Separation of Short-Chain Fatty Acids from Primary Sludge into a Particle-Free Permeate by Coupling Chamber Filter-Press and Cross-Flow Microfiltration: Optimization, Semi-Continuous Operation, and Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Overview
2.1.1. Primary Sedimentation Tank Coupled with a Dark Fermentation Reactor
2.1.2. Sludge Conditioning and Dewatering at Lab and Pilot Scale
2.1.3. Pilot-Scale Microfiltration
- (1)
- Filtration with clean water at 40 °C for 1 h at 3 m∙s−1.
- (2)
- Filtration with an alkaline solution (Atec, Ulm, Germany; Product no.: Atec 2610) at pH 12 at 40 °C for 1 h at 3 m∙s−1.
- (3)
- Filtration with clean water at 40 °C for 0.5 h at 3 m∙s−1.
- (4)
- Filtration with an acidic solution (Atec, Ulm, Germany; Product no.: Atec 3027) at pH 2 at 40 °C for 1 h at 3 m∙s−1.
- (5)
- Filtration with clean water at 40 °C for 0.5 h at 3 m∙s−1.
- (6)
- Chemical cleaning is exclusive to this study due to the type of wastewater used, and a detailed description can be found in Section 3.1.2.
2.2. Analytical Methods
2.3. Data Interpretation
2.3.1. Fermentation
2.3.2. Filtration
2.3.3. Recovery of SCFAs: Dark Fermentation–Filter Press–Microfiltration Cascade
3. Results and Discussions
3.1. Optimization of Flocculant Dosages at Lab Scale and Microfiltration at Pilot Scale
3.1.1. Lab-Scale Flocculation of Hydrolyzed Primary Sludge
3.1.2. Optimization of Pilot-Scale Microfiltration with Filtrate of Chamber Filter Press
3.2. Cascade of Dark Fermentation and Two-Step Membrane Separation
3.2.1. Dark Fermentation at Different Organic Loading Rates
3.2.2. Pilot-Scale Dewatering and Microfiltration: Evaluation of Retention
3.2.3. Performance of Microfiltration Membrane During Semi-Continuous Operation
3.3. Evaluation of the SCFA Load Recovered out of the Cascade of Dark Fermentation and Two-Step Membrane Separation
4. Conclusions
- (1)
- Dark fermentation stands as a crucial step and the yields of SCFAs can be potentially enhanced by at least 20% by maintaining lower organic loading rates (2–5 gTOC∙L−1∙d−1).
- (2)
- Filter press (mesh size: 100 µm) coupled with hydroxypropyl trimethyl ammonium starch (HPAS) is an effective pre-treatment stage and can remove more than 60% of the solids and produce a filtrate with low suspended solids concentration.
- (3)
- HPAS contributes significantly to fouling of microfiltration, but fouling can be mitigated by increased backwashing frequency, and also by reducing solution pH below membrane iso-electric point.
- (4)
- Approximately 4 gCSCFAs∙capita−1∙d−1 can be recovered in a particle-free permeate from the sludge stream of a wastewater biorefinery.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, J.; Gu, J.; Zhao, Q.; Liu, Y. COD capture: A feasible option towards energy self-sufficient domestic wastewater treatment. Sci. Rep. 2016, 6, 25054. [Google Scholar] [CrossRef] [PubMed]
- Da Ros, C.; Conca, V.; Eusebi, A.L.; Frison, N.; Fatone, F. Sieving of municipal wastewater and recovery of bio-based volatile fatty acids at pilot scale. Water Res. 2020, 174, 115633. [Google Scholar] [CrossRef] [PubMed]
- Pittmann, T.; Steinmetz, H. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants. Bioresour. Technol. 2016, 214, 9–15. [Google Scholar] [CrossRef]
- Wong, Y.M.; Wu, T.Y.; Juan, J.C. A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew. Sustain. Energy Rev. 2014, 34, 471–482. [Google Scholar] [CrossRef]
- Atasoy, M.; Owusu-Agyeman, I.; Plaza, E.; Cetecioglu, Z. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresour. Technol. 2018, 268, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Prakash, N.S.; Maurer, P.; Horn, H.; Hille-Reichel, A. Valorization of organic carbon in primary sludge via semi-continuous dark fermentation: First step to establish a wastewater biorefinery. Bioresour. Technol. 2024, 397, 130467. [Google Scholar] [CrossRef]
