Impact of Physical and Chemical Modification of the Surface of Porous Al2O3 Ceramic Membranes on the Quality of Transferred HSMG® and CVD Graphene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HSMG® Synthesis
- 1.
- Preparation of nickel foils with a thickness of 0.1 mm and dimensions of 220 × 120 mm2.
- 2.
- Galvanic coating of the Ni foil with a layer of copper with a thickness of 100 µm in a solution of copper sulphate pentahydrate (CuSO4·5H2O), at a current density of 0.02 A/cm2 for 6 h.
- 3.
- Graphene synthesis on a Cu-Ni bimetallic substrate in a vacuum generator SuperCarb, Seco/Warwick SA, Świebodzin, Poland, according to the procedure:
- a.
- Heating in vacuum (10 Pa pressure) up to 1060 °C.
- b.
- Carburizing in an atmosphere of acetylene, ethylene, and hydrogen (2:2:1), at a flow rate of 4.0 L/min acetylene and ethylene, and 2.0 L/min hydrogen, consisting of four alternating stages of carbonation and annealing, 5 s of gas dosing/15 min diffusion.
- c.
- Heating in an atmosphere of argon and hydrogen to a temperature above the copper melting point (1100 °C) under a pressure of 2 kPa followed by a 5 min soak.
- d.
- Cooling the batch to ambient temperature under the same conditions.
2.3. CVD Graphene Synthesis on Solid Copper Substrate
- 1.
- Heating in vacuum (10 Pa) to a temperature of 1000 °C,
- 2.
- Carburizing in an acetylene–ethylene–hydrogen atmosphere for 1 min.
- 3.
- Heating in a vacuum at 1000 °C for 5 min.
- 4.
- Carburizing in an acetylene–ethylene–hydrogen atmosphere for 0.5 min.
- 5.
- Cooling in vacuum to ambient temperature.
2.4. Separation of HSMG® and CVD Graphene from the Growth Substrate
2.5. Graphene Transfer to a Target Substrate
2.6. Increasing the Hydrophilicity of the Ceramic Surface
2.6.1. Surface Etching with Dielectric Barrier Discharge (DBD) Plasma
2.6.2. Modification of the Surface with Oxygen Plasma by the RF PACVD Method
2.6.3. Etching Ceramics with Hydrofluoric Acid
2.7. Changes in Hydrophilicity of the Modified Ceramics
2.8. Evaluation of Surface Roughness of Modified Ceramic
2.9. Study of the Chemical Structure (FTIR Spectroscopy) of the Ceramic Surface before and after Modification
2.10. Macro and Microscopic Graphene Transfer Quality Evaluation
2.11. Qualitative Assessment of Graphene after Transfer to Al2O3 Ceramics Using Raman Spectroscopy
3. Results and Discussion
3.1. Ceramics Surface Hydrophilic Properties Modification
3.1.1. Evaluation of Ceramics Surface Roughness
3.1.2. Ceramic Surface Wettability Analysis
3.2. Chemical Analysis of the Effect of Surface Modification of Porous Al2O3 Ceramics by DBD, Oxygen Plasma, and HF
3.3. Macro and Microscopic Assessment of Graphene HSMG® and CVD Quality after Transfer onto Surface-Modified Ceramics
3.4. Quality Assessment of HSMG® and CVD Graphene after Transfer to Surface-Modified Ceramics Using Raman Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pop, E.; Varshney, V.; Roy, A. Thermal Properties of Graphene: Fundamentals and Applications. MRS Bull. 2013, 37, 1273–1281. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science (1979) 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Dash, G.N.; Pattanaik, S.R.; Behera, S. Graphene for Electron Devices: The Panorama of a Decade. IEEE J. Electron Devices Soc. 2014, 2, 77–104. [Google Scholar] [CrossRef]
- Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The Structure of Suspended Graphene Sheets. Nature 2007, 446, 60–63. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science (1979) 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Chen, X.; Chen, S. Large Area CVD Growth of Graphene. Synth. Met. 2015, 210, 95–108. [Google Scholar] [CrossRef]
- Guo, W.; Xu, C.; Xu, K.; Deng, J.; Guo, W.; Yurgens, A.; Sun, J. Rapid Chemical Vapor Deposition of Graphene on Liquid Copper. Synth. Met. 2016, 216, 93–97. [Google Scholar] [CrossRef]
- Cho, S.Y.; Kim, M.S.; Kim, M.; Kim, K.J.; Kim, H.M.; Lee, D.J.; Lee, S.H.; Kim, K.B. Self-Assembly and Continuous Growth of Hexagonal Graphene Flakes on Liquid Cu. Nanoscale 2015, 7, 12820–12827. [Google Scholar] [CrossRef]
- Zheng, S.; Zeng, M.; Cao, H.; Zhang, T.; Gao, X.; Xiao, Y.; Fu, L. Insight into the Rapid Growth of Graphene Single Crystals on Liquid Metal via Chemical Vapor Deposition. Sci. China Mater. 2019, 62, 1087–1095. [Google Scholar] [CrossRef]
- Kim, M.-S.; Cho, S.-Y.; Kim, M.; Kim, K.-J.; Lee, S.-H.; Kim, H.-M.; Kim, K.-B. Comparison of Growth Behavior and Electrical Properties of Graphene Grown on Solid and Liquid Copper by Chemical Vapor Deposition. J. Nanosci. Nanotechnol. 2019, 20, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Kuten, D.; Dybowski, K.; Atraszkiewicz, R.; Kula, P. Quasi-Monocrystalline Graphene Crystallization on Liquid Copper Matrix. Materials 2020, 13, 2606. [Google Scholar] [CrossRef] [PubMed]
- Kula, P.; Pietrasik, R.; Dybowski, K.; Atraszkiewicz, R.; Szymanski, W.; Kolodziejczyk, L.; Niedzielski, P.; Nowak, D. Single and Multilayer Growth of Graphene from the Liquid Phase. Appl. Mech. Mater. 2014, 510, 8–12. [Google Scholar] [CrossRef]
- Kaczmarek, Ł.; Kula, P.; Szymański, W.; Kołodziejczyk, Ł.; Atraszkiewicz, R.; Dybowski, K.; Grabarczyk, J.; Pietrasik, R.; Niedzielski, P.; Cłapa, M. High Strength Metallurgical Graphene—Mechanisms of Growth and Properties. Arch. Metall. Mater. 2015, 4. [Google Scholar] [CrossRef]
- Romaniak, G.; Dybowski, K.; Jeziorna, A.; Kula, P.; Kaźmierczak, T. Synthesis and Characterization of Semi-Permeable Graphene/Graphene Oxide Membranes for Water Desalination. J. Mater. Sci. 2020, 55, 9775–9786. [Google Scholar] [CrossRef]
- Romaniak, G.; Dybowski, K.; Jędrzejczak, A.; Sobczyk-Guzenda, A.; Januszewicz, B.; Szymański, W.; Kowalczyk, P.; Kaźmierczak, T.; Siniarski, J.; Kula, P. Impact of a Graphene Oxide Reducing Agent on a Semi-Permeable Graphene/Reduced Graphene Oxide Forward Osmosis Membrane Filtration Efficiency. Membranes 2021, 11, 679. [Google Scholar] [CrossRef]
- Boutilier, M.S.H.; Jang, D.; Idrobo, J.C.; Kidambi, P.R.; Hadjiconstantinou, N.G.; Karnik, R. Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes. ACS Nano 2017, 11, 5726–5736. [Google Scholar] [CrossRef]
