Current Trends and Biotechnological Innovations in Biofouling Control of RO Membranes in Desalination Systems
Abstract
1. Introduction
2. Cleaning Reverse Osmosis Membrane Systems
2.1. Antifouling Methods
2.2. Biological Methods, Biofouling: Problem and Opportunity?
2.2.1. Antifouling Compounds Isolated from Microorganisms
Compound/Molecule | Microbial Source | Mechanism of Action | Application Target | Refs. |
---|---|---|---|---|
Rhamnolipids | Pseudomonas aeruginosa | Disrupt EPS and biofilm matrix | RO membranes | [70,71,72] |
Cis-2-decenoic acid | Pseudomonas aeruginosa | Biofilm dispersal | Gram +/− bacteria | [65] |
AMPs (e.g., HHC-36) | Synthetic/Bacterial | Membrane disruption | Broad-spectrum bacteria | [66] |
Lipases/Proteases | Candida, Bacillus spp. | EPS degradation | Biofilm matrix | [50] |
Portoamides | Phormidium sp. | Settlement inhibition | Marine biofoulers | [68,76] |
Napyradiomycins | Streptomyces aculeolatus | Inhibited the bacterial growth | Marine bacterial species | [69] |
Lactonases/acilase AHL | Erythrobacter, Labrenzia, Pseudomonas sp., Bacterioplanes | Hydrolysis of AHL | RO membranes | [44,58,70,77] |
AiiAS1–5 and EstS1–5 | Pseudoalteromonas sp. L11 and Altererythrobacter | Hydrolysis of AHL molecules | RO membranes | [47] |
Nukacin ISK-1 | Staphylococcus warneri ISK-1 | Bactericidal activity | Staphylococcus aureus (MRSA) | [78] |
Lacticin Q | Lactococcus lactis QU 5 | Penetrated the biofilm matrix | Staphylococcus aureus (MRSA) | [79] |
Sakacin 1 | Lactobacillus sakei 1 | Inhibit the early stages of adherence | Listeria monocytogenes | [80] |
Lactic acid and nisin A | Lactococcus lactis UQ2 | Suppress growth | Listeria monocytogenes | [79] |
Colicin | Citrobacter freundii | Alter the cell membrane | Multidrug-resistant Gram-negative | [81] |
Supernatant | Alteromonas Ni1-LEM | Antibacterial activity | RO membranes | [52] |
Supernatant | Vibrio neptunius ULV11 | Antibacterial activity | RO membranes | [51] |
(+) Terrein | Aspergillus terreus HT5 | Permeabilizes membranes using hydroxyl groups | RO membranes | [57] |
Bacterial extract | Pseudomonas aeruginosa Rlimb | Inhibits initial adhesion and biofilm formation | Marine biofoulers | [75] |
Bacteriocins | Marine bacteria | AF activity when incorporated into epoxy paint | Marine biofoulers | [62] |
2.2.2. Quorum-Quenching
2.2.3. Bacteriocin
2.2.4. Bacteriophage
2.3. Biological Methods Employed Against Membranes in Desalination Systems
3. Challenges and Future Perspectives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFM | Atomic force microscopy |
AHL | N-acyl-homoserine lactones |
BODIPY | Boron–dipyrromethene fluorophore (e.g., BODIPY–vancomycin) |
BWRO | Brackish water reverse osmosis |
CF042 | Bench crossflow RO test cell/skid |
CFS | Cell-free supernatant |
CFS-ULV11 | Cell-free supernatant from Vibrio neptunius strain ULV11 |
CFU | Colony-forming units |
CIP | Clean-in-place |
CLSM | Confocal laser scanning microscopy |
ConA | Concanavalin A lectin stain for polysaccharides |
CRI | Commercial readiness index |
DspB | Dispersin B (PNAG-degrading enzyme) |
EPS | Extracellular polymeric substances |
EU | European Union |
GDWQ | Guidelines for Drinking-water Quality |
HSL | Homoserine lactone (e.g., C8-HSL) |
MBEC | Microtiter peg biofilm model (Montana Biofilm Device) |
MBR | Membrane bioreactor |
MIC | Minimum inhibitory concentration |
MF | Magneto-filter (magnetic retention unit) |
NR | Not reported |
Quorum-quenching | |
QS | Quorum sensing |
QSI | Quorum-sensing inhibitors |
PFU | Plaque-forming units |
Pi | Water permeance (L·m−2·h−1·bar−1) |
PNAG | Poly-N-acetylglucosamine (biofilm exopolysaccharide) |
PR | Permeability/flux recovery (dimensionless fraction) |
PVDF | Poly(vinylidene fluoride) |
RO | Reverse osmosis |
ROMs | Reverse osmosis membranes |
ROS | Reactive oxygen species |
SWRO | Seawater reverse osmosis |
SEM | Scanning electron microscopy |
SMP | Soluble microbial products |
TB-EPS | Tightly bound extracellular polymeric substances |
TMP | Transmembrane pressure |
TRL | Technology readiness level |
TSCA | Toxic Substances Control Act |
UF | Ultrafiltration |
US EPA | United States Environmental Protection Agency |
UVC | Ultraviolet-C |
WFD | Water Framework Directive |
WHO | World Health Organization |
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects; United Nations: New York, NY, USA, 2022; Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 1 August 2025)ISBN 978-92-1-148373-4.