- Huang, M.; Liu, Z.; Li, A.; Yang, H. Dual functionality of a graft starch flocculant: Flocculation and antibacterial performance. J. Environ. Manage. 2017, 196, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Tamis, J.; Lužkov, K.; Jiang, Y.; Loosdrecht, M.C.M.V.; Kleerebezem, R. Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. J. Biotechnol. 2014, 192, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Ntaikou, I.; Valencia Peroni, C.; Kourmentza, C.; Ilieva, V.I.; Morelli, A.; Chiellini, E.; Lyberatos, G. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system. J. Biotechnol. 2014, 188, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Cusick, R.D.; Bryan, B.; Parker, D.S.; Merrill, M.D.; Mehanna, M.; Kiely, P.D.; Liu, G.; Logan, B.E. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl. Microbiol. Biotechnol. 2011, 89, 2053–2063. [Google Scholar] [CrossRef]
- Rivera, I.; Buitrón, G.; Bakonyi, P.; Nemestóthy, N.; Bélafi-Bakó, K. Hydrogen production in a microbial electrolysis cell fed with a dark fermentation effluent. J. Appl. Electrochem. 2015, 45, 1223–1229. [Google Scholar] [CrossRef]
- Cho, Y.H.; Lee, H.D.; Park, H.B. Integrated Membrane Processes for Separation and Purification of Organic Acid from a Biomass Fermentation Process. Ind. Eng. Chem. Res. 2012, 51, 10207–10219. [Google Scholar] [CrossRef]
- Chen, M.; Heijman, S.G.J.; Rietveld, L.C. State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. Membranes 2021, 11, 888. [Google Scholar] [CrossRef] [PubMed]
- Hofs, B.; Ogier, J.; Vries, D.; Beerendonk, E.F.; Cornelissen, E.R. Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Sep. Purif. Technol. 2011, 79, 365–374. [Google Scholar] [CrossRef]
- Samanta, P.; von Ungern-Sternberg Schwark, L.; Horn, H.; Saravia, F. Nutrient recovery and ammonia-water production by MF vacuum evaporation treament of pig manure. J. Environ. Chem. Eng. 2022, 10, 106929. [Google Scholar] [CrossRef]
- Tuczinski, M.; Saravia, F.; Horn, H. Treatment of thermophilic hydrolysis reactor effluent with ceramic microfiltration membranes. Bioprocess Biosyst. Eng. 2018, 41, 1561–1571. [Google Scholar] [CrossRef]
- Razali, M.A.A.; Ariffin, A. Polymeric flocculant based on cassava starch grafted polydiallyldimethylammonium chloride: Flocculation behavior and mechanism. Appl. Surf. Sci. 2015, 351, 89–94. [Google Scholar] [CrossRef]
- Lasaki, B.A.; Maurer, P.; Schönberger, H. Uncovering the reasons behind high-performing primary sedimentation tanks for municipal wastewater treatment: An in-depth analysis of key factors. J. Environ. Chem. Eng. 2024, 12, 112460. [Google Scholar] [CrossRef]
- Melcher, H.-J.; Berg, J. Verfahren zur Auftrennung einer Suspension und Danach Hergestellte Produkte. 2013. [Online]. Available online: https://patents.google.com/patent/DE102013010007A1/de (accessed on 1 September 2023).
- DIN EN 13137; Characterization of Waste—Determination of Total Organic Carbon (TOC) in Waste, Sludges and Sediments. DIN Deutsches Institut für Normung: Berlin, Germany, 2001.
- DIN 38414-2; German Standard Methods for the Examination of Water, Waste Water and Sludge; Sludge and Sediments (Group S); Determination of Water Content, of Dry Residue and of Solids Content (S 2). Deutsches Institut für Normung: Berlin, Germany, 1985.
- Rice, E.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- DIN EN 1484; Water Analysis—Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC). Deutsches Institut für Normung: Berlin, Germany, 2019.
