Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = membrane photobioreactor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 892 KiB  
Review
Membrane Technologies for Bioengineering Microalgae: Sustainable Applications in Biomass Production, Carbon Capture, and Industrial Wastewater Valorization
by Michele Greque Morais, Gabriel Martins Rosa, Luiza Moraes, Larissa Chivanski Lopes and Jorge Alberto Vieira Costa
Membranes 2025, 15(7), 205; https://doi.org/10.3390/membranes15070205 - 11 Jul 2025
Viewed by 590
Abstract
In accordance with growing environmental pressures and the demand for sustainable industrial practices, membrane technologies have emerged as key enablers for increasing efficiency, reducing emissions, and supporting circular processes across multiple sectors. This review focuses on the integration among microalgae-based systems, offering innovative [...] Read more.
In accordance with growing environmental pressures and the demand for sustainable industrial practices, membrane technologies have emerged as key enablers for increasing efficiency, reducing emissions, and supporting circular processes across multiple sectors. This review focuses on the integration among microalgae-based systems, offering innovative and sustainable solutions for biomass production, carbon capture, and industrial wastewater treatment. In cultivation, membrane photobioreactors (MPBRs) have demonstrated biomass productivity up to nine times greater than that of conventional systems and significant reductions in water (above 75%) and energy (approximately 0.75 kWh/m3) footprints. For carbon capture, hollow fiber membranes and hybrid configurations increase CO2 transfer rates by up to 300%, achieving utilization efficiencies above 85%. Coupling membrane systems with industrial effluents has enabled nutrient removal efficiencies of up to 97% for nitrogen and 93% for phosphorus, contributing to environmental remediation and resource recovery. This review also highlights recent innovations, such as self-forming dynamic membranes, magnetically induced vibration systems, antifouling surface modifications, and advanced control strategies that optimize process performance and energy use. These advancements position membrane-based microalgae systems as promising platforms for carbon-neutral biorefineries and sustainable industrial operations, particularly in the oil and gas, mining, and environmental technology sectors, which are aligned with global climate goals and the UN Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

13 pages, 2258 KiB  
Review
Enhancing CO2 Fixation in Microalgal Systems: Mechanistic Insights and Bioreactor Strategies
by Zhongliang Sun, Chenmei Bo, Shuonan Cao and Liqin Sun
Mar. Drugs 2025, 23(3), 113; https://doi.org/10.3390/md23030113 - 7 Mar 2025
Cited by 2 | Viewed by 1387
Abstract
Microalgae are small, single-celled, or simple multicellular organisms that contain Chlorophyll a, allowing them to efficiently convert CO2 and water into organic matter through photosynthesis. They are valuable in producing a range of products such as biofuels, food, pharmaceuticals, and cosmetics, making [...] Read more.
Microalgae are small, single-celled, or simple multicellular organisms that contain Chlorophyll a, allowing them to efficiently convert CO2 and water into organic matter through photosynthesis. They are valuable in producing a range of products such as biofuels, food, pharmaceuticals, and cosmetics, making them economically and environmentally significant. Currently, CO2 is delivered to microalgae cultivation systems mainly through aeration with CO2-enriched gases. However, this method demonstrates limited CO2 absorption efficiency (13–20%), which reduces carbon utilization effectiveness and significantly increases carbon-source expenditure. To overcome these challenges, innovative CO2 supplementation technologies have been introduced, raising CO2 utilization rates to over 50%, accelerating microalgae growth, and reducing cultivation costs. This review first categorizes CO2 supplementation technologies used in photobioreactor systems, focusing on different mechanisms for enhancing CO2 mass transfer. It then evaluates the effectiveness of these technologies and explores their potential for scaling up. Among these strategies, membrane-based CO2 delivery systems and the incorporation of CO2 absorption enhancers have shown the highest efficiency in boosting CO2 mass transfer and microalgae productivity. Future efforts should focus on integrating these methods into large-scale photobioreactor systems to optimize cost-effective, sustainable production. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Figure 1

