Thermoradiationally Modified Polytetrafluoroethylene as a Basis for Membrane Fabrication: Resistance to Hydrogen Penetration, the Effect of Ion Treatment on the Chemical Structure and Surface Morphology, Evaluation of the Track Radius
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method of Manufacturing Thermoradiationally Modified Polytetrafluoroethylene
2.2. Processing Accelerated Xenon Ion Flow
2.3. Measurement Methods
2.4. Processing of Measurement Results
3. Results
3.1. Comparative Study of the Permeability of Films of the Initial Polytetrafluoroethylene and Thermoradiationally Modified Polymer by Hydrogen
3.2. Investigation by Infrared Spectroscopy of the Disturbed Total Internal Reflection of the Chemical Composition of the Surface of the Initial and Accelerated Xenon Ion Irradiated Films of Thermoradiationally Modified Polytetrafluoroethylene
νmax, cm−1 | Identification of the Oscillatory Mode | Note |
---|---|---|
721.07 ± 0.10 | oscillation of the atomic group –CF=O | [33,34] |
742.14 ± 0.10 | oscillations of the terminal –CF3 groups | [33,34] |
770.33 ± 0.75 | libration oscillations of CF2 groups in the amorphous phase | [39,42] |
784.77 ± 0.92 | libration oscillations of CF2 groups in the amorphous phase | [39,42] |
800 ± 0.10 | oscillation of the –CF bond in the amorphous disordered phase | [36] |
853.55 ± 38.02 | flexural oscillation –CF2 groups | [43] |
1116.17 ± 0.41 | not identified | - |
1147 ± 0.10 | –CF2-groups symmetric stretching oscillation | [37,39] |
1206.61 ± 0.67 | valence oscillation of CF2–groups in the crystal phase | [39,43] |
1237.93 ± 0.88 | valence oscillation of the C-C bond | [39] |
3.3. Surface Morphology of the Initial and Accelerated Xenon Ion Irradiated Films of ThermoRadiationally Modified Polytetrafluoroethylene
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sebok, B.; Schulke, M.; Ferenc, R.; Kiss, G. Diffusivity, permeability and solubility of H2, Ar, N2, and CO2 in poly(tetrafluoroethylene) between room temperature and 180 °C. Polym. Test. 2016, 49, 66–72. [Google Scholar] [CrossRef]
- Drobny, J.G. Technology of Fluoropolymers, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017; p. 229. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Fluoroplastics. Volume 1: Non-Melt Processible Fluoropolymers—The Definitive User’s Guide and Data Book, 2nd ed.; William Andrew: Waltham, MA, USA, 2015; p. 706. [Google Scholar]
- Li, R.; Wu, G.; Hao, Y.; Peng, J.; Zhai, M. Chapter 5—Radiation Degradation or Modification of Poly(tetrafluoroethylene) and Natural Polymers. In Radiation Technology for Advanced Materials; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 141–182. [Google Scholar] [CrossRef]
- Khatipov, S.A.; Serov, S.A.; Buznik, V.M. Chapter 6—Radiation modification of polytetrafluoroethylene. In Opportunities for Fluoropolymers. Synthesis, Characterization, Processing, Simulation and Recycling; Ameduri, B., Fomin, S., Eds.; Progress in Fluorine Science Series; Elsevier: Amsterdam, The Netherlands, 2020; pp. 137–188. [Google Scholar] [CrossRef]