- Suopajärvi, T.; Sirviö, J.A.; Liimatainen, H. Cationic nanocelluloses in dewatering of municipal activated sludge. J. Environ. Chem. Eng. 2017, 5, 86–92. [Google Scholar] [CrossRef]
- Choi, H.; Zhang, K.; Dionysiou, D.D.; Oerther, D.B.; Sorial, G.A. Influence of cross-flow velocity on membrane performance during filtration of biological suspension. J. Membr. Sci. 2005, 248, 189–199. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Li, Q. Fouling of microfiltration membranes by organic polymer coagulants and flocculants: Controlling factors and mechanisms. Water Res. 2011, 45, 357–365. [Google Scholar] [CrossRef]
- Gupta, K.; Chellam, S. Revealing the mechanisms of irreversible fouling during microfiltration—The role of feedwater composition. J. Environ. Chem. Eng. 2022, 10, 107362. [Google Scholar] [CrossRef]
- Sayegh, A.; Shylaja Prakash, N.; Pedersen, T.H.; Horn, H.; Saravia, F. Treatment of hydrothermal liquefaction wastewater with ultrafiltration and air stripping for oil and particle removal and ammonia recovery. J. Water Process Eng. 2021, 44, 102427. [Google Scholar] [CrossRef]
- Pandey, A.K.; Pilli, S.; Bhunia, P.; Tyagi, R.D.; Surampalli, R.Y.; Zhang, T.C.; Kim, S.-H.; Pandey, A. Dark fermentation: Production and utilization of volatile fatty acid from different wastes- A review. Chemosphere 2022, 288, 132444. [Google Scholar] [CrossRef] [PubMed]
- Skalsky, D.S.; Daigger, G.T. Wastewater solids fermentation for volatile acid production and enhanced biological phosphorus removal. Water Environ. Res. 1995, 67, 230–237. [Google Scholar] [CrossRef]
- Banister, S.; Pretorius, W. Optimisation of primary sludge acidogenic fermentation. Water SA 1998, 24, 35–41. [Google Scholar]
- Zhang, X.; Fan, L.; Roddick, F.A. Influence of the characteristics of soluble algal organic matter released from Microcystis aeruginosa on the fouling of a ceramic microfiltration membrane. J. Membr. Sci. 2013, 425–426, 23–29. [Google Scholar] [CrossRef]
- Amann, A.; Weber, N.; Krampe, J.; Rechberger, H.; Zoboli, O.; Zessner, M. Operation and Performance of AustrianWastewater and Sewage Sludge Treatment as a Basis for Resource Optimization. Water 2021, 13, 2998. [Google Scholar] [CrossRef]
- Christensen, M.L.; Jakobsen, A.H.; Hansen, C.S.K.; Skovbjerg, M.; Andersen, R.B.M.; Jensen, M.D.; Sundmark, K. Pilot-scale hydrolysis of primary sludge for production of easily degradable carbon to treat biological wastewater or produce biogas. Sci. Total Environ. 2022, 846, 157532. [Google Scholar] [CrossRef] [PubMed]
- Morgan-Sagastume, F.; Hjort, M.; Cirne, D.; Gérardin, F.; Lacroix, S.; Gaval, G.; Karabegovic, L.; Alexandersson, T.; Johansson, P.; Karlsson, A.; et al. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresour. Technol. 2015, 181, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Gholami, A.; Mohkam, M.; Rasoul-Amini, S.; Ghasemi, Y. Industrial production of polyhydroxyalkanoates by bacteria: Opportunities and challenges. MINERVA Biotecnol. 2016, 28, 59–74. [Google Scholar]
Sieve Size | pH | TS in Hydrolyzate | Batch Number | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
600 µm | pH 6.3 | 38 g∙L−1 | First batch | DHPAS (mgHPAS∙gTS−1) | 0 | 13 | 20 | 25 | 33 | 38 | 51 | 50 | |
TS retained on sieve (g∙kg−1) | - | 77 | 83 | 87 | 91 | 90 | 86 | 86 | |||||
(−) | - | 2 | 2.2 | 2.3 | 2.4 | 2.4 | 2.3 | 2.3 | |||||
pH 6 | 45 g∙L−1 | Second batch | DHPAS (mgHPAS∙gTS−1) | 0 | 20 | 22 | 25 | 27 | 30 | 33 | 39 | 49 | |
TS retained on sieve (g∙kg−1) | - | 79 | 86 | 88 | 82 | 82 | 97 | 89 | 83 | ||||
(−) | - | 1.8 | 1.9 | 2 | 1.8 | 1.8 | 2.2 | 2 | 1.8 | ||||