- Abdella, F.I.A.; El-Sofany, W.I.; Mansour, D. Water Scarcity in the Kingdom of Saudi Arabia. Environ. Sci. Pollut. Res. 2024, 31, 27554–27565. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef]
- Goh, P.S.; Matsuura, T.; Ismail, A.F.; Water, B.C.N.T. The Water–Energy Nexus: Solutions towards Energy-Efficient Desalination. Energy Technol. 2017, 5, 1136–1155. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Mahariq, I.; Murshid, N.; Wongwises, S.; Mahian, O.; Nazari, M.A. Applying wind energy as a clean source for reverse osmosis desalination: A comprehensive review. Alex. Eng. J. 2022, 61, 12977–12989. [Google Scholar] [CrossRef]
- de Nicolás, A.P.; Molina-García, Á.; García-Bermejo, J.T.; Vera-García, F. Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives, Renew. Sustain. Energy Rev. 2023, 187, 113733. [Google Scholar] [CrossRef]
- Badruzzaman, M.; Voutchkov, N.; Weinrich, L.; Jacangelo, J.G. Selection of pretreatment technologies for seawater reverse osmosis plants: A review. Desalination 2019, 449, 78–91. [Google Scholar] [CrossRef]
- Chen, G.Q.; Wu, Y.-H.; Fang, P.-S.; Bai, Y.; Chen, Z.; Xu, Y.-Q.; Wang, Y.-H.; Tong, X.; Luo, L.-W.; Wang, H.-B.; et al. Performance of different pretreatment methods on alleviating reverse osmosis membrane fouling caused by soluble microbial products. J. Membr. Sci. 2022, 641, 119850. [Google Scholar] [CrossRef]
- Abushaban, A.; Salinas-Rodriguez, S.G.; Philibert, M.; Le Bouille, L.; Necibi, M.C.; Chehbouni, A. Biofouling potential indicators to assess pretreatment and mitigate biofouling in SWRO membranes: A short review. Desalination 2022, 527, 115543. [Google Scholar] [CrossRef]
- Lakretz, A.; Ron, E.Z.; Mamane, H. Biofouling control in water by various UVC wavelengths and doses. Biofouling 2009, 26, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wang, C.; Zhao, Z.; Chen, R.; Zhang, P.; Cui, F. Effect of vacuum ultraviolet/ozone pretreatment on alleviation of ultrafiltration membrane fouling caused by algal extracellular and intracellular organic matter. Chemosphere 2022, 305, 135455. [Google Scholar] [CrossRef] [PubMed]
- Madaeni, S.S.; Samieirad, S. Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination 2010, 257, 80–86. [Google Scholar] [CrossRef]
- Maddah, H.; Chogle, A. Biofouling in Reverse Osmosis: Phenomena, Monitoring, Controlling and Remediation. Appl. Water Sci. 2017, 7, 2637–2651. [Google Scholar] [CrossRef]
- Bhoj, Y.; Tharmavaram, M.; Rawtani, D. A comprehensive approach to antifouling strategies in desalination, marine environment, and wastewater treatment. Chem. Phys. Impact 2021, 2, 100008. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mahmoud, S.A.; Mohamed, A.A. Nanomaterials-modified reverse osmosis membranes: A comprehensive review. RSC Adv. 2024, 14, 18879–18906. [Google Scholar] [CrossRef]
- Suresh, D.; Goh, P.S.; Wong, T.W.; Zhang, L.; Ismail, A.F. In-situ complexation of silver nanoparticle on thin film composite reverse osmosis membrane for improving desalination and anti-biofouling performance. Desalination 2024, 569, 117040. [Google Scholar] [CrossRef]
- Kadadou, D.; Mohamed, G.H.; Kaddoura, Y.; Bin Eisa, E.A.; Tu, P.L.P.; Alhseinat, E. Applications of graphene oxide in reverse osmosis membranes. In Current Trends and Future Developments on (Bio-) Membranes: Modern Approaches in Membrane Technology for Gas Separation and Water Treatment; Elsevier: Amsterdam, The Netherlands, 2023; pp. 461–488. [Google Scholar] [CrossRef]
- Behnam, P.; Faegh, M.; Khiadani, M. A review on state-of-the-art applications of data-driven methods in desalination systems. Desalination 2022, 532, 115744. [Google Scholar] [CrossRef]
- Petry, M.; Sanz, M.A.; Langlais, C.; Bonnelye, V.; Durandet, J.P.; Guevara, D.; Nardes, W.M.; Saemial, C.H. The El Coloso (Chile) reverse osmosis plant. Desalination 2007, 203, 141–152. [Google Scholar] [CrossRef]
- Ng, Y.S.; Ragupathy, S.; Hwai, A.T.S.; Khoo, K.S.; Chan, D.J.C. Evaluation of membrane fouling at elevated temperature impacted by algal organic matter. Chemosphere 2023, 310, 136790. [Google Scholar] [CrossRef]
- Najid, N.; Hakizimana, J.N.; Kouzbour, S.; Gourich, B.; Ruiz-García, A.; Vial, C.; Stiriba, Y.; Semiat, R. Fouling control and modeling in reverse osmosis for seawater desalination: A review. Comput. Chem. Eng. 2022, 162, 107794. [Google Scholar] [CrossRef]
- Tularam, G.A.; Ilahee, M. Environmental concerns of desalinating seawater using reverse osmosis. J. Environ. Monit. 2007, 9, 805–813. [Google Scholar] [CrossRef]
- Williams, J.; Beveridge, R.; Mayaux, P.-L. Unconventional Waters: A Critical Understanding of Desalination and Wastewater Reuse. Water Altern. 2023, 16, 429–443. Available online: https://www.water-alternatives.org/index.php/alldoc/articles/vol16/v16issue2/714-a16-2-15/file (accessed on 1 August 2025).
- Almasoudi, S.; Jamoussi, B. Desalination Technologies and Their Environmental Impacts: A Review. Sustain. Chem. One World 2024, 1, 100002. [Google Scholar] [CrossRef]
- Landaburu-Aguirre, J.; García-Pacheco, R.; Molina, S.; Rodríguez-Sáez, L.; Rabadán, J.; García-Calvo, E. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination 2016, 393, 16–30. [Google Scholar] [CrossRef]
- Fortunato, L.; Alshahri, A.H.; Farinha, A.S.F.; Zakzouk, I.; Jeong, S.; Leiknes, T.O. Fouling investigation of a full-scale seawater reverse osmosis desalination (SWRO) plant on the Red Sea: Membrane autopsy and pretreatment efficiency. Desalination 2020, 496, 114536. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef]
- Fitridge, I.; Dempster, T.; Guenther, J.; de Nys, R. The impact and control of biofouling in marine aquaculture: A review. Biofouling 2012, 28, 649–669. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Vanoppen, M.; van Agtmaal, J.M.C.; Cornelissen, E.R.; Vrouwenvelder, J.S.; Verliefde, A.; van Loosdrecht, M.C.M.; Picioreanu, C. Cost of fouling in full-scale reverse osmosis and nanofiltration installations in the Netherlands. Desalination 2021, 500, 114865. [Google Scholar] [CrossRef]
- World Health Organization. Incorporating First and Second Addenda. In Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- European Food Safety Authority (EFSA) Panel on Biological Hazards (BIOHAZ). Update of the list of qualified presumption of safety (QPS) recommended microbiological agents intentionally added to food or feed as notified to EFSA 22: Suitability of taxonomic units notified to EFSA until March 2025. EFSA J. 2025, 23, e9510. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). 40 CFR Part 725—Reporting Requirements and Review Processes for Microorganisms (TSCA). Master’s Thesis, Cornell Law School, Ithaca, NY, USA, 1997.
