Modelling of Diffusion and Reaction of Carbon Dioxide and Nutrients in Biofilm for Optimal Design and Operation of Emerging Membrane Carbonated Microalgal Biofilm Photobioreactors
Abstract
1. Introduction
2. Materials and Methods
2.1. Basic Governing Equations
- (1)
- That a quasi-steady state of the biofilm thickness can be assumed under tested conditions. That is, the biofilm thickness does not change with time. This is reasonable, considering that the growth rate of biofilm thickness is much smaller than the diffusion and reaction of CO2, N, and P in microalgal biofilm;
- (2)
- That there is no limitation on light penetration under tested conditions. Thus, the impact of light intensity is neglected in the present study in order to simplify the models. This could be true for cases of high light intensity illumination, a thin layer of biofilm, pulsed and flashing light, and lighting on both sides (top and bottom) of the biofilm;
- (3)
- That CO2, N, and P concentrations are the limiting factors, and the Monod equations can be used to describe the microalgal microbial kinetics;
- (4)
- That CO2 is the only inorganic carbon source for microalgal biofilm development;
- (5)
- That pH effects and CO2 speciation (CO2, HCO3−1, CO32−) are excluded;
- (6)
- That the MC-MBPBR is operated at ambient temperature (around 25 °C).
2.2. Boundary Conditions
2.3. Numerical Methods
2.4. Values of Parameters
2.5. Validation of Mathematical Models
2.6. Sensitivity Analysis
3. Results and Discussion
3.1. Concentration Profiles of CO2, Total Nitrogen (TN), and Total Phosphorus (TP) into the Biofilm
3.2. Transfer Fluxes of CO2, TN, and TP into the Biofilm
3.3. Sensitivity Analysis of the Impacts of Critical Parameters
3.4. Validation of the Mathematical Models with Experimental Results from the Literature
3.5. Limitations of This Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COD | chemical oxygen demand |
DIC | dissolved inorganic carbon |
MC-MBPBR | membrane carbonated microalgal biofilm photobioreactor |
PTFE | polytetrafluoroethylene |
TN | total nitrogen |
TP | total phosphorus |
References
- Moreno Osorio, J.H.; Pollio, A.; Frunzo, L.; Lens, P.N.L.; Esposito, G. A review of microalgal biofilm technologies: Definition, applications, settings and analysis. Front. Chem. Eng. 2021, 3, 737710. [Google Scholar] [CrossRef]
- Ennaceri, H.; Ishika, T.; Mkpuma, V.O.; Moheimani, N.R. Microalgal biofilms: Towards a sustainable biomass production. Algal Res. 2023, 72, 103124. [Google Scholar] [CrossRef]
- Drexler, I.L.C.; Yeh, D.H. Membrane applications for microalgae cultivation and harvesting: A review. Rev. Environ. Sci. Bio/Technol. 2014, 13, 487–504. [Google Scholar] [CrossRef]
- Bilad, M.R.; Arafat, H.A.; Vankelecom, I.F. Membrane technology in microalgae cultivation and harvesting: A review. Biotechnol. Adv. 2014, 32, 1283–1300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.J.; Yao, L.S.; Maleki, E.; Liao, B.Q.; Lin, H.J. Membrane technologies for microalgal cultivation and dewatering: Recent progress and challenges. Algal Res. 2019, 44, 101686. [Google Scholar] [CrossRef]
- Tan, J.S.; Lee, S.Y.; Chew, K.W.; Lam, M.K.; Lim, J.W.; Ho, S.H.; Show, P.L. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 2020, 11, 116–129. [Google Scholar] [CrossRef]
- Uduman, N.; Qi, Y.; Danquah, M.K.; Forde, G.M.; Hoadley, A. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J Renew. Sustain. Energy 2010, 2, 012701. [Google Scholar] [CrossRef]
- Amer, L.; Adhikari, B.; Pellegrino, J. Techno-economic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresour. Technol. 2011, 102, 9350–9359. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhao, Y.Y.; Chu, H.Q.; Zhou, X.F.; Dong, B.Z. Dewatering of Chlorella pyrenoidosa using diatomite dynamic membrane: Filtration performance, membrane fouling and cake behavior. Colloids Surf. B Biointerfaces 2014, 113, 458–466. [Google Scholar] [CrossRef]