- Khatipov, S.A.; Serov, S.A.; Buznik, V.M. Chapter 8—The effect of irradiation on the molecular and supramolecular structure of PTFE. In Fluoropolymer Materials; Buznik, V.M., Ed.; NTL Publishing House: Tomsk, Russia, 2017; pp. 339–393. [Google Scholar]
- Cleland, M.R. Evolution of the radiation processing industry. AIP Conf. Proc. 2013, 1525, 170–173. [Google Scholar] [CrossRef]
- Koptelov, A.A.; Shlenskii, O.F. The Crystallinity of γ-Irradiated Poly(tetrafluoroethylene). High Energy Chem. 2002, 36, 217–222. [Google Scholar] [CrossRef]
- Garcia, G.; Rivera, A.; Crespillo, M.L.; Gordillo, N.; Olivares, J.; Agulló-López, F. Amorphization kinetics under swift heavy ion irradiation: A cumulative overlapping-track approach. Nucl. Instrum. Meth. Phys. Res. B 2011, 269, 492–497. [Google Scholar] [CrossRef]
- Cheng, Y.; Dong, Y.; Huang, Q.; Huang, K.; Lyu, S.; Chen, Y.; Duan, J.; Mo, D.; Sun, Y.; Liu, J.; et al. Ionic Transport and Sieving Properties of Sub-nanoporous Polymer Membranes with Tunable Channel Size. ACS Appl. Mater. Interfaces 2021, 13, 9015–9026. [Google Scholar] [CrossRef]
- Wen, Q.; Yan, D.; Liu, F.; Wang, M.; Ling, Y.; Wang, P.; Kluth, P.; Schauries, D.; Trautmann, C.; Apel, P.; et al. Highly Selective Ionic Transport through Subnanometer Pores in Polymer Films. Adv. Funct. Mater. 2016, 26, 5796–5803. [Google Scholar] [CrossRef]
- Kulshrestha, V.; Awasthi, K.; Acharya, N.K.; Singh, M.; Avasthi, D.K.; Vijay, Y.K. Gas and ion transport through a track-etched large-area polymer film. Desalination 2006, 195, 273–280. [Google Scholar] [CrossRef]
- Reitlinger, S.A. Permeability of Polymer Materials; Khimiya: Moscow, Russia, 1974. [Google Scholar]
- Tikhomirova, N.S.; Malinsky, Y.M.; Karpov, V.L. Investigation of diffusion processes in some polymers. III. Irreversible changes in diffusion characteristics as result of the action of gamma radiation Co60 on the polymer. High-Mol. Compd. 1960, 2, 1335–1348. [Google Scholar]
- Tikhomirova, N.S.; Malinsky, Y.M.; Karpov, V.L. Investigation of diffusion processes in some polymers. IV. Reversible changes in diffusion characteristics under irradiation conditions. High-Mol. Compd. 1960, 2, 1349–1359. [Google Scholar]
- Khatipov, S.A.; Artamonov, N.A. A new antifriction and sealing material based on radiation-modified polytetrafluoroethylene. Russ. J. Gen. Chem. 2009, 79, 616–625. [Google Scholar] [CrossRef]
- Oshima, A.; Tabata, Y.; Ikeda, S.; Otsunaga, K.; Kudoh, H.; Seguchi, T. Radiation-induced crosslinking of Polytetrafluoroethylene. In Proceedings of the 6th Japan–China Bilateral Symposium on Radiation Chemistry, Waseda University, Tokyo, Japan, 6–11 November 1994; Yoshimasa, H., Yosuke, K., Nobuyki, K., Keizo, M., Eds.; Japan Atomic Energy Research Institute: Tokyo, Japan, 1995; pp. 487–491. [Google Scholar]
- Tang, Z.; Wang, M.; Zhao, Y.; Wu, G. Tribological properties of radiation cross-linked polytetrafluoroethylene sheets. Wear 2010, 269, 485–490. [Google Scholar] [CrossRef]
- Behar, M.; Fink, D. Mechanisms of Particle-Polymer Interaction. In Fundamentals of Ion-Irradiated Polymers; Fink, D., Ed.; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2004; pp. 119–170. [Google Scholar] [CrossRef]
