Immunogenicity and Protective Efficacy of a Recombinant Toxoplasma gondii GRA12 Vaccine in Domestic Cats
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Cats
2.3. Parasite Propagation and Harvest
2.4. Construction of Plasmids, and Expression and Purification of rGRA12
2.5. Grouping, Immunization, and Challenge Infection of Cats
2.6. Enzyme-Linked Immunosorbent Assays for IgG, IgG1, and IgG2a
2.7. Cytokine Assays
2.8. Quantitative Detection Process of Cat Oocysts
2.9. Quantitative Analysis of Parasitic Burden in Tissues
2.10. Statistical Analysis
3. Results
3.1. IgG Antibody Detection
3.2. IgG Antibody Isotype Determination
3.3. Cytokine Production Assay
3.4. Feline Oocyst Volume Statistics
3.5. Protective Efficacy of Recombinant Protein Vaccination in Cats
3.6. Quantification of Parasite Burden in Various Organs of Cats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dubey, J.P. The history of Toxoplasma gondii—The first 100 years. J. Eukaryot. Microbiol. 2008, 55, 467–475. [Google Scholar] [CrossRef]
- Dunay, I.R.; Gajurel, K.; Dhakal, R.; Liesenfeld, O.; Montoya, J.G. Treatment of Toxoplasmosis: Historical Perspective, Animal Models, and Current Clinical Practice. Clin. Microbiol. Rev. 2018, 31, e00057-17. [Google Scholar] [CrossRef]
- Hunter, C.A.; Remington, J.S. Immunopathogenesis of toxoplasmic encephalitis. J. Infect. Dis. 1994, 170, 1057–1067. [Google Scholar] [CrossRef]
- Eza, D.E.; Lucas, S.B. Fulminant toxoplasmosis causing fatal pneumonitis and myocarditis. HIV Med. 2006, 7, 415–420. [Google Scholar] [CrossRef]
- Jones, J.L.; Lopez, A.; Wilson, M.; Schulkin, J.; Gibbs, R. Congenital toxoplasmosis: A review. Obstet. Gynecol. Surv. 2001, 56, 296–305. [Google Scholar] [CrossRef]
- Pan, M.; Lyu, C.; Zhao, J.; Shen, B. Sixty Years (1957–2017) of Research on Toxoplasmosis in China-An Overview. Front. Microbiol. 2017, 8, 1825. [Google Scholar] [CrossRef]
- Ortega-Mora, L.M.; Gottstein, B.; Conraths, F.J.; Buxton, D. Protozoal Abortion in Farm Ruminants: Guidelines for Diagnosis and Control; CABI: Wallingford, UK, 2007. [Google Scholar]
- Torrey, E.F.; Yolken, R.H. Toxoplasma oocysts as a public health problem. Trends Parasitol. 2013, 29, 380–384. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Montazeri, M.; Mikaeili Galeh, T.; Moosazadeh, M.; Sarvi, S.; Dodangeh, S.; Javidnia, J.; Sharif, M.; Daryani, A. The global serological prevalence of Toxoplasma gondii in felids during the last five decades (1967–2017): A systematic review and meta-analysis. Parasit. Vectors 2020, 13, 82. [Google Scholar] [CrossRef]
- Li, X.T.; Wang, L.; Ding, Y.; Sun, W.W. Toxoplasma gondii infection in pet cats and their owners in northeastern China: An important public health concern. BMC Vet. Res. 2022, 18, 9. [Google Scholar] [CrossRef]
- Coordinating Office of the National Survey on the Important Human Parasitic Diseases. A national survey on current status of the important parasitic diseases in human population. Chin. J. Parasitol. Parasit. Dis. 2005, 23, 332–340. [Google Scholar]
- Jung, B.K.; Song, H.; Lee, S.E.; Kim, M.J.; Cho, J.; Shin, E.H.; Chai, J.-Y. Seroprevalence and Risk Factors of Toxoplasma gondii Infection among Cat Sitters in Korea. Korean J. Parasitol. 2017, 55, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Arunvipas, P.; Jittapalapong, S.; Inpankaew, T.; Pinyopanuwat, N.; Chimnoi, W.; Maruyama, S. Seroprevalence and risk factors influenced transmission of Toxoplasma gondii in dogs and cats in dairy farms in Western Thailand. Afr. J. Agric. Res. 2013, 8, 591–595. [Google Scholar]
