Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects
Abstract
:1. Introduction
2. Introduction to AFM
3. Application of AFM in Membrane Fouling
3.1. Characterization of Membrane
3.1.1. Characterization of Membrane Morphology
3.1.2. Characterization of Roughness
3.1.3. Measurement of Membrane Channels
3.2. Characterization of Contaminants
3.2.1. Organic Contaminants
3.2.2. Biological Contaminants
3.2.3. Emerging Contaminants
3.3. Microscopic Identification of Membrane Fouling Processes under Changing Factors
3.4. Measurement of Interactions in Membrane Fouling
3.5. Modeling or Analysis of the Interaction in Membrane Fouling
4. Application of Improved AFM Technology Membrane Fouling Research
4.1. Modification of Probes for Membrane Fouling Characterization
4.2. Investigating Membrane Fouling Process by Coupling AFM with Other Functional Modules
4.3. Potential of AFM Coupled with Other Techniques
4.4. High-Speed Scanning Atomic Force Microscopy Technology
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, M.; Tijing, L.D.; Naidu, G.; Kim, S.-H.; Matsuyama, H.; Fane, A.G.; Shon, H.K. A review of membrane wettability for the treatment of saline water deploying membrane distillation. Desalination 2020, 479, 114312. [Google Scholar] [CrossRef]
- Ilyas, A.; Vankelecom, I.F.J. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv. Colloid Interface Sci. 2023, 312, 102834. [Google Scholar] [CrossRef]
- Xu, H.; Xu, Y.; Xiao, K.; Gao, T.; Liu, Z.; Xue, W.; Wei, C.-H.; Huang, X. Interplay of organic components in membrane fouling evolution: Statistical evidence from multiple spectroscopic analyses. J. Membr. Sci. 2022, 661, 120913. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Yang, B.; Xiao, K.; Zhao, H. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies. Water Res. 2021, 195, 116976. [Google Scholar] [CrossRef]
- Sengar, A.; Vijayanandan, A. Effects of pharmaceuticals on membrane bioreactor: Review on membrane fouling mechanisms and fouling control strategies. Sci. Total Environ. 2022, 808, 152132. [Google Scholar] [CrossRef]
- Olejnik, A.; Nowak, I. Atomic force microscopy analysis of synthetic membranes applied in release studies. Appl. Surf. Sci. 2015, 355, 686–697. [Google Scholar] [CrossRef]
- Khulbe, K.C.; Matsuura, T. Characterization of synthetic membranes by Raman spectroscopy, electron spin resonance, and atomic force microscopy: A review. Polymer 2000, 41, 1917–1935. [Google Scholar] [CrossRef]
- Kwak, S.-Y.; Woo Ihm, D. Use of atomic force microscopy and solid-state NMR spectroscopy to characterize structure-property-performance correlation in high-flux reverse osmosis (RO) membranes. J. Membr. Sci. 1999, 158, 143–153. [Google Scholar] [CrossRef]
- Singh, P.S.; Rao, A.P.; Ray, P.; Bhattacharya, A.; Singh, K.; Saha, N.K.; Reddy, A.V.R. Techniques for characterization of polyamide thin film composite membranes. Desalination 2011, 282, 78–86. [Google Scholar] [CrossRef]
- Bowen, W.R.; Hilal, N. Chapter 4—Investigating Membranes and Membrane Processes with Atomic Force Microscopy. In Atomic Force Microscopy in Process Engineering; Bowen, W.R., Hilal, N., Eds.; Butterworth-Heinemann: Oxford, UK, 2009; pp. 107–138. [Google Scholar]
- Hilal, N.; Johnson, D. 1.16—The Use of Atomic Force Microscopy in Membrane Characterization. In Comprehensive Membrane Science and Engineering, Drioli, E.; Giorno, L., Ed.; Elsevier: Oxford, UK, 2010; pp. 337–354. [Google Scholar]
- Gan, Y. Atomic and subnanometer resolution in ambient conditions by atomic force microscopy. Surf. Sci. Rep. 2009, 64, 99–121. [Google Scholar] [CrossRef]
- Hilal, N.; Bowen, W.R. Atomic force microscope study of the rejection of colloids by membrane pores. Desalination 2002, 150, 289–295. [Google Scholar] [CrossRef]
- Johnson, D.J.; Al Malek, S.A.; Al-Rashdi, B.A.M.; Hilal, N. Atomic force microscopy of nanofiltration membranes: Effect of imaging mode and environment. J. Membr. Sci. 2012, 389, 486–498. [Google Scholar] [CrossRef]
- Zhong, Q.; Inniss, D.; Kjoller, K.; Elings, V.B. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. 1993, 290, L688–L692. [Google Scholar] [CrossRef]