- De Cicco, H.; Saint-Martin, G.; Alurralde, M.; Bernaola, O.A.; Filevich, A. Ion tracks in an organic material: Application of the liquid drop model. Nucl. Instrum. Meth. Phys. Res. B 2001, 173, 455–462. [Google Scholar] [CrossRef]
- Kiryukhin, D.P.; Kichigina, G.A.; Allayarov, S.R.; Badamshina, E.R. Unique Research Facility “Gammatok-100”. High Energy Chem. 2019, 53, 228–237. [Google Scholar] [CrossRef]
- Pikaev, A.K. Dosimetry in Radiation Chemistry; Izd. Nauka: Moscow, Russia, 1975; p. 312. [Google Scholar]
- Smolyanskii, A.S.; Politova, E.D.; Koshkina, O.A.; Arsentyev, M.A.; Kusch, P.P.; Moskvitin, L.V.; Slesarenko, S.V.; Kiryukhin, D.P.; Trakhtenberg, L.I. Structure of Polytetrafluoroethylene Modified by the Combined Action of γ-Radiation and High Temperatures. Polymers 2021, 13, 3679. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.W.O. Fundamentals of High Energy X-ray and Electron Dosimetry Protocols. In Advances in Radiation Oncology Physics: Dosimetry, Treatment Planning, and Brachytherapy (Medical Physics Monograph); Purdy, J.A., Ed.; AAPM: New York, NY, USA, 1992; pp. 181–223. [Google Scholar]
- Galante, A.M.S.; Galante, O.L.; Campos, L.L. Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry. Nucl. Instrum. Meth. Phys. Res. A 2010, 619, 177–180. [Google Scholar] [CrossRef]
- Apel, P. Track etching technique in membrane technology. Radiat. Meas. 2001, 34, 559–566. [Google Scholar] [CrossRef]
- Mrkaic, M. Scilab as an econometric programming system. J. Appl. Econom. 2001, 16, 553–559. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.P.; Ziegler, M.D. SRIM–The Stopping and Range of Ions in Matter; Lulu Press Co.: Morrisville, NC, USA, 2007; p. 398. [Google Scholar] [CrossRef]
- San Marchi, C.W.; Somerday, B.P. Technical Reference for Hydrogen Compatibility of Materials; Sandia National Laboratories: Livermore, CA, USA, 2012. [Google Scholar]
- Dole, M. The Radiation Chemistry of Macromolecules; Academic Press: New York, NY, USA, 1973; Volume 2, p. 424. [Google Scholar]
- Oshima, A.; Ikeda, S.; Seguchi, T.; Tabata, Y. Change of molecular motion of polytetrafluoroethylene (PTFE) by radiation induced crosslinking. Radiat. Phys. Chem. 1997, 49, 581–588. [Google Scholar] [CrossRef]
- Egorova, Z.S.; Dakin, V.I.; Karpov, V.L. Localization of crosslinking bonds in irradiated plasticized polyvinyl chloride. High-Pitched. Coed. A 1979, 21, 2117–2125. [Google Scholar] [CrossRef]
- Satulu, V.; Mitu, B.; Pandele, A.M.; Voicu, S.I.; Kravets, L.; Dinescu, G. Composite polyethylene terephthalate track membranes with thin teflon-like layers: Preparation and surface properties. Appl. Surf. Sci. 2019, 476, 452–459. [Google Scholar] [CrossRef]
- Delgado, A.O.; Rizzutto, M.A.; Severin, D.; Seidl, T.; Neumann, R.; Trautmann, C. Latent track radius of PTFE irradiated with high energy ion beam. Nucl. Instrum. Methods Phys. Res. Sect. B 2012, 273, 55–57. [Google Scholar] [CrossRef]