28 pages, 1782 KiB  
Article
Algal-Mediated Carbon Dioxide Separation in Biological Hydrogen Production
by Natascha Eggers, Sachin Kumar Ramayampet and Torsten Birth-Reichert
Energies 2024, 17(24), 6261; https://doi.org/10.3390/en17246261 - 11 Dec 2024
Viewed by 1022
Abstract
The production of hydrogen via dark fermentation generates carbon dioxide, which needs to be separated and re-utilized to minimize the environmental impact. This research investigates the potential of utilizing algae for carbon dioxide sequestration in hydrogen production via dark fermentation. However, algae alone [...] Read more.
The production of hydrogen via dark fermentation generates carbon dioxide, which needs to be separated and re-utilized to minimize the environmental impact. This research investigates the potential of utilizing algae for carbon dioxide sequestration in hydrogen production via dark fermentation. However, algae alone cannot fully use all the carbon dioxide produced, necessitating the implementation of a multistage separation process. This study proposes a purification approach that integrates membrane separation with a photobioreactor in a multistage design layout. Mathematical models were used to simulate the performance efficiency of multistage design layout using MATLAB 2015b (Version 9.3). A detailed parametric analysis and the key parameters influencing the separation efficiency were conducted for each stage. This study explores how reactor geometry, operational dynamics (such as gas transfer rates and light availability), and algae growth impact both CO2 removal and hydrogen purity. An optimization strategy was used to obtain the set of optimal operating and design parameters. Our results have shown a significant improvement in hydrogen purity, increasing from 55% to 99% using this multistage separation process, while CO2 removal efficiency rose from 35% to 85% over a week. This study highlights the potential of combining membrane technology with photobioreactors to enhance hydrogen purification, offering a more sustainable and efficient solution for hydrogen production. Full article
(This article belongs to the Special Issue Sustainable Biomass Energy Production and Utilization)
Show Figures

Figure 1

15 pages, 4851 KiB  
Article
A Study of Theoretical Analysis and Modelling of Microalgal Membrane Photobioreactors for Microalgal Biomass Production and Nutrient Removal
by Yichen Liao, Pedram Fatehi and Baoqiang Liao
Membranes 2024, 14(12), 245; https://doi.org/10.3390/membranes14120245 - 22 Nov 2024
Cited by 2 | Viewed by 1099
Abstract
This study presents a theoretical and mathematical analysis and modelling of the emerging microalgal membrane photobioreactors (M-MPBRs) for wastewater treatment. A set of mathematical models was developed to predict the biological performances of M-MPBRs. The model takes into account the effects of hydraulic [...] Read more.
This study presents a theoretical and mathematical analysis and modelling of the emerging microalgal membrane photobioreactors (M-MPBRs) for wastewater treatment. A set of mathematical models was developed to predict the biological performances of M-MPBRs. The model takes into account the effects of hydraulic retention time (HRT), solid retention time (SRT), and the N/P ratio of influent on the biological performance of M-MPBRs, such as microalgal biomass production and nutrient (N and P) removals. The model was calibrated and validated using experimental data from the literature. This modelling study explained that prolonged SRT could promote biomass production and nutrient removal, while prolonging HRT exhibited a negative effect. Furthermore, biomass production could be improved by augmenting nutrient loading, and nutrient removal would be limited under insufficient conditions. The modelling results demonstrated that the best performance was achieved at HRT = 1 d and SRT = 40 d for typical municipal wastewater with an influent N concentration = 40 mg/L. The modelling results are in good agreement with the experimental results from the literature. The findings suggest that the proposed models can be used as a powerful mathematical tool to optimize these parameters to improve the removal of nutrients (N and P), as well as the productivity of biomass in M-MPBRs. This study provides new insights into the use of mathematical models for the optimal design and operation of the emerging M-MPBRs for sustainable wastewater treatment. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