- Stawikowska, J.; Livingston, A.G. Assessment of atomic force microscopy for characterisation of nanofiltration membranes. J. Membr. Sci. 2013, 425–426, 58–70. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, S.; Vijay, Y.K. Study of gas transport properties of multi-walled carbon nanotubes/polystyrene composite membranes. Int. J. Hydrog. Energy 2012, 37, 3914–3921. [Google Scholar] [CrossRef]
- ElHadidy, A.M.; Peldszus, S.; Van Dyke, M.I. Development of a pore construction data analysis technique for investigating pore size distribution of ultrafiltration membranes by atomic force microscopy. J. Membr. Sci. 2013, 429, 373–383. [Google Scholar] [CrossRef]
- Wang, P.; Song, T.; Bu, J.; Zhang, Y.; Liu, J.; Zhao, J.; Zhang, T.; Xi, J.; Xu, J.; Li, L.; et al. Does bacterial community succession within the polyethylene mulching film plastisphere drive biodegradation? Sci. Total Environ. 2022, 824, 153884. [Google Scholar] [CrossRef]
- He, Y.; Zhang, J.; Liang, X.; Shehzad, M.A.; Ge, X.; Zhu, Y.; Hu, M.; Yang, Z.; Wu, L.; Xu, T. Achieving high anion conductivity by densely grafting of ionic strings. J. Membr. Sci. 2018, 559, 35–41. [Google Scholar] [CrossRef]
- San-Martín, M.I.; Carmona, F.J.; Alonso, R.M.; Prádanos, P.; Morán, A.; Escapa, A. Assessing the ageing process of cation exchange membranes in bioelectrochemical systems. Int. J. Hydrog. Energy 2019, 44, 25287–25296. [Google Scholar] [CrossRef]
- Mulijani, S.; Mulanawati, A. Enhanced Performance of Asymmetric Polystyrene Membrane by Incorporation of Pluronic F127 and Its Application for Pervaporation Separation. Procedia Chem. 2012, 4, 360–366. [Google Scholar] [CrossRef]
- Zafari, M.; Kikhavani, T.; Ashrafizadeh, S.N. Hybrid surface modification of an anion exchange membrane for selective separation of monovalent anions in the electrodialysis process. J. Environ. Chem. Eng. 2022, 10, 107104. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, J.; Hu, J. Novel antifouling polysulfone matrix membrane modified with zwitterionic polymer. J. Saudi Chem. Soc. 2021, 25, 101281. [Google Scholar] [CrossRef]
- Ruangdit, S.; Chittrakarn, T.; Kaew-on, C.; Samran, R.; Bootluck, W.; Sirijarukul, S. E-beam induced grafting of binary monomer on polysulfone membrane for the separation of skim natural rubber latex. J. Environ. Chem. Eng. 2022, 10, 107862. [Google Scholar] [CrossRef]
- Nie, Z.; Liu, C.; Jiang, X.; Zhou, Y.; Lin, X.; Zhao, X.; He, Q.; Chai, H.; Pang, X.; Ma, J. Dopamine-triggered one-step codeposition of zwitterionic surfactants for anti-fouling polyethersulfone ultrafiltration membrane modification. Appl. Surf. Sci. 2022, 598, 153871. [Google Scholar] [CrossRef]
- Johnson, D.; Hilal, N. Polymer membranes—Fractal characteristics and determination of roughness scaling exponents. J. Membr. Sci. 2019, 570–571, 9–22. [Google Scholar] [CrossRef]
- Kim, T.N.; Lee, J.; Choi, J.H.; Ahn, J.H.; Yang, E.; Hwang, M.H.; Chae, K.J. Tunable atomic level surface functionalization of a multi-layered graphene oxide membrane to break the permeability-selectivity trade-off in salt removal of brackish water. Sep. Purif. Technol. 2021, 274, 119047. [Google Scholar] [CrossRef]
- Mahmodi, G.; Ronte, A.; Dangwal, S.; Wagle, P.; Echeverria, E.; Sengupta, B.; Vatanpour, V.; McLlroy, D.N.; Ramsey, J.D.; Kim, S.-J. Improving antifouling property of alumina microfiltration membranes by using atomic layer deposition technique for produced water treatment. Desalination 2022, 523, 115400. [Google Scholar] [CrossRef]
- Huang, A.; Kan, C.-C.; Lo, S.-C.; Chen, L.-H.; Su, D.-Y.; Soesanto, J.F.; Hsu, C.-C.; Tsai, F.-Y.; Tung, K.-L. Nanoarchitectured design of porous ZnO@copper membranes enabled by atomic-layer-deposition for oil/water separation. J. Membr. Sci. 2019, 582, 120–131. [Google Scholar] [CrossRef]
- Welch, B.C.; McIntee, O.M.; Myers, T.J.; Greenberg, A.R.; Bright, V.M.; George, S.M. Molecular layer deposition for the fabrication of desalination membranes with tunable metrics. Desalination 2021, 520, 115334. [Google Scholar] [CrossRef]
- Chandra, P.N.; Usha, K.; Mohan, M.K. Design, development and characterization of polyelectrolyte multilayer membranes for potential filtration applications. Mater. Today Proc. 2021, 41, 530–534. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, X.; Wang, Y.; Qi, Y.; Zhang, Y.; Luo, J.; Cui, P.; Jiang, W. A review on oil/water emulsion separation membrane material. J. Environ. Chem. Eng. 2022, 10, 107257. [Google Scholar] [CrossRef]