- Cheng, P.; Kelly, M.M.; Moehring, N.K.; Ko, W.; Li, A.P.; Idrobo, J.C.; Boutilier, M.S.H.; Kidambi, P.R. Facile Size-Selective Defect Sealing in Large-Area Atomically Thin Graphene Membranes for Sub-Nanometer Scale Separations. Nano Lett. 2020, 20, 5951–5959. [Google Scholar] [CrossRef]
- Cheng, C.; Iyengar, S.A.; Karnik, R. Molecular Size-Dependent Subcontinuum Solvent Permeation and Ultrafast Nanofiltration across Nanoporous Graphene Membranes. Nat. Nanotechnol. 2021, 16, 989–995. [Google Scholar] [CrossRef]
- Jang, D.; Idrobo, J.C.; Laoui, T.; Karnik, R. Water and Solute Transport Governed by Tunable Pore Size Distributions in Nanoporous Graphene Membranes. ACS Nano 2017, 11, 10042–10052. [Google Scholar] [CrossRef]
- O’Hern, S.C.; Jang, D.; Bose, S.; Idrobo, J.-C.; Song, Y.; Laoui, T.; Kong, J.; Karnik, R. Nanofiltration across Defect-Sealed Nanoporous Monolayer Graphene. Nano Lett. 2015, 15, 3254–3260. [Google Scholar] [CrossRef]
- Shen, L.; Shi, Q.; Zhang, S.; Gao, J.; Cheng, D.C.; Yi, M.; Song, R.; Wang, L.; Jiang, J.; Karnik, R.; et al. Highly Porous Nanofiber-Supported Monolayer Graphene Membranes for Ultrafast Organic Solvent Nanofiltration. Sci. Adv. 2021, 7, eabg6263. [Google Scholar] [CrossRef] [PubMed]
- O’Hern, S.C.; Stewart, C.A.; Boutilier, M.S.H.; Idrobo, J.-C.; Bhaviripudi, S.; Das, S.K.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective Molecular Transport through Intrinsic Defects in a Single Layer of CVD Graphene. ACS Nano 2012, 6, 10130–10138. [Google Scholar] [CrossRef] [PubMed]
- Henning, L.M.; Müller, J.T.; Smales, G.J.; Pauw, B.R.; Schmidt, J.; Bekheet, M.F.; Gurlo, A.; Simon, U. Hierarchically Porous and Mechanically Stable Monoliths from Ordered Mesoporous Silica and Their Water Filtration Potential. Nanoscale Adv. 2022, 4, 3892–3908. [Google Scholar] [CrossRef]
- Belgada, A.; Achiou, B.; Alami Younssi, S.; Charik, F.Z.; Ouammou, M.; Cody, J.A.; Benhida, R.; Khaless, K. Low-Cost Ceramic Microfiltration Membrane Made from Natural Phosphate for Pretreatment of Raw Seawater for Desalination. J. Eur. Ceram Soc. 2021, 41, 1613–1621. [Google Scholar] [CrossRef]
- Rasouli, Y.; Abbasi, M.; Hashemifard, S.A. Fabrication, Characterization, Fouling Behavior and Performance Study of Ceramic Microfiltration Membranes for Oily Wastewater Treatment. J. Asian Ceram. Soc. 2019, 7, 476–495. [Google Scholar] [CrossRef]
- Abdullayev, A.; Bekheet, M.F.; Hanaor, D.A.H.; Gurlo, A. Materials and Applications for Low-Cost Ceramic Membranes. Membranes 2019, 9, 105. [Google Scholar] [CrossRef]
- Hakami, M.W.; Alkhudhiri, A.; Al-Batty, S.; Zacharof, M.P.; Maddy, J.; Hilal, N. Ceramic Microfiltration Membranes in Wastewater Treatment: Filtration Behavior, Fouling and Prevention. Membranes 2020, 10, 248. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Wang, D.Z.; Zhu, Y.; Jiang, L.H.; Xiang, Y.H.; Xin, C.; Zhou, W.L. Modulation of Carrier Density in Graphene on Polycrystalline PZT Ceramic. Diam. Relat. Mater. 2017, 77, 10–15. [Google Scholar] [CrossRef]