- Nam, H.W. GRA proteins of Toxoplasma gondii: Maintenance of host-parasite interactions across the parasitophorous vacuolar membrane. Korean J. Parasitol. 2009, 47, S29–S37. [Google Scholar] [CrossRef]
- Michelin, A.; Bittame, A.; Bordat, Y.; Travier, L.; Mercier, C.; Dubremetz, J.F.; Lebrun, M. GRA12, a Toxoplasma dense granule protein associated with the intravacuolar membranous nanotubular network. Int. J. Parasitol. 2009, 39, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, A.D.; Dalimi, A.; Ghaffarifar, F.; Pirestani, M. Antigenic properties of dense granule antigen 12 protein using bioinformatics tools in order to improve vaccine design against Toxoplasma gondii. Clin. Exp. Vaccine Res. 2020, 9, 81–96. [Google Scholar] [CrossRef]
- Fox, B.A.; Guevara, R.B.; Rommereim, L.M.; Falla, A.; Bellini, V.; Pètre, G.; Rak, C.; Cantillana, V.; Dubremetz, J.-F.; Cesbron-Delauw, M.-F.; et al. Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Orchestrate Chronic Infection and GRA12 Underpins Resistance to Host Gamma Interferon. mBio 2019, 10, e00589-19. [Google Scholar] [CrossRef]
- Liang, X.H. Biological Roles of De Novo Synthesis of Saturated Fatty Acids and Phosphatidylcholine in T. gondii. Ph.D. Thesis, Huazhong Agricultural University, Hangzhou, China, 2022. [Google Scholar]
- Wang, Y.H. Prokaryotic Expression and Immunogenicity Study of Toxoplasma Gondii Dense Granule Protein GRA12. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2017. [Google Scholar]
- Zhu, X.; Yang, T.; Yang, G.; Zhao, Y.; Yao, F. Establishment and application of SYBR Green I fluorescent quantitative PCR for detection of Toxoplasma gondii. J. Pathog. Biol. 2007, 428–432. [Google Scholar]
- Yang, Z.; Yuan, H.; Nie, L.; Wen, Q.; Li, H.; Yang, L.; Song, Y.; Luo, X.; Zhang, X.; Yuan, Z. Deciphering the epidemiological dynamics: Toxoplasma gondii seroprevalence in mainland China’s food animals, 2010–2023. Front. Cell Infect. Microbiol. 2024, 14, 1381537. [Google Scholar] [CrossRef]
- Pappas, G.; Roussos, N.; Falagas, M.E. Toxoplasmosis snapshots: Global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int. J. Parasitol. 2009, 39, 1385–1394. [Google Scholar] [CrossRef]
- Şahar, E.A.; Can, H.; İz, S.G.; Döşkaya, A.D.; Kalantari-Dehaghi, M.; Deveci, R.; Gürüz, A.Y.; Döşkaya, M. Development of a hexavalent recombinant protein vaccine adjuvanted with Montanide ISA 50 V and determination of its protective efficacy against acute toxoplasmosis. BMC Infect. Dis. 2020, 20, 493. [Google Scholar] [CrossRef]
- Dupont, C.D.; Christian, D.A.; Hunter, C.A. Immune response and immunopathology during toxoplasmosis. Semin. Immunopathol. 2012, 34, 793–813. [Google Scholar] [CrossRef]
- Finkelman, F.D.; Holmes, J.; Katona, I.M.; Urban, J.F., Jr.; Beckmann, M.P.; Park, L.S.; Schooley, K.A.; Coffman, R.L.; Mosmann, T.R.; Paul, W.E. Lymphokine control of in vivo immunoglobulin isotype selection. Annu. Rev. Immunol. 1990, 8, 303–333. [Google Scholar] [CrossRef]