- Ullah, A.; Tanudjaja, H.J.; Ouda, M.; Hasan, S.W.; Chew, J.W. Membrane fouling mitigation techniques for oily wastewater: A short review. J. Water Process Eng. 2021, 43, 102293. [Google Scholar] [CrossRef]
- Meral, K.; Erbil, H.Y.; Onganer, Y. A spectroscopic study of water-soluble pyronin B and pyronin Y in Langmuir–Blodgett films mixed with stearic acid. Appl. Surf. Sci. 2011, 258, 1605–1612. [Google Scholar] [CrossRef]
- Allen, F.I.; Ercius, P.; Modestino, M.A.; Segalman, R.A.; Balsara, N.P.; Minor, A.M. Deciphering the three-dimensional morphology of free-standing block copolymer thin films by transmission electron microscopy. Micron 2013, 44, 442–450. [Google Scholar] [CrossRef]
- Chakraborty, S.; Wang, B.; Dutta, P.K. Tolerance of polymer-zeolite composite membranes to mechanical strain. J. Membr. Sci. 2016, 518, 192–202. [Google Scholar] [CrossRef]
- Llanos, J.; Williams, P.M.; Cheng, S.; Rogers, D.; Wright, C.; Perez, A.; Canizares, P. Characterization of a ceramic ultrafiltration membrane in different operational states after its use in a heavy-metal ion removal process. Water Res. 2010, 44, 3522–3530. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Oatley, D.L.; Williams, P.M.; Wright, C.J. Positively charged nanofiltration membranes: Review of current fabrication methods and introduction of a novel approach. Adv. Colloid Interface Sci. 2011, 164, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Ni, T.; You, Y.; Xie, Z.; Kong, L.; Newman, B.; Henderson, L.; Zhao, S. Waste-derived carbon fiber membrane with hierarchical structures for enhanced oil-in-water emulsion separation: Performance and mechanisms. J. Membr. Sci. 2022, 653, 120543. [Google Scholar] [CrossRef]
- Jafari, B.; Rezaei, E.; Dianat, M.J.; Abbasi, M.; Hashemifard, S.A.; Khosravi, A.; Sillanpää, M. Development of a new composite ceramic membrane from mullite, silicon carbide and activated carbon for treating greywater. Ceram. Int. 2021, 47, 34667–34675. [Google Scholar] [CrossRef]
- Hu, C.; Lu, W.; Sun, C.; Zhao, Y.; Zhang, Y.; Fang, Y. Gelation behavior and mechanism of alginate with calcium: Dependence on monovalent counterions. Carbohydr. Polym. 2022, 294, 119788. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.C.; Cheng, S.J.; Chen, Y.C.; Huang, H.R.; Liou, J.W. Nanoscopic analysis on pH induced morphological changes of flagella in Escherichia coli. J. Microbiol. Immunol. Infect. 2013, 46, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, R.; Zhang, Y.; Chen, B.; Zhu, X. In situ scrutinize the adsorption of sulfamethoxazole in water using AFM force spectroscopy: Molecular adhesion force determination and fractionation. J. Hazard. Mater. 2022, 426, 128128. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Wu, M.; Chen, J.; Lin, H.; He, Y. Different fouling propensities of loosely and tightly bound extracellular polymeric substances (EPSs) and the related fouling mechanisms in a membrane bioreactor. Chemosphere 2020, 255, 126953. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Jiang, H.; Hu, W. Direct observation of macromolecular structures of humic acid by AFM and SEM. Colloids Surf. A Physicochem. Eng. Asp. 2007, 302, 121–125. [Google Scholar] [CrossRef]
- Demaneche, S.; Chapel, J.P.; Monrozier, L.J.; Quiquampoix, H. Dissimilar pH-dependent adsorption features of bovine serum albumin and alpha-chymotrypsin on mica probed by AFM. Colloids Surf. B Biointerfaces 2009, 70, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Li, T.; Zhao, Q.; Liu, W.; Liu, J.; Song, Y.; Chu, H.; Dong, B. UF fouling behavior of allelopathy of extracellular organic matter produced by mixed algae co-cultures. Sep. Purif. Technol. 2021, 261, 118297. [Google Scholar] [CrossRef]
- Song, W. Nanofiltration of natural organic matter with H2O2/UV pretreatment: Fouling mitigation and membrane surface characterization. J. Membr. Sci. 2004, 241, 143–160. [Google Scholar] [CrossRef]
- Zorila, F.L.; Ionescu, C.; Craciun, L.S.; Zorila, B. Atomic force microscopy study of morphological modifications induced by different decontamination treatments on Escherichia coli. Ultramicroscopy 2017, 182, 226–232. [Google Scholar] [CrossRef]
- Ahmed, Y.; Zhong, J.; Yuan, Z.; Guo, J. Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process. Water Res. 2021, 197, 117075. [Google Scholar] [CrossRef]