9 pages, 1449 KiB  
Proceeding Paper
Carbon Capture and Utilization through Biofixation: A Techno-Economic Analysis of a Natural Gas-Fired Power Plant
by Azizbek Kamolov, Zafar Turakulov, Toshtemir Avezov, Adham Norkobilov, Miroslav Variny and Marcos Fallanza
Eng. Proc. 2024, 67(1), 55; https://doi.org/10.3390/engproc2024067055 - 26 Sep 2024
Viewed by 1180
Abstract
With the increasing global concern regarding climate change and the need to reduce greenhouse gas emissions, carbon capture and utilization (CCU) technologies are seen as one of the primary steps toward large-scale decarbonization prospects. In this context, a thorough assessment of each CCU [...] Read more.
With the increasing global concern regarding climate change and the need to reduce greenhouse gas emissions, carbon capture and utilization (CCU) technologies are seen as one of the primary steps toward large-scale decarbonization prospects. In this context, a thorough assessment of each CCU pathway is required from both the techno-economic and environmental perspectives. In this work, the potential of carbon biofixation through microalgae cultivation is evaluated through the preliminary technical design and calculation of plant economics in the case of the Turakurgan natural gas-fired combined cycle power plant located in the eastern part of Uzbekistan. The primary data used in this study are obtained from the open access project report of the targeted power station, along with recently published literature sources. According to the results, although the purchase and installation costs of photobioreactors require significant investments in the capital costs, the technology would still be cost competitive as long as there is a carbon tax imposition of around USD 50 per ton of CO2 emissions. However, CO2 biofixation can be relatively more suitable compared to benchmark absorption, particularly in low-CO2-concentration conditions. Future research will involve a more comprehensive examination of CO2-based microalgae cultivation and its comparison with chemical absorption and membrane-assisted separation techniques. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Processes)
Show Figures

Figure 1

18 pages, 3187 KiB  
Review
Recent Advancements in Photo-Bioreactors for Microalgae Cultivation: A Brief Overview
by Giannis Penloglou, Alexandros Pavlou and Costas Kiparissides
Processes 2024, 12(6), 1104; https://doi.org/10.3390/pr12061104 - 28 May 2024
Cited by 35 | Viewed by 12398
Abstract
Inspired by the vast potential of microalgae in the bioeconomy and the numerous applications and benefits associated with their cultivation, a multitude of pilot- and industrial-scale microalgae production systems have been developed in recent years. Both open and closed cultivation systems have been [...] Read more.
Inspired by the vast potential of microalgae in the bioeconomy and the numerous applications and benefits associated with their cultivation, a multitude of pilot- and industrial-scale microalgae production systems have been developed in recent years. Both open and closed cultivation systems have been successfully utilized, with closed photo-bioreactors (PBRs) emerging as the most versatile option for various applications and products, enabling the implementation of advanced optimization strategies. Therefore, this short review provides a comprehensive overview of the different PBR configurations and their recent applications, primarily in large-scale but also in pilot- and laboratory-scale microalgae cultivation. A detailed discussion of the advantages, limitations, specific applications and recent advancements of each type of PBR is presented to aid researchers, engineers and industry stakeholders in selecting the most suitable PBR design for their specific goals and constraints. Moreover, this review highlights the major challenges impeding the full commercialization of microalgal products and forecasts future trends in the microalgae-based industry. The diverse potential applications of microalgae in various sectors, including biofuels, nutraceuticals, pharmaceuticals, agriculture and environmental remediation, underscore the versatility and significance of the relevant cultivation technologies. By offering valuable insights into the future commercial scale and trends of microalgal biotechnology, this work sheds light on the challenges and opportunities facing this burgeoning industry. Full article
Show Figures

Figure 1

21 pages, 1410 KiB  
Article
Ultrafiltration Harvesting of Microalgae Culture Cultivated in a WRRF: Long-Term Performance and Techno-Economic and Carbon Footprint Assessment
by Juan Francisco Mora-Sánchez, Josué González-Camejo, Guillermo Noriega-Hevia, Aurora Seco and María Victoria Ruano
Sustainability 2024, 16(1), 369; https://doi.org/10.3390/su16010369 - 31 Dec 2023
Cited by 2 | Viewed by 2572
Abstract
A cross-flow ultrafiltration harvesting system for a pre-concentrated microalgae culture was tested in an innovative anaerobic-based WRRF. The microalgae culture was cultivated in a membrane photobioreactor fed with effluent from an anaerobic membrane bioreactor treating sewage. These harvested microalgae biomasses were then anaerobically [...] Read more.
A cross-flow ultrafiltration harvesting system for a pre-concentrated microalgae culture was tested in an innovative anaerobic-based WRRF. The microalgae culture was cultivated in a membrane photobioreactor fed with effluent from an anaerobic membrane bioreactor treating sewage. These harvested microalgae biomasses were then anaerobically co-digested with primary and secondary sludge from the water line. Depending on the needs of this anaerobic co-digestion, the filtration harvesting process was evaluated intermittently over a period of 212 days for different operating conditions, mainly the total amount of microalgae biomass harvested and the desired final total solids concentration (up to 15.9 g·L−1 with an average of 9.7 g·L−1). Concentration ratios of 15–27 were obtained with average transmembrane fluxes ranging from 5 to 28 L·m−2·h−1. Regarding membrane cleaning, both backflushing and chemical cleaning resulted in transmembrane flux recoveries that were, on average, 21% higher than those achieved with backflushing alone. The carbon footprint assessment shows promising results, as the GHG emissions associated with the cross-flow ultrafiltration harvesting process could be less than the emissions savings associated with the energy recovered from biogas production from the anaerobic valorisation of the harvested microalgae. Full article
(This article belongs to the Special Issue Microalgae-Based Wastewater Treatment Processes and Biorefineries)
Show Figures