- Volegova, I.A.; Brooke, M.A.; Zhikharev, E.N.; Kozlova, N.V.; Godovsky, Y.K. Morphology of thin layers of polytetrafluoroethylene., formed on a solid substrate during polymerization from the gas phase under the action of an electron beam. High Mol. Weight. Compd. 2003, 45, 390–400. [Google Scholar]
- Buznik, V.M.; Ignatieva, L.N.; Kaidalova, T.A.; Kim, I.P.; Kiryukhin, D.P.; Kuryavy, V.G.; Slobodyuk, A.B. Structure of fluoropolymer products obtained from tetrafluoroethylene telomere solutions. High-Mol. Compd. Ser. A 2008, 50, 1641–1647. [Google Scholar]
- Fazullin, D.D.; Mavrin, G.V.; Sokolov, M.P.; Shaikhiev, I.G. Infrared spectroscopic studies of the PTFE and nylon membranes modified polyaniline. Mod. Appl. Sci. 2014, 9, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Piwowarczyk, J.; Jędrzejewski, R.; Moszyński, D.; Kwiatkowski, K.; Niemczyk, A.; Baranowska, J. XPS and FTIR studies of polytetrafluoroethylene thin films obtained by physical methods. Polymers 2019, 11, 1629. [Google Scholar] [CrossRef] [Green Version]
- Ignatieva, L.N.; Buznik, V.M. IR spectroscopic studies of polytetrafluoroethylene and its modified forms. Russ. Chem. J. 2008, 52, 139–142. [Google Scholar]
- Shen, J.T.; Pei, Y.T.; De Hosson, J.T.M. Structural changes in polytetrafluoroethylene molecular chains upon sliding against steel. J. Mater. Sci. 2014, 49, 1484–1493. [Google Scholar] [CrossRef]
- Takeuchi, M.; Kinoshita, A.; Yamaguchi, A.; Utsumi, Y. Molecular Structure Evaluation of Bulk Polytetrafluoroethylene Modified by X-ray Irradiation. J. Photopolym. Sci. Technol. 2020, 33, 295–299. [Google Scholar] [CrossRef]
- Mohammadian-Kohol, M.; Asgari, M.; Shakur, H.R. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet. Radiat. Phys. Chem. 2018, 145, 11–18. [Google Scholar] [CrossRef]
- Ennis, C.P.; Kaiser, R.I. Mechanistical studies on the electron-induced degradation of polymers: Polyethylene, polytetrafluoroethylene, and polystyrene. Phys. Chem. Chem. Phys. 2019, 12, 14884–14901. [Google Scholar] [CrossRef]
- Moynihan, R.E. The molecular structure of perfluorocarbon polymers. Infrared studies on polytetrafluoroethylene1. J. Am. Chem. Soc. 1959, 81, 1045–1050. [Google Scholar] [CrossRef]
- Makinson, K.R.; Tabor, D. The friction and transfer of polytetrafluoroethylene. Proc. R. Soc. Lond. A 1964, 281, 49–61. [Google Scholar] [CrossRef]
- Oshima, A.; Murata, K.; Oka, T.; Miyoshi, N.; Matsuura, A.; Kudo, H.; Hama, Y. Heavy ion beam induced phenomena in polytetrafluoroethylene. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 265, 314–319. [Google Scholar] [CrossRef]
- Ebnesajjad, S.; Ebnesajjad, C. Surface Treatment of Materials for Adhesive Bonding; William Andrew: Waltham, MA, USA, 2013. [Google Scholar]
- Coopes, I.H.; Gifkins, K.J. Gas plasma treatment of polymer surfaces. J. Macromol. Sci. Chem. 1982, 17, 217–226. [Google Scholar] [CrossRef]
- Rymzhanov, R.A.; Gorbunov, S.A.; Medvedev, N.; Volkov, A.E. Damage along swift heavy ion trajectory. Nuclear Instruments and Methods in Physics. Res. Sect. B Beam Interact. Mater. At. 2019, 440, 25–35. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Rowshanzamir, S.; Amjadi, M. Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 2010, 35, 9349–9384. [Google Scholar] [CrossRef]
