Level | Internal | Conical | Straight | Yes | Tapered | Reverse Buttress | Dome | No Hole | Yes |
Implant Direct Legacy 3 | Grade 5 | Bone Level | Internal | Hexagon | Straight | Yes | Tapered | Reverse Buttress | Dome | No Hole | Yes |
MIS BioCom M4 | Grade 5 | Bone Level | Internal | Hexagon | Straight | No | Straight | V Shaped | Flat | No Hole | Yes |
MIS C1 | Grade 5 | Bone Level | Internal | Conical | Straight | Yes | Tapered | Reverse Buttress | Dome | No Hole | Yes |
MIS Seven | Grade 5 | Bone Level | Internal | Hexagon | Straight | Yes | Tapered | Reverse Buttress | Dome | No Hole | Yes |
MIS UNO One Piece | Grade 5 | Tissue Level | Custom | One Piece Abutment | Straight | No | Tapered | Square | Dome | No Hole | Yes |
Osstem Implant Company GS III | Grade 5 | Bone Level | Internal | Conical | Straight | Yes | Tapered | V Shaped | Dome | No Hole | Yes |
SGS Dental P7N | Grade 5 | Bone Level | Internal | Hexagon | Straight | Yes | Tapered | V Shaped | Flat | No Hole | Yes |
TBR Implanté | Grade 5 | Bone Level | Internal | Octagon | Straight | No | Straight | No Threads | Flat | Round | Yes |
Wolf Dental Conical Screw-Type | Grade 4 | Bone Level | Internal | Hexagon | Straight | No | Tapered | V Shaped | Cone | No Hole | Yes |
Region of Interest/Period | Corticalization Index | Marginal Bone Loss [mm] | Simple Regression |
---|---|---|---|
Reference Cancellous Bone | 149 ± 178 | 0.00 ± 0.00 | n.a. |
Initial Peri-Implant Observation | 200 ± 146 | 0.25 ± 0.94 | n.s. |
5 Years Peri-Implant Observation | 282 ± 182 | 0.83 ± 1.26 | CC = 0.11; R2 = 1.2%; p < 0.001 |
10 Years Peri-Implant Observation | 261 ± 168 | 1.48 ± 2.01 | CC = 0.12; R2 = 1,4%; p < 0.01 |
Clinical Feature | Option/Value of the Feature | Corticalization Index | ||
---|---|---|---|---|
Initial | 5 Years | 10 Years | ||
Sex | Female | 205 ± 169 | 279 ± 176 | 263 ± 151 |
Male | 194 ± 114 | 285 ± 190 | 260 ± 190 | |
Tobacco Smoking | Non-Smoker | 200 ± 152 L | 283 ± 185 | 257 ± 166 L |
Smoker | 203 ± 91 H | 272 ±155 | 301 ± 184 H | |
Jaw | Maxilla | 175 ± 108 L | 239 ± 151 L | 223 ± 148 L |
Mandible | 190 ± 179 H | 336 ± 203 H | 302 ± 179 H | |
Localization in Dental Arch | Anterior | 166 ± 92 L | 247 ± 163 L | 226 ± 162 L |
Posterior | 212 ± 174 H | 295 ± 188 H | 273 ± 169 H | |
Jawbone Status | Augmented | 220 ± 210 | 267 ± 164 | 263 ± 142 |
Intact | 193 ± 116 | 286 ± 188 | 261 ± 176 | |
Augmentation Technique | Implant Neck Bone Chips | 236 ± 269 | 292 ± 187 | 271 ± 133 |
Implant Neck Bone Substitute | 183 ± 107 | 210 ± 138 | 280 ± 211 | |
Bone Substitute Sinus Lift | 210 ± 143 | 248 ± 138 | 252 ± 135 | |
Age | 47 ± 13 years | Direct Relation * | Direct Relation * | No Relation |
Patient Height | 1.70 ± 0.09 m | No Relation | No Relation | Inverse Relation * |
Patient Weight | 75 ± 19 Kg | No Relation | Inverse Relation * | Inverse Relation * |
Body Mass Index | 26 ± 4 | No Relation | Inverse Relation * | Inverse Relation * |
Serum Thyrotropin | 1.73 ± 1.07 mU/L | Direct Relation * | Direct Relation * | Direct Relation * |
Total Serum Calcium | 2.39 ± 0.61 mmol/dL | Inverse Relation * | Inverse Relation * | Inverse Relation * |
Serum Triglycerides | 1.24 ± 0.57 mmol/L | Direct Relation * | No Relation | No Relation |
Design Parameter | Option | Feature | Initial | 5 Years | 10 Years |
---|---|---|---|---|---|
Titanium Alloy n = 2196 | Grade 4 | MBL | 0.00 L | 0.00 L | 0.00 |
CI | 184 H | 179 L | 189 | ||
Grade 5 | MBL | 0.00 H | 0.00 H | 0.91 | |