- European Parliament and Council of the European Union. Directive 2000/60/EC of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, L 327, 1–73. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj/eng (accessed on 1 August 2025).
- International Maritime Organization (IMO). Entered into force in 2008. In International Convention on the Control of Harmful Anti-Fouling Systems on Ships; IMO: London, UK, 2001; Available online: https://www.imo.org/en/about/conventions/pages/international-convention-on-the-control-of-harmful-anti-fouling-systems-on-ships-(afs).aspx (accessed on 1 August 2025).
- Lee, W.J.; Ng, Z.C.; Hubadillah, S.K.; Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F.; Hilal, N. Fouling mitigation in forward osmosis and membrane distillation for desalination. Desalination 2020, 480, 114338. [Google Scholar] [CrossRef]
- Massons-Gassol, G.; Gilabert-Oriol, G.; Gomez, V.; Garcia-Valls, R.; Molina, V.G.; Arrowood, T. Method for distinguishing between abiotic organic and biological fouling of reverse osmosis elements used to treat wastewater. Desalin. Water Treat. 2017, 83, 1–6. [Google Scholar] [CrossRef]
- Qian, P.Y.; Cheng, A.; Wang, R.; Zhang, R. Marine biofilms: Diversity, interactions, biofouling, Microbiology. Nat. Rev. Microbiol. 2022, 20, 671–684. [Google Scholar] [CrossRef]
- Oh, H.S.; Constancias, F.; Ramasamy, C.; Tang, P.Y.P.; Yee, M.O.; Fane, A.G.; McDougald, D.; Rice, S.A. Biofouling control in reverse osmosis by nitric oxide treatment and its impact on the bacterial community. J. Membr. Sci. 2018, 550, 313–321. [Google Scholar] [CrossRef]
- Al-Hasani, M.; Doan, H.; Zhu, N.; Abdelrasoul, A. Optimal intermittent ultrasound-assisted ultrafiltration for membrane fouling remediation. Sep. Purif. Technol. 2022, 303, 122249. [Google Scholar] [CrossRef]
- Fan, J.; Pan, Y.; Wang, H.; Song, F. Efficient reverse osmosis-based desalination using functionalized graphene oxide nanopores. Appl. Surf. Sci. 2024, 674, 160937. [Google Scholar] [CrossRef]
- Sadekuzzaman, M.; Yang, S.; Mizan, M.F.R.; Ha, S.D. Current and Recent Advanced Strategies for Combating Biofilms. Compr. Rev. Food Sci. Food Saf. 2015, 14, 491–509. [Google Scholar] [CrossRef]
- Kugaji, M.; Ray, S.K.; Parvatikar, P.; Raghu, A.V. Biosurfactants: A review of different strategies for economical production, their applications and recent advancements. Adv. Colloid Interface Sci. 2025, 337, 103389. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.A.; Choo, K.H. Isolation and characterization of novel indigenous facultative quorum quenching bacterial strains for ambidextrous biofouling control. Bioresour. Technol. 2020, 308, 123269. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; An, Z.; Fan, L.; Zhou, Y.; Su, X.; Zhu, J.; Zhang, Q.; Chen, C.; Lin, H.; Sun, F. Effect of Quorum Quenching on Biofouling Control and Microbial Community in Membrane Bioreactors by Brucella sp. ZJ1. J. Environ. Manag. 2023, 339, 117961. [Google Scholar] [CrossRef] [PubMed]
- Grandclément, C.; Tannières, M.; Moréra, S.; Dessaux, Y.; Faure, D. Quorum quenching: Role in nature and applied developments. FEMS Microbiol. Rev. 2016, 40, 86–116. [Google Scholar] [CrossRef]
- Wang, T.-N.; Guan, Q.-T.; Pain, A.; Kaksonen, A.H.; Hong, P.-Y. Characterizing, and Applying Acyl-Homoserine Lactone-Quenching Enzymes to Mitigate Microbe-Associated Problems under Saline Conditions. Front. Microbiol. 2019, 10, 823. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.K.; Collins, J.J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 2007, 104, 11197. [Google Scholar] [CrossRef]
- Barzkar, N.; Sheng, R.; Sohail, M.; Jahromi, S.T.; Babich, O.; Sukhikh, S.; Nahavandi, R. Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sustainable Future. Molecules 2022, 27, 3375. [Google Scholar] [CrossRef]
- Allie, Z.; Jacobs, E.P.; Maartens, A.; Swart, P. Enzymatic cleaning of ultrafiltration membranes fouled by abattoir effluent. J. Membr. Sci. 2003, 218, 107–116. [Google Scholar] [CrossRef]
- Vera-Villalobos, H.; Cruz-Balladares, V.; González-Gutiérrez, Á.; Avalos, V.; Riquelme, C.; Silva-Aciares, F. Vibrio neptunius-ULV11 cell-free supernatant as a promising antifouling approach in reverse osmosis systems. Desalination 2024, 586, 117899. [Google Scholar] [CrossRef]
- Vera-Villalobos, H.; Riquelme, C.; Silva-Aciares, F. Use of Alteromonas sp. Ni1-LEM Supernatant as a Cleaning Agent for Reverse-Osmosis Membranes (ROMs) from a Desalination Plant in Northern Chile Affected by Biofouling. Membranes 2023, 13, 454. [Google Scholar] [CrossRef]
- Vera-Villalobos, H.; Cortes-Martinez, A.; Gonzalez-Gutierrez, Á.; Zadjelovic, V.; Riquelme, C.; Silva-Aciares, F. Reverse osmosis membranes applied in seawater desalination plants as a source of bacteria with antifouling activity: Isolation, biochemical and molecular characterization. Electron. J. Biotechnol. 2023, 66, 75–83. [Google Scholar] [CrossRef]