- Chen, X.; Huang, C.; Liu, T. Harvesting of microalgae Scenedesmus sp. using polyvinylidene fluoride microfiltration membrane. Desalination Water Treat. 2012, 45, 177–181. [Google Scholar] [CrossRef]
- Berner, F.; Heimann, K.; Sheehan, M. Microalgal biofilms for biomass production. J. Appl. Phycol. 2015, 2795, 1793–1804. [Google Scholar] [CrossRef]
- Rajendran, A.; Hu, B. Mycoalgae biofilm: Development of a novel platform technology using algae and fungal cultures. Biotechnol. Biofuels Bioprod. 2016, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Garieri, T.; Allen, D.G.; Gao, W.; Liao, B.Q. A review of emerging membrane-based microalgal-bacterial processes for wastewater treatment: Process configurations, biological and membrane performance, and perspectives. Sci. Total Environ. 2024, 927, 172141. [Google Scholar] [CrossRef]
- Kesaano, M.; Sims, R.C. Algal biofilm-based technology for wastewater treatment. Algal Res. 2014, 5, 231–240. [Google Scholar] [CrossRef]
- Wang, J.F.; Liu, W.; Liu, T.Z. Biofilm based attached cultivation technology for microalgal biorefineries—A review. Bioresour. Technol. 2017, 244, 1245–1253. [Google Scholar] [CrossRef]
- Christenson, L.B.; Sims, R.C. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol. Bioeng. 2012, 109, 1674–1684. [Google Scholar] [CrossRef]
- Blanken, W.; Janssen, M.; Cuaresma, M.; Libor, Z.; Bhaiji, T.; Wijffels, R.H. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechno. Bioeng. 2014, 111, 2436–2445. [Google Scholar] [CrossRef]
- Schnurr, P.J.; Allen, D.G. Factors affecting algae biofilm growth and lipid production: A review. Renew. Sustain. Energy Rev. 2015, 52, 418–429. [Google Scholar] [CrossRef]
- Essila, N.J.; Semmens, M.J.; Voller, V.R. Modeling biofilms on gas-permeable supports: Concentration and activity profiles. J. Environ. Eng. 2000, 126, 250–257. [Google Scholar] [CrossRef]
- Semmens, M.J.; Essila, N.J. Modeling biofilms on gas-permeable supports: Flux limitations. J. Environ. Eng. 2001, 127, 126–133. [Google Scholar] [CrossRef]
- Lu, D.W.; Bai, H.; Kong, F.G.; Liss, S.N.; Liao, B.Q. Recent advances in membrane aerated biofilm reactors. Crit. Rev. Environ. Sci. Technol. 2021, 51, 649–703. [Google Scholar] [CrossRef]
- Lu, D.W.; Bai, H.; Liao, B.Q. Comparison between thermophilic and mesophilic membrane-aerated biofilm reactors—A modeling study. Membranes 2022, 12, 418. [Google Scholar] [CrossRef]
- Tang, D.H.; Han, W.; Li, P.L.; Miao, X.L.; Zhong, J.J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 2011, 102, 3071–3076. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Singh, P. Effect of CO2 concentration on algal growth: A review. Renew. Sustain. Energy Rev. 2014, 38, 172–179. [Google Scholar] [CrossRef]
- Zheng, Q.; Xu, X.Y.; Martin, G.J.O.; Kentish, S.E. Critical review of strategies for CO2 delivery to large-scale microalgae cultures. Chinese J. Chem. Eng. 2018, 26, 2219–2228. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.Z.; Wang, S.W.; Ding, K. Effect of carbon dioxide on biomass and lipid production of Chlorella pyrenoidosa in a membrane bioreactor with gas-liquid separation. Algal Res. 2018, 31, 70–76. [Google Scholar] [CrossRef]
- Garg, M. A Membrane-Based Biofilm Photobioreactor for Enhanced Algal Growth Rates. Master’s Thesis, University of Notre Dame, Notre Dame, IN, USA, 2018. [Google Scholar]
- Guo, C.L.; Duan, D.R.; Sun, Y.H.; Han, Y.Y.; Zhao, S. Enhancing Scenedesmus obliquus biofilm growth and CO2 fixation in a gas-permeable membrane photobioreactor integrated with additional rough surface. Algal Res. 2019, 43, 101620. [Google Scholar] [CrossRef]