- Landels, A.; Beacham, T.A.; Evans, C.T.; Carnovale, G.; Raikova, S.; Cole, I.S.; Goddard, P.; Chuck, C.; Allen, M.J. Improving electrocoagulation floatation for harvesting microalgae. Algal Res. 2019, 39, 101446. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.K.; Lewis, D.M.; Ashman, P.J. Force and energy requirement for microalgal cell disruption: An atomic force microscope evaluation. Bioresour. Technol. 2013, 128, 199–206. [Google Scholar] [CrossRef]
- Li, M. Chapter 7—Nanoscale imaging and force probing of single microbial cells by atomic force microscopy. In Atomic Force Microscopy for Nanoscale Biophysics; Li, M., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 187–217. [Google Scholar]
- Wang, Y.; Zheng, X.; Xiao, K.; Xue, J.; Ulbricht, M.; Zhang, Y. How and why does time matter—A comparison of fouling caused by organic substances on membranes over adsorption durations. Sci. Total Environ. 2023, 866, 160655. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Wu, D.; Xia, J.; Shi, H.; Kim, H. Influence of physicochemical surface properties on the adhesion of bacteria onto four types of plastics. Sci. Total Environ. 2019, 671, 1101–1107. [Google Scholar] [CrossRef]
- Melo-Agustin, P.; Kozak, E.R.; de Jesus Perea-Flores, M.; Mendoza-Perez, J.A. Identification of microplastics and associated contaminants using ultra high resolution microscopic and spectroscopic techniques. Sci. Total Environ. 2022, 828, 154434. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wen, D.; Pei, J.; Fei, Y.; Ouyang, D.; Zhang, H.; Luo, Y. Identification and quantification of microplastics using Fourier-transform infrared spectroscopy: Current status and future prospects. Curr. Opin. Environ. Sci. Health 2020, 18, 14–19. [Google Scholar] [CrossRef]
- Zhang, W.; Stack, A.G.; Chen, Y. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM. Colloids Surf. B Biointerfaces 2011, 82, 316–324. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, S.; Chi, M.; Wang, Y.; Van Eygen, G.; Zhao, R.; Zhang, X.; Li, G.; Volodine, A.; Hu, S.; et al. Efficient capture of endocrine-disrupting compounds by a high-performance nanofiltration membrane for wastewater treatment. Water Res. 2022, 227, 119322. [Google Scholar] [CrossRef]
- Wu, J.; Lu, L.; Wang, R.; Pan, L.; Chen, B.; Zhu, X. Influence of microplastics on the transport of antibiotics in sand filtration investigated by AFM force spectroscopy. Sci. Total Environ. 2023, 873, 162344. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Bai, D.; Wang, Y.; Zhang, Y.; Qi, Y.; Qiu, X.; Wang, Y.-f.; Wang, Y.X.; Zheng, X. Effect of Na+ on organic fouling depends on Na+ concentration and the property of the foulants. Desalination 2022, 531, 115709. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Cao, X.; Xue, J.; Zhang, Q.; Tian, J.; Li, X.; Qiu, X.; Pan, B.; Gu, A.Z.; et al. Effect of carboxyl and hydroxyl groups on adsorptive polysaccharide fouling: A comparative study based on PVDF and graphene oxide (GO) modified PVDF surfaces. J. Membr. Sci. 2020, 595, 117514. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, X.; Wang, Z.; Shi, Z.; Kong, Z.; Zhong, M.; Xue, J.; Zhang, Y. Effects of –COOH and –NH2 on adsorptive polysaccharide fouling under varying pH conditions: Contributing factors and underlying mechanisms. J. Membr. Sci. 2021, 621, 118933. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, X.; Li, D.; Meng, F.; Tian, J.; Wang, M.; Li, L.; Wu, H.; Zhang, Y. Effect of sodium and potassium on polysaccharide fouling on PVDF and graphene oxide modified PVDF membrane surfaces. Process Saf. Environ. Prot. 2022, 165, 387–395. [Google Scholar] [CrossRef]
- Miao, R.; Zhou, Y.; Wang, P.; Lu, W.; Li, P.; Li, X.; Wang, L. A comparison of effect mechanisms of chlorination and ozonation on the interfacial forces of protein at membrane surfaces and the implications for membrane fouling control. J. Membr. Sci. 2021, 628, 119266. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Meng, J.; Lei, J.; Zheng, X.; Wang, Y.; Zhang, J.; Cao, X.; Li, X.; Qiu, X.; et al. A novel conductive composite membrane with polypyrrole (PPy) and stainless-steel mesh: Fabrication, performance, and anti-fouling mechanism. J. Membr. Sci. 2020, 621, 118937. [Google Scholar] [CrossRef]