- Vera-Villalobos, H.; Pérez, V.; Contreras, F.; Alcayaga, V.; Avalos, V.; Riquelme, C.; Silva-Aciares, F. Characterization and removal of biofouling from reverse osmosis membranes (ROMs) from a desalination plant in Northern Chile, using Alteromonas sp. Ni1-LEM supernatant. Biofouling 2020, 36, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Shin, M.G.; Song, W.J.; Park, S.H.; Ryu, J.; Jung, J.; Choi, S.Y.; Yu, Y.; Kweon, J.; Lee, J.-H. Application of quorum sensing inhibitors for improving anti-biofouling of polyamide reverse osmosis membranes: Direct injection versus surface modification. Sep. Purif. Technol. 2021, 255, 117736. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Y.; Lee, C.-H.; Takizawa, S.; Zhang, Z.; Ng, H.Y.; Hou, L.-A. Functionalization of Seawater Reverse Osmosis Membrane with Quorum Sensing Inhibitor to Regulate Microbial Community and Mitigate Membrane Biofouling. Water Res. 2024, 253, 121358. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Q.; Jiang, Y.; Yu, L.; Song, N.; Zhao, D.; Sui, L.; Dong, L. Antifouling and antibacterial bioactive metabolites of marine fungus (terrein)/polyamide thin-film composite reverse osmosis membranes for desalination applications. Desalination 2024, 572, 117140. [Google Scholar] [CrossRef]
- Lee, K.; Yu, H.; Zhang, X.; Choo, K.H. Quorum sensing and quenching in membrane bioreactors: Opportunities and challenges for biofouling control, Bioresour. Technology 2018, 270, 656–668. [Google Scholar] [CrossRef]
- Hibbing, M.E.; Fuqua, C.; Parsek, M.R.; Peterson, S.B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 2010, 8, 15–25. [Google Scholar] [CrossRef]
- Patra, A.; Das, J.; Agrawal, N.R.; Kushwaha, G.S.; Ghosh, M.; Son, Y.O. Marine Antimicrobial Peptides-Based Strategies for Tackling Bacterial Biofilm and Biofouling Challenges. Molecules 2022, 27, 7546. [Google Scholar] [CrossRef] [PubMed]
- Cesa-Luna, C.; Alatorre-Cruz, J.M.; Carreño-López, R.; Quintero-Hernández, V.; Baez, A. Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Pol. J. Microbiol. 2021, 70, 143–159. [Google Scholar] [CrossRef]
- Palanichamy, S.; Subramanian, G. Antifouling properties of marine bacteriocin incorporated epoxy based paint. Prog. Org. Coat. 2017, 103, 33–39. [Google Scholar] [CrossRef]
- Santagati, M.; Scillato, M.; Patanè, F.; Aiello, C.; Stefani, S. Bacteriocin-producing oral streptococci and inhibition of respiratory pathogens. FEMS Immunol. Med Microbiol. 2012, 65, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Klaus, J.R.; Majerczyk, C.; Moon, S.; Eppler, N.A.; Smith, S.; Tuma, E.; Groleau, M.-C.; Asfahl, K.L.; Smalley, N.E.; Hayden, H.S.; et al. Burkholderia thailandensis Methylated Hydroxyalkylquinolines: Biosynthesis and Antimicrobial Activity in Cocultures. Appl. Environ. Microbiol. 2020, 86, e01452-20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davies, D.G.; Marques, C.N.H. A Fatty Acid Messenger Is Responsible for Inducing Dispersion in Microbial Biofilms. J. Bacteriol. 2009, 191, 1393–1403. [Google Scholar] [CrossRef]
- Alayande, A.B.; Yang, E.; Aung, M.; Kim, I.S. Bacterial adhesion inhibition on water treatment membrane by a modified HHC-36 antimicrobial peptide. Environ. Eng. Res. 2022, 28, 220155. [Google Scholar] [CrossRef]
- Burgess, J.G.; Boyd, K.G.; Armstrong, E.; Jiang, Z.; Yan, L.; Berggren, M.; May, U.; Pisacane, T.; Granmo, Å.; Adams, D.R. Adams. The development of a marine natural product-based antifouling paint. Biofouling 2003, 19, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Pereira, S.; Preto, M.; Vasconcelos, V.; Silva, E.R.; Almeida, J.R. Cyanobacteria as a Source of Eco-Friendly Bioactive Ingredients for Antifouling Marine Coatings. Biol. Life Sci. Forum. 2022, 14, 15. [Google Scholar] [CrossRef]
- Pereira, F.; Almeida, J.R.; Paulino, M.; Grilo, I.R.; Macedo, H.; Cunha, I.; Sobral, R.G.; Vasconcelos, V.; Gaudêncio, S.P. Antifouling Napyradiomycins from Marine-Derived Actinomycetes Streptomyces aculeolatus. Mar. Drugs 2020, 18, 63. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, A.M.; Hausmann, R.; Lépine, F.; Müller, M.M.; Déziel, E. Rhamnolipids: Detection, Analysis, Biosynthesis, Genetic Regulation, and Bioengineering of Production. In Biosurfactants; Microbiology Monographs; Soberón-Chávez, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 20, pp. 13–55. [Google Scholar] [CrossRef]
- Zahidullah; Siddiqui, M.F.; Tabraiz, S.; Maqbool, F.; Adnan, F.; Ullah, I.; Shah, M.A.; Jadoon, W.A.; Mehmood, T.; Qayyum, S.; et al. Targeting Microbial Biofouling by Controlling Biofilm Formation and Dispersal Using Rhamnolipids on RO Membrane. Membranes 2022, 12, 928. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.H.; Jung, Y.; Yu, H.W.; Chae, K.J.; Kim, I.S. Physicochemical interactions between rhamnolipids and Pseudomonas aeruginosa biofilm layers. Environ. Sci. Technol. 2015, 49, 3718–3726. [Google Scholar] [CrossRef]
- Soyuer, K.; Ozyurek, S.B. An eco-friendly approach to biosurfactant production using low-cost wastes. J. Dispers. Sci. Technol. 2023, 45, 1599–1612. [Google Scholar] [CrossRef]