Figure 1

21 pages, 2373 KiB  
Article
Towards Optimisation of Microalgae Cultivation through Monitoring and Control in Membrane Photobioreactor Systems
by Juan Francisco Mora-Sánchez, Josep Ribes, Josué González-Camejo, Aurora Seco and María Victoria Ruano
Water 2024, 16(1), 155; https://doi.org/10.3390/w16010155 - 30 Dec 2023
Cited by 6 | Viewed by 3636
Abstract
This research lays a foundation for optimised membrane photobioreactor performance and introduces novel control parameters crucial for advancing microalgae cultivation techniques and promoting environmental sustainability. Particularly, this study presents an innovative solids retention time (SRT) controller designed for a pilot-scale membrane photobioreactor. Employing [...] Read more.
This research lays a foundation for optimised membrane photobioreactor performance and introduces novel control parameters crucial for advancing microalgae cultivation techniques and promoting environmental sustainability. Particularly, this study presents an innovative solids retention time (SRT) controller designed for a pilot-scale membrane photobioreactor. Employing a fuzzy-logic knowledge-based approach, this controller uses the first derivative of pH data dynamics (pH′) as an input variable, directly correlated with nitrogen recovery rate and biomass productivity when normalised by average light irradiance (I2). Through a feedback mechanism, it regulates daily SRT variations, ensuring stable reactor operation, optimal volatile suspended solids concentration, efficient nitrogen removal, and enhanced biomass productivity. Normalised nitrogen recovery rate, considering solar light irradiance and volatile suspended solids concentration, increased by 51% compared to previous studies employing fixed SRT and hydraulic retention time (HRT). Combining this SRT controller with a previously studied HRT controller could potentially amplify biomass productivity efficiency. In addition, controlling or not controlling the HRT and SRT are assessed in terms of filtration performance and GHG emissions. Finally, a new dissolved-oxygen-based parameter shows promise for continuous microalgae culture control. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

19 pages, 3257 KiB  
Article
Achieving Discharge Limits in Single-Stage Domestic Wastewater Treatment by Combining Urban Waste Sources and Phototrophic Mixed Cultures
by Sandra Chacon-Aparicio, John Alexander Villamil, Fernando Martinez, Juan Antonio Melero, Raul Molina and Daniel Puyol
Microorganisms 2023, 11(9), 2324; https://doi.org/10.3390/microorganisms11092324 - 15 Sep 2023
Cited by 2 | Viewed by 1961
Abstract
This work shows the potential of a new way of co-treatment of domestic wastewater (DWW) and a liquid stream coming from the thermal hydrolysis of the organic fraction of municipal solid waste (OFMSW) mediated by a mixed culture of purple phototrophic bacteria (PPB) [...] Read more.
This work shows the potential of a new way of co-treatment of domestic wastewater (DWW) and a liquid stream coming from the thermal hydrolysis of the organic fraction of municipal solid waste (OFMSW) mediated by a mixed culture of purple phototrophic bacteria (PPB) capable of assimilating carbon and nutrients from the medium. The biological system is an open single-step process operated under microaerophilic conditions at an oxidative reduction potential (ORP) < 0 mV with a photoperiod of 12/24 h and fed during the light stage only so the results can be extrapolated to outdoor open pond operations by monitoring the ORP. The effluent mostly complies with the discharge values of the Spanish legislation in COD and p-values (<125 mg/L; <2 mg/L), respectively, and punctually on values in N (<15 mg/L). Applying an HRT of 3 d and a ratio of 100:7 (COD:N), the presence of PPB in the mixed culture surpassed 50% of 16S rRNA gene copies, removing 78% of COD, 53% of N, and 66% of P. Furthermore, by increasing the HRT to 5 d, removal efficiencies of 83% of COD, 65% of N, and 91% of P were achieved. In addition, the reactors were further operated in a membrane bioreactor, thus separating the HRT from the SRT to increase the specific loading rate. Very satisfactory removal efficiencies were achieved by applying an HRT and SRT of 2.3 and 3 d, respectively: 84% of COD, 49% of N, and 93% of P despite the low presence of PPB due to more oxidative conditions, which step-by-step re-colonized the mixed culture until reaching >20% of 16S rRNA gene copies after 49 d of operation. These results open the door to scaling up the process in open photobioreactors capable of treating urban wastewater and municipal solid waste in a single stage and under microaerophilic conditions by controlling the ORP of the system. Full article
Show Figures