- Miao, R.; Wang, L.; Deng, D.; Li, S.; Wang, J.; Liu, T.; Zhu, M.; Lv, Y. Evaluating the effects of sodium and magnesium on the interaction processes of humic acid and ultrafiltration membrane surfaces. J. Membr. Sci. 2017, 526, 131–137. [Google Scholar] [CrossRef]
- Miao, R.; Li, X.; Wu, Y.; Wang, P.; Wang, L.; Wu, G.; Wang, J.; Lv, Y.; Liu, T. A comparison of the roles of Ca2+ and Mg2+ on membrane fouling with humic acid: Are there any differences or similarities? J. Membr. Sci. 2018, 545, 81–87. [Google Scholar] [CrossRef]
- Arkhangelsky, E.; Bazarbayeva, A.; Kamal, A.; Kim, J.; Inglezakis, V.; Gitis, V. Tangential streaming potential, transmembrane flux, and chemical cleaning of ultrafiltration membranes. Sep. Purif. Technol. 2021, 258, 118045. [Google Scholar] [CrossRef]
- Hashino, M.; Hirami, K.; Ishigami, T.; Ohmukai, Y.; Maruyama, T.; Kubota, N.; Matsuyama, H. Effect of kinds of membrane materials on membrane fouling with BSA. J. Membr. Sci. 2011, 384, 157–165. [Google Scholar] [CrossRef]
- Meng, X.R.; Tang, W.T.; Wang, L.; Wang, X.D.; Huang, D.X.; Chen, H.N.; Zhang, N. Mechanism analysis of membrane fouling behavior by humic acid using atomic force microscopy: Effect of solution pH and hydrophilicity of PVDF ultrafiltration membrane interface. J. Membr. Sci. 2015, 487, 180–188. [Google Scholar] [CrossRef]
- Heffernan, R.; Habimana, O.; Semiao, A.J.; Cao, H.; Safari, A.; Casey, E. A physical impact of organic fouling layers on bacterial adhesion during nanofiltration. Water Res. 2014, 67, 118–128. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, X.; Li, D.; Tian, J.; Wu, H.; Zhang, Y. Comparison of membrane fouling induced by protein, polysaccharide and humic acid under sodium and calcium ionic conditions. Desalination 2023, 548, 116236. [Google Scholar] [CrossRef]
- Gao, Z.; Mi, N.; Liu, T. Preparation of a polyvinylidene fluoride membrane material probe and its application in membrane fouling research. Desalination 2015, 357, 171–177. [Google Scholar]
- Miao, R.; Wang, L.; Lv, Y.; Wang, X.; Feng, L.; Liu, Z.; Huang, D.; Yang, Y. Identifying polyvinylidene fluoride ultrafiltration membrane fouling behavior of different effluent organic matter fractions using colloidal probes. Water Res. 2014, 55, 313–322. [Google Scholar] [CrossRef]
- Fu, W.; Wang, L.; Chen, F.; Zhang, X.; Zhang, W. Polyvinyl chloride (PVC) ultrafiltration membrane fouling and defouling behavior: EDLVO theory and interface adhesion force analysis. J. Membr. Sci. 2018, 564, 204–210. [Google Scholar] [CrossRef]
- Mozia, S.; Darowna, D.; Orecki, A.; Wróbel, R.; Wilpiszewska, K.; Morawski, A.W. Microscopic studies on TiO2 fouling of MF/UF polyethersulfone membranes in a photocatalytic membrane reactor. J. Membr. Sci. 2014, 470, 356–368. [Google Scholar] [CrossRef]
- Guo, H.; Xiao, L.; Yu, S.; Yang, H.; Hu, J.; Liu, G.; Tang, Y. Analysis of anion exchange membrane fouling mechanism caused by anion polyacrylamide in electrodialysis. Desalination 2014, 346, 46–53. [Google Scholar] [CrossRef]
- Englert, A.H.; Ren, S.; Masliyah, J.H.; Xu, Z. Interaction forces between a deformable air bubble and a spherical particle of tuneable hydrophobicity and surface charge in aqueous solutions. J. Colloid Interface Sci. 2012, 379, 121–129. [Google Scholar] [CrossRef]
- Zhang, S.; Gutierrez, L.; Niu, X.Z.; Qi, F.; Croue, J.P. The characteristics of organic matter influence its interfacial interactions with MnO(2) and catalytic oxidation processes. Chemosphere 2018, 209, 950–959. [Google Scholar] [CrossRef] [PubMed]
- Villacorte, L.O.; Ekowati, Y.; Neu, T.R.; Kleijn, J.M.; Winters, H.; Amy, G.; Schippers, J.C.; Kennedy, M.D. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Res. 2015, 73, 216–230. [Google Scholar] [CrossRef]
- Yumiyama, S.; Kato, S.; Konishi, Y.; Nomura, T. Direct measurement of interaction forces between a yeast cell and a microbubble using atomic force microscopy. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123963. [Google Scholar] [CrossRef]
- Wu, J.; Contreras, A.E.; Li, Q. Studying the impact of RO membrane surface functional groups on alginate fouling in seawater desalination. J. Membr. Sci. 2014, 458, 120–127. [Google Scholar] [CrossRef]
- Tang, C.Y.; Chong, T.H.; Fane, A.G. Colloidal interactions and fouling of NF and RO membranes: A review. Adv. Colloid Interface Sci. 2011, 164, 126–143. [Google Scholar] [CrossRef] [PubMed]