- Gupta, P.; Dongare, P.D.; Grover, S.; Dubey, S.; Mamgain, H.; Bhattacharya, A.; Deshmukh, M.M. A Facile Process for Soak-and-Peel Delamination of CVD Graphene from Substrates Using Water. Sci. Rep. 2015, 4, 3882. [Google Scholar] [CrossRef]
- Dybowski, K.; Romaniak, G.; Kula, P.; Jeziorna, A.; Kowalczyk, P.; Atraszkiewicz, R.; Kołodziejczyk, Ł.; Nowak, D.; Zawadzki, P.; Kucińska, M. Impact of the Method of Separating Graphene from the Growth Substrate on the Quality of the 2D Material Obtained. Arch. Metall. Mater. 2019, 64, 1321–1326. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, X.L.; Gai, J.G. Progress and Challenges in Transfer of Large-Area Graphene Films. Adv. Sci. 2016, 3, 1500343. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K.P. Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano 2011, 5, 9927–9933. [Google Scholar] [CrossRef] [PubMed]
- Kafiah, F.M.; Khan, Z.; Ibrahim, A.; Karnik, R.; Atieh, M.; Laoui, T. Monolayer Graphene Transfer onto Polypropylene and Polyvinylidenedifluoride Microfiltration Membranes for Water Desalination. Desalination 2016, 388, 29–37. [Google Scholar] [CrossRef]
- Larbot, A.; Gazagnes, L.; Krajewski, S.; Bukowska, M.; Kujawski, W. Water Desalination Using Ceramic Membrane Distillation. Desalination 2004, 168, 367–372. [Google Scholar] [CrossRef]
- Krajewski, S.R.; Kujawski, W.; Dijoux, F.; Picard, C.; Larbot, A. Grafting of ZrO2 Powder and ZrO2 Membrane by Fluoroalkylsilanes. Colloids Surf. A Physicochem. Eng. Asp. 2004, 243, 43–47. [Google Scholar] [CrossRef]
- Boussemghoune, M.; Chikhi, M.; Balaska, F.; Ozay, Y.; Dizge, N.; Kebabi, B. Preparation of a Zirconia-Based Ceramic Membrane and Its Application for Drinking Water Treatment. Symmetry 2020, 12, 933. [Google Scholar] [CrossRef]
- Wu, C.C.; Wei, C.K.; Ho, C.C.; Ding, S.J. Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment. Materials 2015, 8, 684–699. [Google Scholar] [CrossRef]
- Lopes, B.B.; Ayres, A.P.A.; Lopes, L.B.; Negreiros, W.M.; Giannini, M. The Effect of Atmospheric Plasma Treatment of Dental Zirconia Ceramics on the Contact Angle of Water. Appl. Adhes. Sci. 2014, 2, 17. [Google Scholar] [CrossRef]
- dos Santos, K.H.; Ferreira, J.A.; Osiro, D.; da Conceição, G.J.A.; Colnago, L.A.; Alves Júnior, C.; Pallone, E.M.d.J.A. Plasma Surface Treatments of Al2O3/ZrO2 Nanocomposites and Their Influence on the Formation and Adhesion of Calcium Phosphates. Appl. Surf. Sci. 2018, 456, 552–560. [Google Scholar] [CrossRef]
- Kula, P.; Rzepkowski, A.; Pietrasik, R.; Atraszkiewicz, R.; Dybowski, K.; Modrzyk, W. Method of Producing Graphene from Liquid Metal. No. 9,284,640, 15 March 2016. [Google Scholar]
- McEntire, B.J.; Bal, B.S.; Rahaman, M.N.; Chevalier, J.; Pezzotti, G. Ceramics and Ceramic Coatings in Orthopaedics. J. Eur. Ceram Soc. 2015, 35, 4327–4369. [Google Scholar] [CrossRef]
- Peumans, M.; van Meerbeek, B.; Lambrechts, P.; Vanherle, G. Porcelain Veneers: A Review of the Literature. J. Dent. 2000, 28, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, B.; Burke, T.T. Infrared Spectroscopy Studies of Aluminum Oxide and Metallic Aluminum Powders, Part I: Thermal Dehydration and Decomposition. Powders 2022, 1, 5. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B. Chemistry of Alumina, Reactions in Aqueous Solution and Its Application in Water Treatment. Adv. Colloid Interface Sci. 2004, 110, 19–48. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons Inc: Hoboken, NJ, USA, 2005; pp. 21–22. [Google Scholar]