Figure 1

15 pages, 488 KiB  
Review
Recent Developments on the Performance of Algal Bioreactors for CO2 Removal: Focusing on the Light Intensity and Photoperiods
by Zarook Shareefdeen, Ali Elkamel and Zaeem Bin Babar
BioTech 2023, 12(1), 10; https://doi.org/10.3390/biotech12010010 - 11 Jan 2023
Cited by 22 | Viewed by 10322
Abstract
This work presents recent developments of algal bioreactors used for CO2 removal and the factors affecting the reactor performance. The main focus of the study is on light intensity and photoperiods. The role of algae in CO2 removal, types of algal [...] Read more.
This work presents recent developments of algal bioreactors used for CO2 removal and the factors affecting the reactor performance. The main focus of the study is on light intensity and photoperiods. The role of algae in CO2 removal, types of algal species used in bioreactors and conventional types of bioreactors including tubular bioreactor, vertical airlift reactor, bubble column reactor, flat panel or plate reactor, stirred tank reactor and specific type bioreactors such as hollow fibre membrane and disk photobioreactors etc. are discussed in details with respect to utilization of light. The effects of light intensity, light incident, photoinhibition, light provision arrangements and photoperiod on the performance of algal bioreactors for CO2 removal are also discussed. Efficient operation of algal photobioreactors cannot be achieved without the improvement in the utilization of incident light intensity and photoperiods. The readers may find this article has a much broader significance as algae is not only limited to removal or sequestration of CO2 but also it is used in a number of commercial applications including in energy (biofuel), nutritional and food sectors. Full article
Show Figures

Figure 1

21 pages, 1760 KiB  
Review
Treatment of High-Polyphenol-Content Waters Using Biotechnological Approaches: The Latest Update
by Barbara Muñoz-Palazon, Susanna Gorrasi, Aurora Rosa-Masegosa, Marcella Pasqualetti, Martina Braconcini and Massimiliano Fenice
Molecules 2023, 28(1), 314; https://doi.org/10.3390/molecules28010314 - 30 Dec 2022
Cited by 8 | Viewed by 3689
Abstract
Polyphenols and their intermediate metabolites are natural compounds that are spread worldwide. Polyphenols are antioxidant agents beneficial for human health, but exposure to some of these compounds can be harmful to humans and the environment. A number of industries produce and discharge polyphenols [...] Read more.
Polyphenols and their intermediate metabolites are natural compounds that are spread worldwide. Polyphenols are antioxidant agents beneficial for human health, but exposure to some of these compounds can be harmful to humans and the environment. A number of industries produce and discharge polyphenols in water effluents. These emissions pose serious environmental issues, causing the pollution of surface or groundwater (which are used to provide drinking water) or harming wildlife in the receiving ecosystems. The treatment of high-polyphenol-content waters is mandatory for many industries. Nowadays, biotechnological approaches are gaining relevance for their low footprint, high efficiency, low cost, and versatility in pollutant removal. Biotreatments exploit the diversity of microbial metabolisms in relation to the different characteristics of the polluted water, modifying the design and the operational conditions of the technologies. Microbial metabolic features have been used for full or partial polyphenol degradation since several decades ago. Nowadays, the comprehensive use of biotreatments combined with physical-chemical treatments has enhanced the removal rates to provide safe and high-quality effluents. In this review, the evolution of the biotechnological processes for treating high-polyphenol-content water is described. A particular emphasis is given to providing a general concept, indicating which bioprocess might be adopted considering the water composition and the economic/environmental requirements. The use of effective technologies for environmental phenol removal could help in reducing/avoiding the detrimental effects of these chemicals. In addition, some of them could be employed for the recovery of beneficial ones. Full article
(This article belongs to the Special Issue Natural Polyphenols in Human Health)
Show Figures