- Brant, J.A.; Childress, A.E. Assessing short-range membrane–colloid interactions using surface energetics. J. Membr. Sci. 2002, 203, 257–273. [Google Scholar] [CrossRef]
- Zhenga, Y.; Zhanga, W.; Tanga, B.; Bina, L.; Dinga, J. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning. Bioresour. Technol. 2018, 250, 398. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.C.S.; Moreira, W.M.; Paschoal, S.M.; Sipoli, C.C.; Suzuki, R.M.; Sgorlon, J.G.; Pereira, N.C. Modeling Of Fouling Mechanisms In The Biodiesel Purification Using Ceramic Membranes. Sep. Purif. Technol. 2021, 269, 118595. [Google Scholar] [CrossRef]
- Lin, T.; Lu, Z.J.; Chen, W. Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach. J. Membr. Sci. 2014, 461, 49–58. [Google Scholar] [CrossRef]
- Xia, T.; Li, S.; Wang, H.; Guo, C.; Liu, C.; Liu, A.; Guo, X.; Zhu, L. Insights into the Transport of Pristine and Photoaged Graphene Oxide-Hematite Nanohybrids in Saturated Porous Media: Impacts of XDLVO Interactions and Surface Roughness. J. Hazard. Mater. 2021, 419, 126488. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lou, Y.; Xu, Y.; Ma, G.; Liao, B.Q.; Shen, L.; Lin, H. Effects of surface morphology on alginate adhesion: Molecular insights into membrane fouling based on XDLVO and DFT analysis. Chemosphere 2019, 233, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Ou, Q.; Xu, Y.; Li, X.; He, Q.; Liu, C.; Zhou, X.; Wu, Z.; Huang, R.; Song, J.; Huangfu, X. Interactions between activated sludge extracellular polymeric substances and model carrier surfaces in WWTPs: A combination of QCM-D, AFM and XDLVO prediction. Chemosphere 2020, 253, 126720. [Google Scholar] [CrossRef]
- Shee Keat, M. Membrane Technology for Glycerin Purification. Doctoral Dissertation, Monash University, Faculty of Engineering, Chemical Engineering, Clayton, Malaysia, 2017. Available online: https://bridges.monash.edu/articles/thesis/Membrane_technology_for_glycerin_purification/4652773 (accessed on 1 May 2023).
- Huang, H.; Young, T.A.; Jacangelo, J.G. Unified Membrane Fouling Index for Low Pressure Membrane Filtration of Natural Waters: Principles and Methodology. Environ. Sci. Technol. 2008, 42, 714. [Google Scholar] [CrossRef]
- Cisse, A.; Desfosses, A.; Stainer, S.; Kandiah, E.; Traore, D.A.K.; Bezault, A.; Schachner-Nedherer, A.-L.; Leitinger, G.; Hoerl, G.; Hinterdorfer, P.; et al. Targeting structural flexibility in low density lipoprotein by integrating cryo-electron microscopy and high-speed atomic force microscopy. Int. J. Biol. Macromol. 2023, 252, 126345. [Google Scholar] [CrossRef]
- Fleischmann, C.; Paredis, K.; Melkonyan, D.; Vandervorst, W. Revealing the 3-dimensional shape of atom probe tips by atomic force microscopy. Ultramicroscopy 2018, 194, 221–226. [Google Scholar] [CrossRef]
- Lei, H.; Cheng, N.; Zhao, J.W. Interaction between membrane and organic compounds studied by atomic force microscopy with a tip modification. J. Membr. Sci. 2018, 556, 178–184. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Chung, K.-H. Effect of tip shape on nanomechanical properties measurements using AFM. Ultramicroscopy 2019, 202, 1–9. [Google Scholar] [CrossRef]
- Li, Q.; Becker, T.; Zhang, R.; Xiao, T.; Sand, W. Investigation on adhesion of Sulfobacillus thermosulfidooxidans via atomic force microscopy equipped with mineral probes. Colloids Surf. B Biointerfaces 2019, 173, 639–646. [Google Scholar] [CrossRef]
- Dri, C.; Panighel, M.; Tiemann, D.; Patera, L.L.; Troiano, G.; Fukamori, Y.; Knoller, F.; Lechner, B.A.J.; Cautero, G.; Giuressi, D.; et al. The new FAST module: A portable and transparent add-on module for time-resolved investigations with commercial scanning probe microscopes. Ultramicroscopy 2019, 205, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.N.; Qing, W.H.; Marhaba, T.; Zhang, W. Atomic force microscopy—Scanning electrochemical microscopy (AFM-SECM) for nanoscale topographical and electrochemical characterization: Principles, applications and perspectives. Electrochim. Acta 2020, 332, 135472. [Google Scholar] [CrossRef]
- Gu, S.; Hao, M.; Pan, P.; Li, X.; Zhu, J.; Wang, Y.; Ru, C. A novel PRC signal drift reduction method for new developed SEM-based nanoindentation/nanoscratch instrument integrated with AFM. Precis. Eng. 2021, 69, 8–18. [Google Scholar] [CrossRef]