- Aghajani, M.; Rahimpour, A.; Amani, H.; Taherzadeh, M.J. Rhamnolipid as new bio-agent for cleaning of ultrafiltration membrane fouled by whey. Eng. Life Sci. 2018, 18, 272. [Google Scholar] [CrossRef]
- Rawi, N.N.; Ramzi, M.M.; Rahman, N.I.A.; Ariffin, F.; Saidin, J.; Bhubalan, K.; Mazlan, N.W.; Zin, N.A.M.; Siong, J.Y.F.; Bakar, K.; et al. Antifouling Potential of Ethyl Acetate Extract of Marine Bacteria Pseudomonas aeruginosa Strain RLimb. Life 2023, 13, 802. [Google Scholar] [CrossRef]
- Antunes, J.; Pereira, S.; Ribeiro, T.; Plowman, J.E.; Thomas, A.; Clerens, S.; Campos, A.; Vasconcelos, V.; Almeida, J.R. A Multi-Bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides. Mar. Drugs 2019, 17, 111. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Leiknes, T.O. Quorum-Quenching Bacteria Isolated from Red Sea Sediments Reduce Biofilm Formation by Pseudomonas aeruginosa. Front. Microbiol. 2018, 9, 1354. [Google Scholar] [CrossRef]
- Okuda, K.-I.; Zendo, T.; Sugimoto, S.; Iwase, T.; Tajima, A.; Yamada, S.; Sonomoto, K.; Mizunoe, Y. Effects of Bacteriocins on Methicillin-Resistant Staphylococcus aureus Biofilm. Agents Chemother. 2013, 57, 5572–5579. [Google Scholar] [CrossRef]
- García-Almendárez, B.E.; Cann, I.K.O.; Martin, S.E.; Guerrero-Legarreta, I.; Regalado, C. Effect of Lactococcus lactis UQ2 and its bacteriocin on Listeria monocytogenes biofilms’. Food Control. 2008, 19, 670–680. [Google Scholar] [CrossRef]
- Winkelströter, L.K.; Gomes, B.C.; Thomaz, M.R.S.; Souza, V.M.; De Martinis, E.C.P. Lactobacillus sakei 1 and its bacteriocin influence adhesion of Listeria monocytogenes on stainless steel surface. Food Control. 2011, 22, 1404–1407. [Google Scholar] [CrossRef]
- Shanks, R.M.Q.; Dashiff, A.; Alster, J.S.; Kadouri, D.E. Isolation and identification of a bacteriocin with antibacterial and antibiofilm activity from Citrobacter freundii. Arch. Microbiol. 2012, 194, 575. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Shi, Y.; Zeng, G.; Gu, Y.; Chen, G.; Shi, L.; Hu, Y.; Tang, B.; Zhou, J. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere 2016, 157, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.S.; Tan, C.H.; Low, J.H.; Rzechowicz, M.; Siddiqui, M.F.; Winters, H.; Kjelleberg, S.; Fane, A.G.; Rice, S.A. Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes. Water Res. 2017, 112, 29–37. [Google Scholar] [CrossRef]
- Nagaraj, V.; Skillman, L.; Li, D.; Xie, Z.; Ho, G. Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: Enzyme production and screening of bacterial isolates from the full-scale plant. Lett. Appl. Microbiol. 2017, 65, 73–81. [Google Scholar] [CrossRef]
- Ouyang, Y.; Hu, Y.; Huang, J.; Gu, Y.; Shi, Y.; Yi, K.; Yang, Y. Effects of exogenous quorum quenching on microbial community dynamics and biofouling propensity of activated sludge in MBRs. Biochem. Eng. J. 2020, 157, 107534. [Google Scholar] [CrossRef]
- Cheong, W.-S.; Lee, C.H.; Moon, Y.-H.; Oh, H.-S.; Kim, S.-R.; Lee, S.H.; Lee, C.-H.; Lee, J.-K. Isolation and identification of indigenous quorum quenching bacteria, Pseudomonas sp. 1A1, for biofouling control in MBR. Ind. Eng. Chem. Res. 2013, 52, 10554–10560. [Google Scholar] [CrossRef]
- Lee, K.; Kim, Y.-W.; Lee, S.; Lee, S.H.; Nahm, C.H.; Kwon, H.; Park, P.-K.; Choo, K.-H.; Koyuncu, I.; Drews, A.; et al. Stopping Autoinducer-2 Chatter by Means of an Indigenous Bacterium (Acinetobacter sp. DKY-1): A New Antibiofouling Strategy in a Membrane Bioreactor for Wastewater Treatment. Environ. Sci. Technol. 2018, 52, 6237–6245. [Google Scholar] [CrossRef]
- Liu, J.; Eng, C.Y.; Ho, J.S.; Chong, T.H.; Wang, L.; Zhang, P.; Zhou, Y. Quorum quenching in anaerobic membrane bioreactor for fouling control. Water Res. 2019, 156, 159–167. [Google Scholar] [CrossRef]
- Mukherji, R.; Varshney, N.K.; Panigrahi, P.; Suresh, C.G.; Prabhune, A. A new role for penicillin acylases: Degradation of acyl homoserine lactone quorum sensing signals by Kluyvera citrophila penicillin G acylase. Enzym. Microb. Technol. 2014, 56, 1–7. [Google Scholar] [CrossRef]
- Wynendaele, E.; Bronselaer, A.; Nielandt, J.; D’Hondt, M.; Stalmans, S.; Bracke, N.; Verbeke, F.; Van De Wiele, C.; De Tré, G.; De Spiegeleer, B. Quorumpeps database: Chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res. 2012, 41, D655–D659. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, S.; Andishmand, H.; Pilevar, Z.; Hashempour-Baltork, F.; Torbati, M.; Dadgarnejad, M.; Rastegar, H.; Mohammadi, S.A.; Azadmard-Damirchi, S. Innovative perspectives on bacteriocins: Advances in classification, synthesis, mode of action, and food industry applications. J. Appl. Microbiol. 2024, 135, 274. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.R.; Parracho, H.M.R.T.; Walker, J.; Sharp, R.; Hughes, G.; Werthén, M.; Lehman, S.; Morales, S. Bacteriophages and Biofilms. Antibiotics 2014, 3, 270–284. [Google Scholar] [CrossRef]
- Matin, A.; Laoui, T.; Falath, W.; Farooque, M. Fouling control in reverse osmosis for water desalination & reuse: Current practices & emerging environment-friendly technologies. Sci. Total. Environ. 2021, 765, 142721. [Google Scholar] [CrossRef]