Figure 1

12 pages, 1783 KiB  
Article
Removal of Nutrients and COD in Wastewater from Vietnamese Piggery Farm by the Culture of Chlorella vulgaris in a Pilot-Scaled Membrane Photobioreactor
by Minh Tuan Nguyen, Thao Phuong Nguyen, Tung Huu Pham, Thuy Thi Duong, Manh Van Do, Tuyen Van Trinh, Quynh Thi Xuan Nguyen and Viet M. Trinh
Water 2022, 14(22), 3645; https://doi.org/10.3390/w14223645 - 11 Nov 2022
Cited by 25 | Viewed by 4744
Abstract
The treatment of nutrients and organic contaminants in wastewater using microalgae has drawn significant interest thanks to its advantages of environmental friendliness, low cost, CO2 emission reduction, and recycling of valuable biomass. Among other algae species, Chlorella sp. showed good vitality, simplicity [...] Read more.
The treatment of nutrients and organic contaminants in wastewater using microalgae has drawn significant interest thanks to its advantages of environmental friendliness, low cost, CO2 emission reduction, and recycling of valuable biomass. Among other algae species, Chlorella sp. showed good vitality, simplicity in cultivation, and high nutrient accumulation in harsh conditions of wastewater. In this study, Chlorella vulgaris was inoculated in a membrane photobioreactor (MPBR) with piggery digestate to investigate the C. vulgaris growth rate and the removal efficiency of nutrients and chemical oxygen demand (COD). The results indicated that the cultivation of C. vulgaris in an MPBR system exhibited continuous and simultaneous removal of NH4+, PO43−, and COD from two-fold diluted piggery wastewater. Both the algae growth rate and nutrient removal depended on the liquid hydraulic retention time in the MPBR. The highest removal efficiency of NH4+ (74.55%), PO43− (70.20%), and COD (65.85%) was obtained in the longest HRT of 5 days with the highest microalgae biomass concentration of around 1.1 g/L. The algae washout phenomenon was negligible in the continuous cultivation in the MPBR system. Compared to the cultivation in batch mode, the MPBR could achieve a similar algae growth rate and treatment efficiency with a much shorter hydraulic retention time. Full article
(This article belongs to the Special Issue Biological Processes for Water and Wastewater Treatment)
Show Figures

Figure 1

25 pages, 1433 KiB  
Review
Microalgae-Enabled Wastewater Remediation and Nutrient Recovery through Membrane Photobioreactors: Recent Achievements and Future Perspective
by Pei Sean Goh, Nor Akalili Ahmad, Jun Wei Lim, Yong Yeow Liang, Hooi Siang Kang, Ahmad Fauzi Ismail and Gangasalam Arthanareeswaran
Membranes 2022, 12(11), 1094; https://doi.org/10.3390/membranes12111094 - 3 Nov 2022
Cited by 35 | Viewed by 6878
Abstract
The use of microalgae for wastewater remediation and nutrient recovery answers the call for a circular bioeconomy, which involves waste resource utilization and ecosystem protection. The integration of microalgae cultivation and wastewater treatment has been proposed as a promising strategy to tackle the [...] Read more.
The use of microalgae for wastewater remediation and nutrient recovery answers the call for a circular bioeconomy, which involves waste resource utilization and ecosystem protection. The integration of microalgae cultivation and wastewater treatment has been proposed as a promising strategy to tackle the issues of water and energy source depletions. Specifically, microalgae-enabled wastewater treatment offers an opportunity to simultaneously implement wastewater remediation and valuable biomass production. As a versatile technology, membrane-based processes have been increasingly explored for the integration of microalgae-based wastewater remediation. This review provides a literature survey and discussion of recent progressions and achievements made in the development of membrane photobioreactors (MPBRs) for wastewater treatment and nutrient recovery. The opportunities of using microalgae-based wastewater treatment as an interesting option to manage effluents that contain high levels of nutrients are explored. The innovations made in the design of membrane photobioreactors and their performances are evaluated. The achievements pave a way for the effective and practical implementation of membrane technology in large-scale microalgae-enabled wastewater remediation and nutrient recovery processes. Full article
Show Figures