- Saldi, G.D.; Causserand, C.; Schott, J.; Jordan, G. Dolomite dissolution mechanisms at acidic pH: New insights from high resolution pH-stat and mixed-flow reactor experiments associated to AFM and TEM observations. Chem. Geol. 2021, 584, 120521. [Google Scholar] [CrossRef]
- Kahle, E.R.; Patel, N.; Sreenivasappa, H.B.; Marcolongo, M.S.; Han, L. Targeting cell-matrix interface mechanobiology by integrating AFM with fluorescence microscopy. Prog. Biophys. Mol. Biol. 2022, 176, 67–81. [Google Scholar] [CrossRef]
- dos Santos, A.C.V.D.; Lendl, B.; Ramer, G. Systematic analysis and nanoscale chemical imaging of polymers using photothermal-induced resonance (AFM-IR) infrared spectroscopy. Polym. Test. 2022, 106, 107443. [Google Scholar] [CrossRef]
- Brănescu, M.; Vailionis, A.; Huh, J.; Moldovan, A.; Socol, G. AFM and complementary XRD measurements of in situ grown YBCO films obtained by pulsed laser deposition. Appl. Surf. Sci. 2007, 253, 8179–8183. [Google Scholar] [CrossRef]
- Pura, J.L.; Salvo-Comino, C.; García-Cabezón, C.; Rodríguez-Méndez, M.L. Concurrent study of the electrochemical response and the surface alterations of silver nanowire modified electrodes by means of EC-AFM. The role of electrode/nanomaterial interaction. Surf. Interfaces 2023, 38, 102792. [Google Scholar] [CrossRef]
- Lamsal, R.; Harroun, S.G.; Brosseau, C.L.; Gagnon, G.A. Use of surface enhanced Raman spectroscopy for studying fouling on nanofiltration membrane. Sep. Purif. Technol. 2012, 96, 7–11. [Google Scholar] [CrossRef]
- De, A.; Malpani, D.; Das, B.; Mitra, D.; Samanta, A. Characterization of an arabinogalactan isolated from gum exudate of Odina wodier Roxb.: Rheology, AFM, Raman and CD spectroscopy. Carbohydr. Polym. 2020, 250, 116950. [Google Scholar] [CrossRef]
- Seweryn, S.; Skirlinska-Nosek, K.; Sofinska, K.; Szajna, K.; Kobierski, J.; Awsiuk, K.; Szymonski, M.; Lipiec, E. Optimization of tip-enhanced Raman spectroscopy for probing the chemical structure of DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 281, 121595. [Google Scholar] [CrossRef] [PubMed]
- Heath, G.R.; Scheuring, S. Advances in high-speed atomic force microscopy (HS-AFM) reveal dynamics of transmembrane channels and transporters. Curr. Opin. Struct. Biol. 2019, 57, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Flechsig, H.; Ando, T. Protein dynamics by the combination of high-speed AFM and computational modeling. Curr. Opin. Struct. Biol. 2023, 80, 102591. [Google Scholar] [CrossRef]
- Lu, H.; Fang, Y.; Ren, X.; Zhang, X. Improved direct inverse tracking control of a piezoelectric tube scanner for high-speed AFM imaging. Mechatronics 2015, 31, 189–195. [Google Scholar] [CrossRef]
Research Content | AFM Model | Characterization Properties | Results | Usage Patterns | Reference |
---|---|---|---|---|---|
Sodium alginate (SA) | Bruker AXS Multi-mode 8, Madison, WI, USA | Morphology | Alginates exist in single coiled chains | Contact mode | [42] |
Effect of Na+ on organic fouling | Cypher ES, Oxford Instruments Asylum Research, Abingdon, UK | Morphology and interaction force | / | / | [62] |
Effect of carboxyl and hydroxyl groups on adsorptive polysaccharide fouling | Cypher ES, Oxford Instruments Asylum Research, Abingdon, UK | Morphology | Transformation from ‘egg box’ model to formation of network gel | / | [63] |
Effects of –COOH and –NH2 on adsorptive polysaccharide fouling | Cypher ES, Oxford Instruments Asylum Research, Abingdon, UK | Morphology and interaction force | In pH range 4–6, adherence of polysaccharide fouling and its reversibility depend on the functional groups | Tapping mode | [64] |
Effect of sodium and potassium on polysaccharide fouling on PVDF and graphene-oxide-modified PVDF membrane surfaces | Cypher ES, Oxford Instruments Asylum Research, Abingdon, UK | Interaction force | SA fouling in Na+ condition more severe than that in K+ owing to higher attraction forces under identical ion strengths | Tapping mode | [65] |
Humic acid (HA) | Nanoscope IIIa SPM, Digital Instruments, Goleta, CA, USA | Morphology | Spherical particles and aggregates are found with apparent colloidal diameters < 100 nm and heights ranging from ~0.5 to ~7 nm | Tapping mode | [46] |
Effect of Na+ and Mg2+ on adsorptive humic acid fouling | MultiMode 8.0 AFM (Bruker, Ettlingen, Germany) | Interaction force | Cations mainly affect HA fouling by controlling electrostatic and hydration forces of membrane–HA and HA–HA | Contact mode | [66] |