- Xiao, T.; Zhu, Z.; Li, L.; Shi, J.; Li, Z.; Zuo, X. Membrane fouling and cleaning strategies in microfiltration/ultrafiltration and dynamic membrane. Sep. Purif. Technol. 2023, 318, 123977. [Google Scholar] [CrossRef]
- Baransi, K.; Bass, M.; Freger, V. In situ modification of reverse osmosis membrane elements for enhanced removal of multiple micropollutants. Membranes 2019, 9, 28. [Google Scholar] [CrossRef]
- Khan, M.T.; Hong, P.-Y.; Nada, N.; Croue, J.P. Does chlorination of seawater reverse osmosis membranes control biofouling? Water Res. 2015, 78, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Wang, S.; Xiao, K.; Huang, X. Enzymatic cleaning mitigates polysaccharide-induced refouling of RO membrane: Evidence from foulant layer structure and microbial dynamics. Environ. Sci. Technol. 2021, 55, 5453–5462. [Google Scholar] [CrossRef]
- Khan, M.; Danielsen, S.; Johansen, K.; Lorenz, L.; Nelson, S.; Camper, A. Enzymatic cleaning of biofouled thin-film composite reverse osmosis (RO) membrane operated in a biofilm membrane reactor. Biofouling 2014, 30, 153–167. [Google Scholar] [CrossRef]
- Al-Balushi, M.A.; Kyaw, H.H.; Myint, M.T.Z.; Al-Abri, M.; Dobretsov, S. Chemical cleaning techniques for fouled RO membranes: Enhancing fouling removal and assessing microbial composition. Membranes 2024, 14, 204. [Google Scholar] [CrossRef]
- Abushaban, A.; Salinas-Rodriguez, S.G.; Pastorelli, D.; Schippers, J.C.; Mondal, S.; Goueli, S.; Kennedy, M.D. Assessing pretreatment effectiveness for particulate, organic and biological fouling in a full-scale SWRO desalination plant. Membranes 2021, 11, 167. [Google Scholar] [CrossRef]
- Da-Silva-Correa, L.H.; Aasen, K.; Gamm, N.E.; Godoy, R.; Rahmati, N.; Buckley, H.L. Efficacy testing of non-oxidizing biocides for polyamide membrane biofouling prevention using a modified CDC biofilm reactor. J. Water Supply: Res. Technol. 2023, 72, 313–328. [Google Scholar] [CrossRef]
- Kim, L.H.; Jung, Y.; Kim, S.-J.; Kim, C.-M.; Yu, H.-W.; Park, H.-D.; Kim, I.S. Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning. Biofouling 2015, 31, 211–220. [Google Scholar] [CrossRef]
- Silva-Aciares, F.; Riquelme, C. Inhibition of Attachment of Some Fouling Diatoms and Settlement of Ulva lactuca Zoospores by a Film-Forming Bacterium and Its Extracellular Products Isolated from Biofouled Substrata in Northern Chile. Electron. J. Biotechnol. 2008, 11, 1–11. [Google Scholar] [CrossRef]
- Tunkal, R.I.; Jamal, M.T.; Abdulrahman, I.; Pugazhendi, A.; Satheesh, S. Antifouling activity of bacterial extracts associated with soft coral and macroalgae from the Red Sea, Oceanol. Hydrobiol. Stud. 2022, 51, 325–336. [Google Scholar] [CrossRef]
- Dhakal, N.; Salinas-Rodriguez, S.G.; Ampah, J.; Schippers, J.C.; Kennedy, M.D. Measuring Biofouling Potential in SWRO Plants with a Flow-Cytometry-Based Bacterial Growth Potential Method. Membranes 2021, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, M. Current Status and Future Trend of Dominant Commercial Reverse Osmosis Membranes. Membranes 2021, 11, 906. [Google Scholar] [CrossRef]
- Khani, M.; Hansen, M.F.; Knøchel, S.; Rasekh, B.; Ghasemipanah, K.; Zamir, S.M.; Nosrati, M.; Burmølle, M. Antifouling potential of enzymes applied to reverse osmosis membranes. Biofilm 2023, 5, 100119. [Google Scholar] [CrossRef] [PubMed]
- Abushaban, M. Assessing Bacterial Growth Potential in Seawater Reverse Osmosis Pretreatment: Method Development and Applications. Ph.D. Thesis, CRC Press, Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Tabraiz, S.; Shamurad, B.; Petropoulos, E.; Charlton, A.; Mohiudin, O.; Khan, M.D.; Ekwenna, E.; Sallis, P. Diversity of acyl homoserine lactone molecules in anaerobic membrane bioreactors treating sewage at psychrophilic temperatures. Membranes 2020, 10, 320. [Google Scholar] [CrossRef]
- Wood, T.L.; Guha, R.; Tang, L.; Geitner, M.; Kumar, M.; Wood, T.K. Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms. Proc. Natl. Acad. Sci. USA 2016, 113, E2802–E2811. [Google Scholar] [CrossRef]
- Sohail, N.; Riedel, R.; Dorneanu, B.; Arellano, H. Prolonging the life span of membrane in submerged MBR by the application of different anti-biofouling techniques. Membranes 2023, 13, 217. [Google Scholar] [CrossRef] [PubMed]
- Bhojani, G.; Kumar, S.B.; Saha, N.K.; Haldar, S. Membrane biofouling by chlorine resistant Bacillus spp.: Effect of feedwater chlorination on bacteria and membrane biofouling. Biofouling 2018, 34, 426–439. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Zhao, P.; Wang, L.; He, G.; Jiang, X. Progresses of advanced anti-fouling membrane and membrane processes for high salinity wastewater treatment. Results Eng. 2023, 17, 100995. [Google Scholar] [CrossRef]
Advantage | Disadvantage | Refs. | ||
---|---|---|---|---|
Antifouling methods | Chemical | High effectiveness in mitigating fouling. | Significantly toxic to non-target organisms. | [26,28,30,43] |