- Ding, K.; Wang, N.; Huang, X.M.; Liao, C.M.; Liu, S.A.; Yang, M.; Wang, Y.Z. Enhancing lipid productivity with novel SiO2-modified polytetrafluoroethylene (PTFE) membranes in a membrane photobioreactor. Algal Res. 2020, 45, 101752. [Google Scholar] [CrossRef]
- Sun, Y.H.; Duan, D.R.; Chang, H.X.; Guo, C.L. Optimizing light distributions in a membrane photobioreactor via optical fibers to enhance CO2 photobiochemical conversion by a Scenedesmus obliquus biofilm. Ind. Eng. Chem. Res. 2020, 59, 21654–21662. [Google Scholar] [CrossRef]
- Zhang, B.R.; Liu, J.B.; Cai, C.; Zhou, Y. Membrane photobioreactor for biogas capture and conversion—Enhanced microbial interaction in biofilm. Bioresour. Technol. 2025, 418, 131999. [Google Scholar] [CrossRef]
- Flores-Alsina, X.; Uri-Carreno, N.; Nielsen, P.H.; Gernaey, K.V. Modelling the impacts of operational conditions on the performance of a full-scale membrane aerated biofilm reactor. Sci. Total Environ. 2023, 856, 158980. [Google Scholar] [CrossRef]
- Lee, E.; Jalalizadeh, M.; Zhang, Q. Growth kinetic models in microalgae cultivation: A review. Algal Res. 2015, 12, 497–512. [Google Scholar] [CrossRef]
- Stewart, P.S. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol. Bioeng. 1998, 59, 261–272. [Google Scholar] [CrossRef]
- Stewart, P.S. Diffusion in biofilms. J. Bacteriol. 2003, 185, 1485–1491. [Google Scholar] [CrossRef]
- Mazarei, A.F.; Sandall, O.C. Diffusion coefficients of helium, hydrogen, and carbon dioxide in water at 25 °C. AIChE J. 1980, 26, 154–157. [Google Scholar] [CrossRef]
- Brown, T.L.; LeMay, H.E., Jr.; Bursten, B.E.; Murphy, C.J.; Woodward, P. Chemistry: The Central Science, 11th ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2009; pp. 540–541. [Google Scholar]
- Lee, E.; Zhang, Q. Integrated co-limitation kinetic model for microalgae growth in anaerobically digested municipal sludge centrate. Algal Res. 2016, 18, 15–24. [Google Scholar] [CrossRef]
- Eze, V.C.; Velasquez-Orta, S.B.; Hernandez-Garcia, A.; Monje-Ramírez, I.; Orta-Ledesma, M.T. Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Res. 2018, 32, 131–141. [Google Scholar] [CrossRef]
- Williamson, K.; McCarty, P.L. A model of substrate utilization by bacteria films. J. Water Pollut. Control Fed. 1976, 48, 9–24. [Google Scholar]
- Zhang, X.L.; Zhang, W.D.; Hao, X.M.; Zhang, H.F.; Zhang, Z.T.; Zhang, J.C. Mathematical model of gas permeation through PTFE porous membrane and the effect of membrane pore structure. Chin. J. Chem. Eng. 2003, 11, 383–387. [Google Scholar]
- Ma, S.Y.; Huang, Y.; Zhang, B.Y.; Zhu, X.Q.; Xia, A.; Zhu, X.; Liao, Q. Comprehensive modeling and predicting light transmission in microalgal biofilm. J. Environ. Manag. 2023, 326, 116757. [Google Scholar] [CrossRef]
- Yang, A.D. Modeling and evaluation of CO2 supply and utilization in algal ponds. Ind. Eng. Chem. Res. 2011, 50, 11181–11192. [Google Scholar] [CrossRef]
- Chunzhuk, E.A.; Grigorenko, A.V.; Kiseleva, S.V.; Chernova, N.I.; Ryndin, K.G.; Kumar, V.; Valskin, M.S. The influence of elevated CO2 concentration on the growth of various microalgae strains. Plants 2023, 12, 2470. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Chang, S.; Sivaloganathan, S. Development of an integrated ultrasonic biofilm detachment model for biofilm thickness control in membrane aerated bioreactors. Appl. Math. Model. 2023, 100, 596–611. [Google Scholar] [CrossRef]
- Wang, J.F.; Liu, J.L.; Liu, T.Z. The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae. Biotechnol. Biofuels Bioprod. 2015, 8, 49. [Google Scholar] [CrossRef]