- Cornelius, E.B. Surface Strain in Oxide Catalysts—Alumina. J. Phys. Chem. 1955, 59, 809–813. [Google Scholar] [CrossRef]
- Lebioda, M.; Pawlak, R.; Szymański, W.; Kaczorowski, W.; Jeziorna, A. Laser Patterning a Graphene Layer on a Ceramic Substrate for Sensor Applications. Sensors 2020, 20, 2134. [Google Scholar] [CrossRef]
- Gajewski, K.; Szymański, W.; Kaczorowski, W.; Niedzielski, P.; Gotszalk, T. Quasi In-Situ Observation of the Elastic Properties Changes of the Graphene–Low-Density Polyethylene Composites. Diam. Relat. Mater. 2018, 82, 143–149. [Google Scholar] [CrossRef]
- Salverda, M.; Thiruppathi, A.R.; Pakravan, F.; Wood, P.C.; Chen, A. Electrochemical Exfoliation of Graphite to Graphene-Based Nanomaterials. Molecules 2022, 27, 8643. [Google Scholar] [CrossRef]
- Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J. Modification of Graphene by Ion Beam. Nucl. Instrum. Methods Phys. Res. B 2017, 406, 683–688. [Google Scholar] [CrossRef]
Pressure [Pa] | Bias Voltage [V] | Time [Min] | Flow O2 [sccm] |
---|---|---|---|
22 | −100 | 5 | 20 |
Modification Type | ||
---|---|---|
Reference sample | 51.2 ± 0.65 | |
DBD | outside measuring range (superhydrophilic surface) | |
Plasma O2 | ||
HF acid etching | 5% | <5 |
9.5% | <5 |
Graphene Defect Surface Area after Transfer to Al2O3 [mm2/cm2] | |||
---|---|---|---|
DBD | O2 plasma | HF etching | |
HSMG® | 1.146 | 0.251 | 2.955 |
CVD | 0.083 | 0.094 | 0.146 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednarek, A.; Dybowski, K.; Romaniak, G.; Grabarczyk, J.; Kaczorowski, W.; Sobczyk-Guzenda, A. Impact of Physical and Chemical Modification of the Surface of Porous Al2O3 Ceramic Membranes on the Quality of Transferred HSMG® and CVD Graphene. Membranes 2023, 13, 319. https://doi.org/10.3390/membranes13030319
Bednarek A, Dybowski K, Romaniak G, Grabarczyk J, Kaczorowski W, Sobczyk-Guzenda A. Impact of Physical and Chemical Modification of the Surface of Porous Al2O3 Ceramic Membranes on the Quality of Transferred HSMG® and CVD Graphene. Membranes. 2023; 13(3):319. https://doi.org/10.3390/membranes13030319
Chicago/Turabian StyleBednarek, Aleksandra, Konrad Dybowski, Grzegorz Romaniak, Jacek Grabarczyk, Witold Kaczorowski, and Anna Sobczyk-Guzenda. 2023. "Impact of Physical and Chemical Modification of the Surface of Porous Al2O3 Ceramic Membranes on the Quality of Transferred HSMG® and CVD Graphene" Membranes 13, no. 3: 319. https://doi.org/10.3390/membranes13030319
APA StyleBednarek, A., Dybowski, K., Romaniak, G., Grabarczyk, J., Kaczorowski, W., & Sobczyk-Guzenda, A. (2023). Impact of Physical and Chemical Modification of the Surface of Porous Al2O3 Ceramic Membranes on the Quality of Transferred HSMG® and CVD Graphene. Membranes, 13(3), 319. https://doi.org/10.3390/membranes13030319