Physical | Efficient in controlling fouling, enhancing water flow. | Potential for long-term damage to membranes, coupled with considerable costs. | [1,31,32,33,34,44,45] | |
Biological | High specificity in the regulation of fouling. | Insufficiently researched, necessitating implementation on a pilot scale. | [36,41,46,47,48] |
Approach (Type) | Mechanism/Typical Agent (s) | Target Biofilm Stage | Key Benefits | Limits/Risks | Performance (Verified Example) | Best-Use Cases | Refs |
---|---|---|---|---|---|---|---|
Alteromonas sp. Ni1-LEM supernatant (biological cleaner) | Peptide/enzymatic CFS (~200 μg·mL−1) disrupts EPS; ambient cycles. | Mature EPS-rich biofilm on PA SWRO (3.5-yr fouled ROMs). | Higher Pi/PR and lower conductivity vs. chemical; AFM recovery. | Batch-to-batch QC; scale-up and SOP standardization. | Pi 0.3747 vs. 0.3625; PR 0.7205 vs. 0.6873; lowest conductivity. | Green CIP/hybrid when EPS dominates; avoids high-pH on PA. | [52] |
Vibrio neptunius ULV11 CFS (biological cleaner) | CFS (~250 μg·mL−1) anti-EPS + antibacterial. | Fouled ROMs; operational CF042 at high pressure/flux. | Flux/permeate ≈ chemical; conductivity < 600 vs. ~615 μS·cm−1. | Composition characterization ongoing; manufacturing/QA. | Flux/permeate comparable; CLSM (ConA) ↓; AFM/SEM restored. | Biological CIP in plant; removes EPS + biomass. | [51] |
Xanthine oxidase + hypoxanthine (enzymatic, ROS-assisted) | XO + hypoxanthine → ROS degrades polysaccharides. | Mature EPS on industrially fouled PA RO membranes (bench cross-flow). | Near-clean flux; ~50% polysaccharides ↓; rejection preserved. | Dose control; ROS management; needs pilot-scale delivery to spiral-wound modules. | Flux ~86.7% of clean; polysaccharides ↓ ~50%. | Targeted EPS removal; pre-rinse. | [84] |
Quorum-quenching (QQ) bacteria/enzymes (preventive) | QQ degrades AHL; immobilized columns. | Early/mid-stage formation (signal disruption). | Non-toxic; continuous use. | Lab/pilot; immobilization/regulatory. In MBRs, exogenous QQ may shift communities and briefly raise biofouling—place carefully. | Lab-RO: less biofouling; AHL degraded. | Pretreatment loops to delay refouling. | [85,96] |
Enzymatic CIP (lipase/protease) | Protease/lipase blends (± surfactant) solubilize organics/EPS. | Mature organic/EPS foulants on PA TFC membranes. | Similarly to strong caustic; less refouling; keeps hydrophobicity. | Cost/compatibility; recipe/time optimization. | Multi-cycle RO effective; abattoir UF: ≈ 100% PWF; lipids/proteins ↓. | Minimize caustic; sensitive PA. | [50,97,98] |
Conventional chemical CIP (alkaline/acid) | STPP/EDTA pH ≈ 12, 35 °C + 1% citric; optional oxidants. | Mixed foulants (organics, biofilm, colloids, inorganics). | Standard; broad efficacy. | PA oxidation; higher chem/energy; sometimes worse than EPS-targeted bio-cleaners. | CF042 PR 0.6873 vs. Ni1-LEM 0.7205; higher conductivity. Wastewater RO: NaOH–SDS → HCl; 35 °C/25 min; cross-flow 0.5 → 1.5 m·s−1 → FR 38%→90%. | Routine CIP; mixed foulants; post-algal. | [13,52,99] |
Pretreatment + non-oxidizing biocides (chemical) | DAF/DMF + LAE, DBNPA, MIT (where allowed). | Upstream biomass/TOC/AOC control; prevention. | Lowers RO load; avoids PA oxidation. | Regulatory/health; weak on mature biofilms. | Full-scale DMF: low removal with frequent chlorination; LAE strong anti-biofilm (PA coupons). | Integrated pretreatment; periodic dosing. | [100,101] |
Chlorination (chemical, upstream) | NaOCl upstream; dechlorinate before PA RO. | Upstream bioburden control. | Simple; common (CTA). | PA oxidation risk; adaptation; may worsen biofouling; neutralize fully. | Mixed; PA damage risk; CTA more tolerant. | CTA; intake shock dosing with full dechlorination. | [99] |
Biosurfactant cleaners (rhamnolipids) | Lower surface tension; detach proteins/EPS; ↑ permeability. | Mature (protein/EPS layer) and early stage (initial adhesion). | Biodegradable; low-dose efficacy (~0.3 g·L−1). | Cost/availability; foaming; limited RO data; verify PA compatibility. | Whey UF: FR 100% @ 0.3 g·L−1 (SDS 84%; ~NaOH 4 g·L−1); dead-end: +20% flux @ 6 h/300 μg·mL−1; no damage after 4 cycles. | Gentle CIP; frequent/inter-cycle; co-cleaner alternative. | [74,102] |
Plant/Location | Flow | Membrane Type | Biological Agent | Dose or Mode | Flux Gain | TPM | Chemical Cleaning Cycles (CIP) Replaced | Ref. |
---|---|---|---|---|---|---|---|---|
Aguas Antofagasta SWRO (N. Chile) | 1056 L/s (installed) | SWC6-LD spiral-wound PA (Hydranautics) | Alteromonas sp. Ni1-LEM supernatant | Working soln 200 µg/mL (total protein); substituted acid/alkaline CIP; tests @58 psi (4 bar) | NR (PR recovery reported) | 58 psi (~4 bar) in cleaning protocol | Replaced: 1% citric ± 0.1% EDTA pH 12 (Sterlitech CF042) | [52] |
Aguas Antofagasta SWRO (N. Chile) | 1056 L/s (installed) | SWC6-LD spiral-wound PA (Hydranautics) | Vibrio neptunius ULV11 supernatant | Working soln 100 µg/mL (total protein); substituted acid/alkaline CIP; tests @58 psi (4 bar) | NR (PR recovery reported) | 58 psi (~4 bar) in cleaning protocol | Replaced: 1% citric ± 0.1% EDTA pH 12 (Sterlitech CF042) | [51] |