CI | 163 L | 225 H | 209 | ||
Immersion Level n = 2196 | Subcrestal | MBL | 0.00 L | 0.00 L | 0.00 L |
CI | 198 H | 181 | 201 L | ||
Bone Level | MBL | 0.00 | 0.00 | 0.97 H | |
CI | 163 L | 224 | 205 L | ||
Tissue Level | MBL | 0.00 H | 1.24 H | 0.00 | |
CI | 154 | 222 | 439 H | ||
Connection Type n = 2196 | Internal | MBL | 0.00 L | 0.00 L | 0.91 |
CI | 167 | 221 | 205 L | ||
Custom | MBL | 0.00 H | 1.24 H | 0.00 | |
CI | 154 | 222 | 439 H | ||
Connection Shape n = 2196 | Conical | MBL | 0.00 | 0.00 | 0.00 |
CI | 202 H | 225 | 200 L | ||
Internal Hexagon | MBL | 0.00 | 0.00 | 0.97 | |
CI | 151 L | 220 | 205 L | ||
Internal Octagon | MBL | 0.00 | 0.67 | 2.91 | |
CI | 205 | 168 | 268 | ||
One Piece Abutm | MBL | 0.00 | 1.24 | 0.00 | |
CI | 154 | 222 | 439 H | ||
Head Microthreads n = 2196 | Yes | MBL | 0.00 | 0.00 L | 0.73 L |
CI | 170 H | 221 | 201 | ||
No | MBL | 0.00 | 0.61 H | 1.15 H | |
CI | 158 L | 222 | 227 | ||
Body Shape n = 2196 | Tapered | MBL | 0.00 | 0.00 L | 0.85 |
CI | 167 | 226 H | 206 | ||
Straight | MBL | 0.00 | 1.33 H | 1.15 | |
CI | 172 | 147 L | 206 | ||
Body Threads n = 1760 | Butteress | MBL | 0.00 | 2.15 H | n.a. |
CI | 190 | 383 H | n.a | ||
Reverse Butteress | MBL | 0.00 L | 0.00 L | 0.79 L | |
CI | 171 H | 239 H | 213 | ||
V Shape | MBL | 0.00 L | 0.00 L | 0.00 L | |
CI | 174 H | 197 L | 184 | ||
Square | MBL | 0.00 L | 0.00 L | 0.91 L | |
CI | 150 L | 201 L | 211 | ||
No Threads | MBL | 0.30 H | 1.54 H | 2.57 H | |
CI | 190 | 164 L | 232 | ||
Apex Shape n = 2196 | Cone | MBL | 0.00 | 0.00 | 0.00 |
CI | 122 L | 199 | 193 | ||
Dome | MBL | 0.00 | 0.00 | 0.79 | |
CI | 174 H | 230 H | 213 | ||
Flat | MBL | 0.00 | 0.45 H | 1.21 | |
CI | 148 | 103 L | 201 | ||
Apex Hole n = 1447 | Round | MBL | 0.00 L | 1.54 H | 2.57 H |
CI | 190 | 164 L | 232 | ||
No or other | MBL | 0.30 H | 0.00 L | 0.79 L | |
CI | 167 | 221 H | 206 | ||
Apex Groove n = 2196 | Yes | MBL | 0.00 L | 0.00 L | 0.79 L |
CI | 167 | 220 | 105 | ||
No | MBL | 0.00 H | 1.66 H | 2.00 H | |
CI | 154 | 297 | 258 |
Prosthetic | n | Feature | Initial | 5 Years | 10 Years |
---|---|---|---|---|---|
Single Crown | 734 | MBL | 0.00 H | 0.00 | 0.91 |
CI | 153 L | 196 L | 186 L | ||
Splinted Crowns | 794 | MBL | 0.00 | 0.00 | 1.20 H |
CI | 198 | 224 | 227 H | ||
Bridge | 576 | MBL | 0.00 L | 0.00 L | 0.00 L |
CI | 172 H | 251 H | 215 | ||
Overdenture | 160 | MBL | 0.00 | 0.49 H | 0.00 L |
CI | 185 H | 392 H | 239 H | ||
Platform Switching | 509 | MBL | 0.00 | 0.00 | 1.06 |
CI | 155 L | 197 L | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozakiewicz, M.; Wach, T. Exploring the Importance of Corticalization Occurring in Alveolar Bone Surrounding a Dental Implant. J. Clin. Med. 2022, 11, 7189. https://doi.org/10.3390/jcm11237189
Kozakiewicz M, Wach T. Exploring the Importance of Corticalization Occurring in Alveolar Bone Surrounding a Dental Implant. Journal of Clinical Medicine. 2022; 11(23):7189. https://doi.org/10.3390/jcm11237189
Chicago/Turabian StyleKozakiewicz, Marcin, and Tomasz Wach. 2022. "Exploring the Importance of Corticalization Occurring in Alveolar Bone Surrounding a Dental Implant" Journal of Clinical Medicine 11, no. 23: 7189. https://doi.org/10.3390/jcm11237189
APA StyleKozakiewicz, M., & Wach, T. (2022). Exploring the Importance of Corticalization Occurring in Alveolar Bone Surrounding a Dental Implant. Journal of Clinical Medicine, 11(23), 7189. https://doi.org/10.3390/jcm11237189