- Yang, Y.N.; Zhuang, L.L.; Yang, T.; Zhang, J. Recognition of key factors on attached microalgae growth from internal sight of biofilm. Sci. Total Environ. 2022, 811, 151417. [Google Scholar] [CrossRef]
- Zhang, J.T.; Wang, J.X.; Liu, Y.; Zhang, Y.; Wang, J.H.; Chi, Z.Y.; Kong, F.T. Microalgal-bacterial biofilms for wastewater treatment: Operations, performances, mechanisms, and uncertainties. Sci. Total Environ. 2023, 907, 167974. [Google Scholar] [CrossRef]
- Boelee, N.C.; Janssen, M.; Temmink, H.; Taparaviciute, L.; Khiewwijit, R.; Janoska, A.; Buisman, C.J.N.; Wijffels, R.H. The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing. J. Appl. Phycol. 2014, 26, 1439–1452. [Google Scholar] [CrossRef]
- Huang, J.K.; Chu, R.R.; Chang, T.; Cheng, P.F.; Jiang, J.S.; Yao, T.; Zhou, C.X.; Liu, T.Z.; Ruan, R. Modeling and improving arrayed microalgal biofilm attached culture system. Bioresour. Technol. 2021, 331, 124931. [Google Scholar] [CrossRef]
- Peng, L.C.; Lan, C.Q.; Zhang, Z.S.; Sarch, C.; Laporte, M. Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture: Effects of pH and dissolved inorganic carbon. Bioresour. Technol. 2015, 197, 143–151. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.-Y.; Lu, T. Effects of dissolved inorganic carbon and mixing on autotrophic growth of Chlorella vulgaris. Biochem. Eng. J. 2014, 82, 34–40. [Google Scholar] [CrossRef]
- Pechaud, Y.; Derlon, N.; Bessiere, Y.; Paul, E. Modelling biofilm development: The importance of considering the link between EPS distribution, detachment mechanisms and physical properties. Water Res. 2024, 250, 120985. [Google Scholar] [CrossRef]
- Zeng, W.D.; Ma, S.Y.; Huang, Y.; Xia, A.; Zhu, X.Q.; Zhu, X.; Liao, Q. Bifunctional lighting/supporting substrate for microalgal photosynthetic biofilm to bioremove ammonia nitrogen from high turbidity wastewater. Water Res. 2022, 223, 119041. [Google Scholar] [CrossRef]
- Schulze, P.S.C.; Guerra, R.; Pereira, H.; Schuler, L.M.; Varela, J.C.S. Flashing LEDs for microalgal production. Trends Biotechnol. 2017, 35, 1088–1101. [Google Scholar] [CrossRef]
Symbol of Parameter | Definition | Value at 25 °C | Unit | References and Notes |
---|---|---|---|---|
DCO2-eff | Effective diffusivity of CO2 in biofilm | 9.40 × 10−10 | m2/s | [34] (estimated by using Deff/Daq = 0.5) |
DN-eff | Effective diffusivity of NO3−-N ions in biofilm | 1.25819 × 10−9 | m2/s | [27,35] (estimated by Deff/Daq = 0.65) |
DP-eff | Effective diffusivity of HPO42− ions in biofilm | 5.72 × 10−10 | m2/s | [35] (estimated by using Deff/Daq = 0.65) |
DCO2-H2O | Diffusivity of CO2 in water | 1.880 × 10−9 | m2/s | [36] (experimental results) |
DN-H2O | Diffusivity of NO3−-N in water | 1.93568 × 10−9 | m2/s | [27] (converted from 20 °C to 25 °C) |
DP-H2O | Diffusivity of HPO42− ions in water | 8.80 × 10−10 | m2/s | [35] (experimental results) |
H | Henry’s law constant of CO2 | 0.032258 | atm·m3/mol | [37] |
KCO2 | Monod half-saturation constant of CO2 | 4.4 | g CO2/m3 | [27,38] |
KN | Monod half-saturation constant of N ions | 7.1129 | g N/m3 | [39] (calibrated) |
KP | Monod half-saturation constant of P ions | 3.3906 | g P/m3 | [39] (calibrated) |
L | Flat-sheet PTFE membrane thickness | 5.0 × 10−5 | m | L = 50 μm (assumed, based on commercially available PTFE membranes) |
Lb | Thickness of stagnant boundary layer of water | 3.5 × 10−3 | m | Estimated based on the experimental conditions of [28] and the method of estimating the stagnant boundary thickness of [40] |
Lf | Thickness of microalgal biofilm | 0–1.0 × 10−3 | m | Process parameter (Lf = 0–1000 µm) |
Pm | Permeability of CO2 in PTFE membrane | 7.0 × 10−7 | mol CO2/atm·s·m | Estimated from the experimental data of [41] |