Figure 1

16 pages, 2110 KiB  
Article
Nutrient Removal and Membrane Performance of an Algae Membrane Photobioreactor in Urban Wastewater Regeneration
by Verónica Díaz, Laura Antiñolo, José Manuel Poyatos Capilla, Mari Carmen Almécija, María del Mar Muñío and Jaime Martín-Pascual
Membranes 2022, 12(10), 982; https://doi.org/10.3390/membranes12100982 - 10 Oct 2022
Cited by 12 | Viewed by 3223
Abstract
The increase in industry and population, together with the need for wastewater reuse, makes it necessary to implement new technologies in the circular economy framework. The aim of this research was to evaluate the quality of the effluent of an algae membrane photobioreactor [...] Read more.
The increase in industry and population, together with the need for wastewater reuse, makes it necessary to implement new technologies in the circular economy framework. The aim of this research was to evaluate the quality of the effluent of an algae membrane photobioreactor for the treatment of the effluent of an urban wastewater treatment plant, to characterise the ultrafiltration membranes, to study the effectiveness of a proposed cleaning protocol, and to analyse the performance of the photobioreactor. The photobioreactor operated under two days of hydraulic retention times feed with the effluent from the Los Vados wastewater treatment plant (WWTP) (Granada, Spain). The microalgae community in the photobioreactor grew according to the pseudo-second-order model. The effluent obtained could be reused for different uses of diverse quality with the removal of total nitrogen and phosphorus of 56.3% and 64.27%, respectively. The fouling of the polyvinylidene difluoride ultrafiltration membrane after 80 days of operation was slight, increasing the total membrane resistance by approximately 22%. Moreover, the higher temperature of the medium was, the lower intrinsic resistance of the membrane. A total of 100% recovery of the membrane was obtained in the two-phase cleaning protocol, with 42% and 58%, respectively. Full article
Show Figures

Graphical abstract

14 pages, 1499 KiB  
Article
The Influence of Forward Osmosis Module Configuration on Nutrients Removal and Microalgae Harvesting in Osmotic Photobioreactor
by Mathieu Larronde-Larretche and Xue Jin
Membranes 2022, 12(9), 892; https://doi.org/10.3390/membranes12090892 - 16 Sep 2022
Cited by 10 | Viewed by 2546
Abstract
Microalgae have attracted great interest recently due to their potential for nutrients removal from wastewater, renewable biodiesel production and bioactive compounds extraction. However, one major challenge in microalgal bioremediation and the algal biofuel process is the high energy cost of separating microalgae from [...] Read more.
Microalgae have attracted great interest recently due to their potential for nutrients removal from wastewater, renewable biodiesel production and bioactive compounds extraction. However, one major challenge in microalgal bioremediation and the algal biofuel process is the high energy cost of separating microalgae from water. Our previous studies demonstrated that forward osmosis (FO) is a promising technology for microalgae harvesting and dewatering due to its low energy consumption and easy fouling control. In the present study, two FO module configurations (side-stream and submerged) were integrated with microalgae (C. vulgaris) photobioreactor (PBR) in order to evaluate the system performance, including nutrients removal, algae harvesting efficiency and membrane fouling. After 7 days of operation, both systems showed effective nutrients removal. A total of 92.9%, 100% and 98.7% of PO4-P, NH3-N and TN were removed in the PBR integrated with the submerged FO module, and 82%, 96% and 94.8% of PO4-P, NH3-N and TN were removed in the PBR integrated with the side-stream FO module. The better nutrients removal efficiency is attributed to the greater algae biomass in the submerged FO-PBR where in situ biomass dewatering was conducted. The side-stream FO module showed more severe permeate flux loss and biomass loss (less dewatering efficiency) due to algae deposition onto the membrane. This is likely caused by the higher initial water flux associated with the side-stream FO configuration, resulting in more foulants being transported to the membrane surface. However, the side-stream FO module showed better fouling mitigation by simple hydraulic flushing than the submerged FO module, which is not convenient for conducting cleaning without interrupting the PBR operation. Taken together, our results suggest that side-stream FO configuration may provide a viable way to integrate with PBR for a microalgae-based treatment. The present work provides novel insights into the efficient operation of a FO-PBR for more sustainable wastewater treatment and effective microalgae harvesting. Full article
Show Figures

Figure 1

Back to TopTop