- Mahmoudzadeh, S.; Nozad Charoudeh, H.; Marques, C.S.; Bahadory, S.; Ahmadpour, E. The role of IL-12 in stimulating NK cells against Toxoplasma gondii infection: A mini-review. Parasitol. Res. 2021, 120, 2303–2309. [Google Scholar] [CrossRef]
- Saraav, I.; Cervantes-Barragan, L.; Olias, P.; Fu, Y.; Wang, Q.; Wang, L.; Wang, Y.; Mack, M.; Baldridge, M.T.; Stappenbeck, T.; et al. Chronic Toxoplasma gondii infection enhances susceptibility to colitis. Proc. Natl. Acad. Sci. USA 2021, 118, e2106730118. [Google Scholar] [CrossRef]
- Bhadra, R.; Gigley, J.P.; Weiss, L.M.; Khan, I.A. Control of Toxoplasma reactivation by rescue of dysfunctional CD8+ T-cell response via PD-1-PDL-1 blockade. Proc. Natl. Acad. Sci. USA 2011, 108, 9196–9201. [Google Scholar] [CrossRef]
- Yarovinsky, F. Innate immunity to Toxoplasma gondii infection. Nat. Rev. Immunol. 2014, 14, 109–121. [Google Scholar] [CrossRef]
- Snapper, C.M.; Paul, W.E. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 1987, 236, 944–947. [Google Scholar] [CrossRef]
- Alexander, J.; Jebbari, H.; Bluethmann, H.; Brombacher, F.; Roberts, C.W. The role of IL-4 in adult acquired and congenital toxoplasmosis. Int. J. Parasitol. 1998, 28, 113–120. [Google Scholar] [CrossRef]
- Bessieres, M.H.; Swierczynski, B.; Cassaing, S.; Miedouge, M.; Olle, P.; Seguela, J.P.; Pipy, B. Role of IFN-gamma, TNF-alpha, IL4 and IL10 in the regulation of experimental Toxoplasma gondii infection. J. Eukaryot. Microbiol. 1997, 44, 87s. [Google Scholar] [CrossRef]
- Perussia, B.; Dayton, E.T.; Lazarus, R.; Fanning, V.; Trinchieri, G. Immune interferon induces the receptor for monomeric IgG1 on human monocytic and myeloid cells. J. Exp. Med. 1983, 158, 1092–1113. [Google Scholar] [CrossRef]
- Petersen, E.; Nielsen, H.V.; Christiansen, L.; Spenter, J. Immunization with E. coli produced recombinant T. gondii SAG1 with alum as adjuvant protect mice against lethal infection with Toxoplasma gondii. Vaccine 1998, 16, 1283–1289. [Google Scholar] [CrossRef]
- Garcia, J.L.; Navarro, I.T.; Biazzono, L.; Freire, R.L.; da Silva Guimarães Junior, J.; Cryssafidis, A.L.; Bugni, F.M.; da Cunha, I.A.L.; Hamada, F.N.; Dias, R.C.F. Protective activity against oocyst shedding in cats vaccinated with crude rhoptry proteins of the Toxoplasma gondii by the intranasal route. Vet. Parasitol. 2007, 145, 197–206. [Google Scholar] [CrossRef]
- Zulpo, D.L.; Igarashi, M.; Sammi, A.S.; Santos, J.R.; Sasse, J.P.; da Cunha, I.A.L.; Taroda, A.; de Barros, L.D.; de Almeida, J.C.; Jenkins, M.C.; et al. rROP2 de Toxoplasma gondii como potencial vacina contra a eliminação de oocistos em gatos domésticos. Rev. Bras. Parasitol. Veterinária 2017, 26, 67–73. [Google Scholar] [CrossRef]
- Pavot, V.; Rochereau, N.; Genin, C.; Verrier, B.; Paul, S. New insights in mucosal vaccine development. Vaccine 2012, 30, 142–154. [Google Scholar] [CrossRef]
- Rose, M.A.; Zielen, S.; Baumann, U. Mucosal immunity and nasal influenza vaccination. Expert Rev. Vaccines 2012, 11, 595–607. [Google Scholar] [CrossRef]
- Mack, D.G.; McLeod, R. Human Toxoplasma gondii-specific secretory immunoglobulin A reduces T. gondii infection of enterocytes in vitro. J. Clin. Investig. 1992, 90, 2585–2592. [Google Scholar] [CrossRef]
- Bonenfant, C.; Dimier-Poisson, I.; Velge-Roussel, F.; Buzoni-Gatel, D.; Del Giudice, G.; Rappuoli, R.; Bout, D. Intranasal immunization with SAG1 and nontoxic mutant heat-labile enterotoxins protects mice against Toxoplasma gondii. Infect. Immun. 2001, 69, 1605–1612. [Google Scholar] [CrossRef]