P0 | Partial pressure of CO2 in the gas phase in the lumen side of membrane at 1.0 atm | 0.00034 (air), 0.01, 0.03, 0.05, 0.10 | atm | Process parameter |
SCO2 | Concentration of CO2 in biofilm | - | g CO2/m3 | Process parameter |
SN-b | Concentration of N ions in the bulk phase of wastewater | 247.1, 15 | g N/m3 | Influent N concentrations ([28] and assumption) |
SN | Concentration of N ions in biofilm | - | g N/m3 | Process parameter |
SP-b | Concentration of P ions in the bulk phase of water | 7.12, 2.5 | g P/m3 | Influent P concentrations ([28] and assumption) |
SP | Concentration of P ions in biofilm | - | g P/m3 | Process variable |
x | Distance from the membrane and biofilm interface (x = 0): x = 0-Lf | 0–1.0 × 10−3 | m | Lf = 0–1.0 × 10−3 m (assumed) |
Xm | Microalgal concentration in biofilm | 50,000 | g microalgae/m3 | 50 kg/m3 (assumed, based on the typical range (39.5–85.9 kg/m3) of microalgal biofilm density in the literature [42]) |
YM-CO2 | CO2 consumption rate of microalgae | 2.1824 | g CO2 consumed/g microalgae produced | [43] |
YM-N | Microalgal cell yield based on N consumption | 54.0 | g microalgae produced/g N removed | Calibrated from the typical values (13–54 g microalgae produced/g N removed) estimated from experimental data of [30] |
YM-P | Microalgal cell yield based on P consumption | 114.695 | g microalgae produced/g P removed | [39] |
µmax-m | Maximum specific growth rate of microalgae | 1.94 × 10−5 | 1/s | [33,38] (assumed 1.68 d−1 from the typical range (0.984–2.0 d−1) of µmax-m in multiple-factor Monod equations in the literature [33]) |
Experimental Conditions * (SN-b = 247.1 mg N/L; SP-b = 7.12 mg P/L; Gas Phase CO2 = 10%) | Calculated Flux Results Based on Other Experimental Results *** | Flux Results by Modelling (YM-N = 82 g Microalgae Produced/g N Removed (Calibrated)) | Error % = (Expt. Result − Model. Result)/Expt. Result | |||||
---|---|---|---|---|---|---|---|---|
Gas flow rate | Liquid flow rate | Stable biofilm thickness ** (approx.) | CO2 flux into biofilm | TN flux into biofilm | CO2 flux into biofilm | TN flux into biofilm | CO2 flux error % | TN flux error % |
mL/min | mL/h | µm | g CO2/m2·d | g N/m2·d | g CO2/m2·d | g N/m2·d | - | - |
3 | 1 | 625 | 52.55 | 0.200 | 32.11 | 0.178 | 38.8 | 11.0 |
3 | 2 | 56.613 | 0.178 | 43.3 | 0.0 | |||
3 | 3 | 56.147 | 0.148 | 42.8 | −20.3 | |||
3 | 4 | 56.147 | 0.214 | 42.8 | 16.8 | |||
1 | 2 | 34.58 | 0.198 | 7.14 | 10.1 | |||
3 | 2 | 55.283 | 0.171 | 41.9 | −4.1 | |||
5 | 2 | 62.481 | 0.153 | 48.6 | −16.4 | |||
average | 625 | 53.4 | 0.180 | 32.11 | 0.178 | 39.9 | 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Liao, B. Modelling of Diffusion and Reaction of Carbon Dioxide and Nutrients in Biofilm for Optimal Design and Operation of Emerging Membrane Carbonated Microalgal Biofilm Photobioreactors. Membranes 2025, 15, 269. https://doi.org/10.3390/membranes15090269
Liu M, Liao B. Modelling of Diffusion and Reaction of Carbon Dioxide and Nutrients in Biofilm for Optimal Design and Operation of Emerging Membrane Carbonated Microalgal Biofilm Photobioreactors. Membranes. 2025; 15(9):269. https://doi.org/10.3390/membranes15090269
Chicago/Turabian StyleLiu, Meilan, and Baoqiang Liao. 2025. "Modelling of Diffusion and Reaction of Carbon Dioxide and Nutrients in Biofilm for Optimal Design and Operation of Emerging Membrane Carbonated Microalgal Biofilm Photobioreactors" Membranes 15, no. 9: 269. https://doi.org/10.3390/membranes15090269
APA StyleLiu, M., & Liao, B. (2025). Modelling of Diffusion and Reaction of Carbon Dioxide and Nutrients in Biofilm for Optimal Design and Operation of Emerging Membrane Carbonated Microalgal Biofilm Photobioreactors. Membranes, 15(9), 269. https://doi.org/10.3390/membranes15090269