RO plant (Mansehra, Pakistan); lab tests | NR | RO, TW30-1812-100HR (DOW) | Rhamnolipids (biosurfactants) | 100–1000 mg/L; 2 h dispersal (viability and EPS-reduction assays) | NR | NR | NR | [71] |
Lab RO (NTU, Singapore) | NR | RO (unspecified) | Recombinant quorum-quenching (QQ) bacterium | Direct dosing or immobilized in a microfilter to degrade AHLs | NR | NR | NR | [83] |
Two full-scale SWRO plants (DAF–UF vs. DMF–CF) | NR | SWRO (full-scale) | NR (BGP method study via flow cytometry) | NR | NR | NR | Compared the CIP frequency between DAF–UF and DMF–CF (no replacement) | [105] |
NR (review) | NR | Dominant commercial RO: fully aromatic composite PA (spiral-wound) | NR | NR | NR | NR | NR | [106] |
Lab tests (University of Copenhagen et al.) | NR | RO (PA) coupons | Enzymes (Trypsin-EDTA, Proteinase K, α-Amylase, β-Mannosidase, Alginate lyase) | 0.05–1.28 U/mL; Proteinase K 100 µg/mL; Trypsin-EDTA 0.0125%; mixes for 4–24 h | NR (biovolume reduced 43–71%) | NR | NR | [107] |
Full-scale SWRO plants (Middle East and Australia case studies) | NR | SWRO (full-scale) | NR (ATP/BGP methods used for monitoring) | NR | NR | NR | NR | [108] |
Solution Class/Agent | Scale and System Evaluated | Quantitative Result Reported | Suggested TRL (2025; Based on Cited Evidence) | Costs Reported in the Paper? | Refs. |
---|---|---|---|---|---|
Enzymatic cleaners (protease + lipase) | Bench UF cleaning of abattoir-fouled membranes; blend vs. single enzymes; surfactant compatibility. | FRR up to ~98.4% with Pseudomonas lipase + Protease A; blend > single enzymes. | 3–4 (lab; no pilot). | NR. | [50] |
Biosurfactant cleaning (rhamnolipids) | Bench RO and cellulose acetate; dead-end and cross-flow. | ~20% flux rise at 300 µg mL−1 for 6 h (dead-end); under cross-flow outperformed a commercial chemical cleaner. | 3–4 (bench). | NR. | [102] |
Quorum-quenching bacteria (Rhodococcus BH4; PVDF ‘bag’) | Lab MBR (~5 L) with PVDF ‘bag’ containing Rhodococcus BH4; tracked TMP, EPS, AHL. | Slower TMP rise; lower TB-EPS; C8-HSL half-life cut from ~4 h to ~1 h. | 4 (lab MBR; QQ modality reported up to 6). | NR. | [58,85] |
Engineered bacteriophage (T7-DspB) | MBEC biofilm model with E. coli; T7 engineered to express dispersin B. | ~4.5-log reduction (~99.997%); ~2-log better than control; effective 101–105 PFU; SEM confirms. | 2–3 (in vitro). | NR. | [74] |
Bacteriocins against MRSA biofilms (nisin A, lacticin Q, nukacin ISK-1) | In vitro staphylococcal biofilms at 4× MIC; compared with vancomycin. | In planktonic MRSA (MR23, 4× MIC), nisin A kills in 1h; lacticin Q in 4h. Biofilms are more tolerant; 4× MIC/24 h: nisin A ~10×; vancomycin ineffective in biofilms. | 2–3 (medical in vitro). | NR. | [78] |
Enzymatic QQ on magnetic carriers + magneto-filter | Lab MBR with acylase immobilized on magnetic carriers (≈3 mg g−1) and external MF. | TMP ≈ 10 kPa for ≈200 h vs. <50 h in control. | 4–5 (prototype lab; related field evidence). | NR. | [58] |
Bacterial supernatant (Alteromonas sp. Ni1LEM) | CF042 RO using SWC6LD ROMs in service ~3.5 y; 825 psi; 15 h supernatant-only cleaning. | Pi = 0.3747 vs. 0.3625 (chemical); PR = 0.7205; permeate 469.5 µS cm−1 vs. 490.7; AFM shows restoration. | 4 (relevant lab validation). | Yes: ~USD 0.14–0.19 L−1 (200 µg mL−1 protein). | [52] |
Cell-free supernatant (Vibrio neptunius ULV11) | CF042 at 825 psi; SWC6LD ROMs used 3–3.5 y; plant-like conditions; AFM/SEM/CLSM. | Flux/permeability comparable to chemical; permeate < 600 µS cm−1 vs. ~615; strong EPS reduction (ConA). | 4 (relevant lab validation). | NR. | [51] |
Enzymatic cleaning (xanthine oxidase + hypoxanthine) | Bench cross-flow (600 psi) with industrially fouled RO ROMs; artificial seawater; 20 h. | Flux ≈ 8.4 L m−2 h−1 (~86.7% of clean 9.7); ~50% less polysaccharides; minimal biocidal action. | 3–4 (bench; relevant conditions). | NR (enzyme high cost; no figures). | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Balladares, V.; Vera-Villalobos, H.; Riquelme, C.; Silva Aciares, F. Current Trends and Biotechnological Innovations in Biofouling Control of RO Membranes in Desalination Systems. Membranes 2025, 15, 270. https://doi.org/10.3390/membranes15090270
Cruz-Balladares V, Vera-Villalobos H, Riquelme C, Silva Aciares F. Current Trends and Biotechnological Innovations in Biofouling Control of RO Membranes in Desalination Systems. Membranes. 2025; 15(9):270. https://doi.org/10.3390/membranes15090270
Chicago/Turabian StyleCruz-Balladares, Victoria, Hernán Vera-Villalobos, Carlos Riquelme, and Fernando Silva Aciares. 2025. "Current Trends and Biotechnological Innovations in Biofouling Control of RO Membranes in Desalination Systems" Membranes 15, no. 9: 270. https://doi.org/10.3390/membranes15090270
APA StyleCruz-Balladares, V., Vera-Villalobos, H., Riquelme, C., & Silva Aciares, F. (2025). Current Trends and Biotechnological Innovations in Biofouling Control of RO Membranes in Desalination Systems. Membranes, 15(9), 270. https://doi.org/10.3390/membranes15090270