- Nasef, M.M.; Hegazy, E.-S.A. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog. Polym. Sci. 2004, 29, 499–561. [Google Scholar] [CrossRef]
- Kireev, D.; Liu, S.; Jin, H.; Xiao, T.P.; Bennett, C.H.; Akinwande, D.; Incorvia, J.A.C. Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing. Nat. Commun. 2022, 13, 4386. [Google Scholar] [CrossRef]
Title 1 | PTFE | TRM-PTFE | ||||
---|---|---|---|---|---|---|
Results of single measurements | 2.50 | 2.80 | 2.53 | 0.90 | 0.88 | 0.77 |
Hydrogen gas permeability, 109 (mol·H2) · (m · s · MPa)−1 | 2.61 ± 0.17 | 0.85 ± 0.07 |
Roughness Parameters | Basic | Fluence 108 cm−2 |
---|---|---|
Average roughness (Ra), nm | 3.21 | 0.54 |
RMS roughness (Rq), nm | 4.79 | 0.73 |
Maximum roughness height (Rt), nm | 34.30 | 4.50 |
Maximum depth of the roughness depression (Rv), nm | 15.42 | 2.27 |
Maximum height of the roughness peak (Rp), nm | 18.88 | 2.24 |
Average maximum profile height (Rz), nm | 28.13 | 3.64 |
Average maximum roughness height (Rz ISO), nm | 22.75 | 2.92 |
Asymmetry Coefficient (Sk) | 0.74 | −0.080 |
Kurtosis Coefficient (Rku) | 5.04 | 4.096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moskvitin, L.V.; Koshkina, O.A.; Slesarenko, S.V.; Arsentyev, M.A.; Trakhtenberg, L.I.; Ryndya, S.M.; Magomedbekov, E.P.; Smolyanskii, A.S. Thermoradiationally Modified Polytetrafluoroethylene as a Basis for Membrane Fabrication: Resistance to Hydrogen Penetration, the Effect of Ion Treatment on the Chemical Structure and Surface Morphology, Evaluation of the Track Radius. Membranes 2023, 13, 101. https://doi.org/10.3390/membranes13010101
Moskvitin LV, Koshkina OA, Slesarenko SV, Arsentyev MA, Trakhtenberg LI, Ryndya SM, Magomedbekov EP, Smolyanskii AS. Thermoradiationally Modified Polytetrafluoroethylene as a Basis for Membrane Fabrication: Resistance to Hydrogen Penetration, the Effect of Ion Treatment on the Chemical Structure and Surface Morphology, Evaluation of the Track Radius. Membranes. 2023; 13(1):101. https://doi.org/10.3390/membranes13010101
Chicago/Turabian StyleMoskvitin, Lev Vladimirovich, Ol’ga Alekseevna Koshkina, Sergei Vital’evich Slesarenko, Mikhail Aleksandrovich Arsentyev, Leonid Izrailevich Trakhtenberg, Sergei Mikhailovich Ryndya, Eldar Parpachevich Magomedbekov, and Alexander Sergeevich Smolyanskii. 2023. "Thermoradiationally Modified Polytetrafluoroethylene as a Basis for Membrane Fabrication: Resistance to Hydrogen Penetration, the Effect of Ion Treatment on the Chemical Structure and Surface Morphology, Evaluation of the Track Radius" Membranes 13, no. 1: 101. https://doi.org/10.3390/membranes13010101
APA StyleMoskvitin, L. V., Koshkina, O. A., Slesarenko, S. V., Arsentyev, M. A., Trakhtenberg, L. I., Ryndya, S. M., Magomedbekov, E. P., & Smolyanskii, A. S. (2023). Thermoradiationally Modified Polytetrafluoroethylene as a Basis for Membrane Fabrication: Resistance to Hydrogen Penetration, the Effect of Ion Treatment on the Chemical Structure and Surface Morphology, Evaluation of the Track Radius. Membranes, 13(1), 101. https://doi.org/10.3390/membranes13010101