- Dimier-Poisson, I.; Aline, F.; Bout, D.; Mévélec, M.N. Induction of protective immunity against toxoplasmosis in mice by immunization with Toxoplasma gondii RNA. Vaccine 2006, 24, 1705–1709. [Google Scholar] [CrossRef]
- Iyer, A.V.; Ghosh, S.; Singh, S.N.; Deshmukh, R.A. Evaluation of three ‘ready to formulate’ oil adjuvants for foot-and-mouth disease vaccine production. Vaccine 2000, 19, 1097–1105. [Google Scholar] [CrossRef]
- Zulpo, D.L.; Headley, S.A.; Biazzono, L.; da Cunha, I.A.; Igarashi, M.; de Barros, L.D.; Taroda, A.; Cardim, S.T.; Bogado, A.L.G.; Navarro, I.T.; et al. Oocyst shedding in cats vaccinated by the nasal and rectal routes with crude rhoptry proteins of Toxoplasma gondii. Exp. Parasitol. 2012, 131, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.W.; Ferguson, D.J.; Jebbari, H.; Satoskar, A.; Bluethmann, H.; Alexander, J. Different roles for interleukin-4 during the course of Toxoplasma gondii infection. Infect. Immun. 1996, 64, 897–904. [Google Scholar] [CrossRef]
- Neyer, L.E.; Grunig, G.; Fort, M.; Remington, J.S.; Rennick, D.; Hunter, C.A. Role of interleukin-10 in regulation of T-cell-dependent and T-cell-independent mechanisms of resistance to Toxoplasma gondii. Infect. Immun. 1997, 65, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Frenkel, J.K. Cyst-induced toxoplasmosis in cats. J. Protozool. 1972, 19, 155–177. [Google Scholar] [CrossRef] [PubMed]
Group | Immune Pathway | Immune Dose | Vaccination Schedule (Weeks) | Number of Immunizations | T. gondii Strain |
---|---|---|---|---|---|
G1 | Subcutaneous injection | 1 mL | 2 | 3 | RH |
G2 | 1 mL | ||||
G3 | 1 mL (200 μg) | ||||
G4 | 1 mL (200 μg) |
Group | Incubation Period (d) | Oocyst Shedding Period (d) | Total Number of Oocyst Shedding (Mean ± SE) | Inhibition Rate (%) |
---|---|---|---|---|
G1 | 3 | 12 | 4,607,685 ± 200,786.67 | / |
G2 | 3 | 12 | 4,486,855 ± 167,599.45 | 2.62 |
G3 | 4 | 10 | 3,584,980 ± 256,171.38 | 20.10 |
G4 | 4 | 9 | 2,585,635 ± 56,333.95 | 27.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Nie, L.; Song, Y.; Yang, Z.; Yang, L.; Ren, H.; Li, W.; Mahmmod, Y.; Zhang, X.-X.; Yuan, Z.; et al. Immunogenicity and Protective Efficacy of a Recombinant Toxoplasma gondii GRA12 Vaccine in Domestic Cats. Vaccines 2025, 13, 851. https://doi.org/10.3390/vaccines13080851
Yang J, Nie L, Song Y, Yang Z, Yang L, Ren H, Li W, Mahmmod Y, Zhang X-X, Yuan Z, et al. Immunogenicity and Protective Efficacy of a Recombinant Toxoplasma gondii GRA12 Vaccine in Domestic Cats. Vaccines. 2025; 13(8):851. https://doi.org/10.3390/vaccines13080851
Chicago/Turabian StyleYang, Jinru, Linchong Nie, Yining Song, Zipeng Yang, Liulu Yang, Hongjie Ren, Wenhao Li, Yasser Mahmmod, Xiu-Xiang Zhang, Ziguo Yuan, and et al. 2025. "Immunogenicity and Protective Efficacy of a Recombinant Toxoplasma gondii GRA12 Vaccine in Domestic Cats" Vaccines 13, no. 8: 851. https://doi.org/10.3390/vaccines13080851
APA StyleYang, J., Nie, L., Song, Y., Yang, Z., Yang, L., Ren, H., Li, W., Mahmmod, Y., Zhang, X.-X., Yuan, Z., Yuan, H., & Zhang, Y. (2025). Immunogenicity and Protective Efficacy of a Recombinant Toxoplasma gondii GRA12 Vaccine in Domestic Cats. Vaccines, 13(8), 851. https://doi.org/10.3390/vaccines13080851