36 g∙L−1 | Third batch | DHPAS (mgHPAS∙gTS−1) | 0 | 13 | 20 | 27 | 34 | 39 | 45 | ||||
TS retained on sieve (g∙kg−1) | 79 | 82 | 82 | 89 | 89 | 92 | 93 | ||||||
(−) | 2.2 | 2.3 | 2.3 | 2.5 | 2.5 | 2.6 | 2.6 | ||||||
100 µm | pH 8.7 | 33 g∙L−1 | Fourth batch | DHPAS (mgHPAS∙gTS−1) | 0 | 18 | 27 | 30 | 39 | 41 | |||
TS retained on sieve (g∙kg−1) | 63 | 65 | 67 | 70 | 79 | 78 | |||||||
(−) | 1.9 | 2 | 2 | 2.1 | 2.4 | 2.4 | |||||||
TS in the filtrate (mg∙L−1) | 14,197 | 9519 | 9439 | 8329 | 8075 | 8378 | |||||||
RTS (%) | 57 | 71 | 72 | 75 | 76 | 75 | |||||||
35 g∙L−1 | Fifth batch | DHPAS (mgHPAS∙gTS−1) | 0 | 18 | 25 | 30 | 36 | 39 | |||||
TS retained on sieve (g∙kg−1) | 65 | 73 | 77 | 72 | 65 | 66 | |||||||
(−) | 1.9 | 2.1 | 2.2 | 2.1 | 1.9 | 1.9 | |||||||
TS in the filtrate (mg∙L−1) | 14,754 | 10,372 | 8929 | 8288 | 7982 | 8086 | |||||||
RTS (%) | 58 | 71 | 75 | 76 | 77 | 77 | |||||||
TSS in the filtrate (mg∙L−1) | - | - | 630 | 330 | 630 | 750 | |||||||
(mg∙g−1) | - | - | 18 | 9 | 18 | 21 | |||||||
Visual observation of filtrate |
Experiment | Type of Cleaning | Conditions | Frequency of Physical Cleaning | Duration of Physical Cleaning | Initial pH | TS (mg∙L−1) | TSS (mg∙L−1) | TOC (mg∙L−1) | DOC (mg∙L−1) |
---|---|---|---|---|---|---|---|---|---|
1 | Physical | Relaxation | 300 s | 10 s | 7.8 | 6262 ± 619 | 430 ± 94 | 2326 ± 255 | 1508 ± 304 |
2 | Physical/ chemical | Relaxation | 600 s | 20 s | 8 | ||||
3 | Physical | Backwashing | 1800 s | 8.3 | |||||
4 | Physical | Backwashing | 600 s | 8.1 | |||||
5 | Physical/chemical | Backwashing | 5.4 a |
Runs | Hydrolyzate Obtained from Dark Fermentation | Dosage (DHPAS) | Filtrate After Dewatering of Hydrolyzate Using Chamber Filter Press | Permeate After Microfiltration of Filtrate | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TS | SCFAs | TSS | RTS | RSCFAs | RTS | RSCFAs | fDOC | |||
g∙L−1 | mg∙L−1 | mgHPAS∙gTS−1 | mg∙L−1 | mgTSS∙gTS−1 | % | % | ||||
1 | 26 | 4926 | 6 | 1300 | 50 | 65 | 1 | 21 | 4 ± 2 | 87 |
2 | 30 | 5686 | 10 | 1281 | 43 | 68 | 6 | 21 | 4 ± 3 | 88 |
3 | 21 | 4551 | 19 | 115 | 6 | 67 | 4 | 6 | 6 a | 85 |
4 | 19 | 5831 | 25 | 348 | 18 | 55 | 8 | 21 | 3 ± 1 | 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shylaja Prakash, N.; Maurer, P.; Horn, H.; Saravia, F.; Hille-Reichel, A. Separation of Short-Chain Fatty Acids from Primary Sludge into a Particle-Free Permeate by Coupling Chamber Filter-Press and Cross-Flow Microfiltration: Optimization, Semi-Continuous Operation, and Evaluation. Membranes 2025, 15, 22. https://doi.org/10.3390/membranes15010022
Shylaja Prakash N, Maurer P, Horn H, Saravia F, Hille-Reichel A. Separation of Short-Chain Fatty Acids from Primary Sludge into a Particle-Free Permeate by Coupling Chamber Filter-Press and Cross-Flow Microfiltration: Optimization, Semi-Continuous Operation, and Evaluation. Membranes. 2025; 15(1):22. https://doi.org/10.3390/membranes15010022
Chicago/Turabian StyleShylaja Prakash, Nikhil, Peter Maurer, Harald Horn, Florencia Saravia, and Andrea Hille-Reichel. 2025. "Separation of Short-Chain Fatty Acids from Primary Sludge into a Particle-Free Permeate by Coupling Chamber Filter-Press and Cross-Flow Microfiltration: Optimization, Semi-Continuous Operation, and Evaluation" Membranes 15, no. 1: 22. https://doi.org/10.3390/membranes15010022
APA StyleShylaja Prakash, N., Maurer, P., Horn, H., Saravia, F., & Hille-Reichel, A. (2025). Separation of Short-Chain Fatty Acids from Primary Sludge into a Particle-Free Permeate by Coupling Chamber Filter-Press and Cross-Flow Microfiltration: Optimization, Semi-Continuous Operation, and Evaluation. Membranes, 15(1), 22. https://doi.org/10.3390/membranes15010022