Effect of Ca2+ and Mg2+ on adsorptive humic acid fouling | MultiMode 8.0 AFM (Bruker, Ettlingen, Germany) | Interaction force | Mitigation mechanisms differed for both ions | / | [67] |
Bovine serum albumin (BSA) | / | Morphology | Most protein molecules are spread onto mica surface as monomers | Tapping mode | [47] |
Effect of chlorination and ozonation on adsorptive protein fouling | MultiMode 8.0 atomic force microscope (AFM, Bruker, Ettlingen, Germany) | Interaction force | BSA fouling definitively mitigated by pre-chlorination but enhanced by pre-ozonation | Contact mode | [66] |
Flagellar morphology of E. coli cultured at different pH conditions | Nanowizard AFM (JPK Instrument, Berlin, Germany) | Morphology | Differences in flagellar morphology at different pH values | Contact mode | [43] |
E. coli under action of different disinfectants | Digital Instruments Veeco Metrology Group, Santa Barbara, CA, USA | Morphology | Differences in cell morphology under action of different disinfectants | Tapping mode | [50] |
Changes in cell morphology of antibiotic-resistant E. coli | Asylum Research Cypher AFM (Oxford Instruments, Abingdon, UK) | Morphology | Damage to E. coli cells eventually leads to cell lysis | / | [51] |
Different types of MPs | AFM diMultiMode V (Veeco, San Jose, CA, USA) | Morphology and roughness | Different types of MPs have different characteristics | / | [57] |
Combined AFM and infrared spectroscopy IR (AFM-IR) characterization of MPs | / | Morphology and roughness | / | / | [58] |
Forces between two NPs and E. coli | Agilent 5500 AFM (Molecular Imaging, Phoenix, AZ, USA) | Interaction force | Particle sizes of both hematite (α-FeO) and corundum (α-AlO) NPs significantly affected the strength of the adhesion force | Contact mode | [59] |
Changes in hydrogel occurring when algae are present in the culture | HS-AFM, Bristol Nano Dynamics Ltd., Bristol, UK | Roughness | Roughness on the algal flocs significantly more pronounced than in the hydrogel layer | Contact mode | [52] |
Clostridium perfringens treated by electrocoagulation floatation (ECF) method | AFM (Ntegra with Solaris platform, manufactured by NT MDT, Moscow, Russia) | Interaction force | Inefficiency of mechanical cell crushing process | Tapping mode | [53] |
Atomic force microscope (AFM) | withOther Techniques | Results | References |
Scanning electron microscopy (SEM)/ Transmission electron microscope (TEM) | Provides high-resolution surface morphology information with structural and elemental composition information | [102,103] | |
Fluorescence spectroscopy | Provides high-resolution surface morphology information with chemical composition information | [104] | |
Fourier-transform infrared spectroscopy | Provides high-resolution surface morphology information with chemical composition, which enables in situ analysis of the molecular structure, bonding, and distribution on the membrane surface | [105] | |
X-ray diffraction | Provides information on the crystalline properties of inorganic membranes | [106] | |
Electrochemistry | Allows AFM to observe electrochemically active regions on the surface and collect scanning images to study the local chemical reaction behavior, polarization phenomena, and impurity deposition processes on the membrane surface | [107] | |
Raman spectroscopy | Provides chemical composition and structural information | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, M.; Zhang, Y.; Wang, Y.; Liu, X.; Li, X.; Zheng, X. Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects. Membranes 2024, 14, 35. https://doi.org/10.3390/membranes14020035
Wei M, Zhang Y, Wang Y, Liu X, Li X, Zheng X. Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects. Membranes. 2024; 14(2):35. https://doi.org/10.3390/membranes14020035
Chicago/Turabian StyleWei, Mohan, Yaozhong Zhang, Yifan Wang, Xiaoping Liu, Xiaoliang Li, and Xing Zheng. 2024. "Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects" Membranes 14, no. 2: 35. https://doi.org/10.3390/membranes14020035
APA StyleWei, M., Zhang, Y., Wang, Y., Liu, X., Li, X., & Zheng, X. (2024). Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects. Membranes, 14(2), 35. https://doi.org/10.3390/membranes14020035