Mucosal Immunization with Spore-Based Vaccines against Mannheimia haemolytica Enhances Antigen-Specific Immunity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spore Preparation
2.2. Chimeric Protein Purification
2.3. Chimeric Protein Adsorption to Spores
2.4. Animals and Experimental Design
2.5. Immunizations
2.6. Sample Collection
2.7. Antigen-Specific Serum IgG Quantification
2.8. Antigen-Specific Secretory IgA (sIgA) Quantification
2.9. Complement-Mediated Serum Bactericidal Activity (SBA)
2.10. Statistical Analysis
3. Results
3.1. Adsorption of Chimeric Proteins to Spores
3.2. Experiment 1. Antigen-Specific Antibody Production from Spore-MhCP1
3.3. Experiment 2. Antigen-Specific Antibody Production from Spore-MhCP2
3.4. Complement-Mediated SBA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, T.W.; Cook, S.; Klima, C.L.; Topp, E.; McAllister, T.A. Susceptibility to tulathromycin in Mannheimia haemolytica isolated from feedlot cattle over a 3-year period. Front. Microbiol. 2013, 4, 297. [Google Scholar] [CrossRef] [PubMed]
- Duff, G.C.; Galyean, M.L. Board-invited review: Recent advances in management of highly stressed, newly received feedlot cattle. J. Anim. Sci. 2007, 85, 823–840. [Google Scholar] [CrossRef] [PubMed]
- Rice, J.A.; Carrasco-Medina, L.; Hodgins, D.C.; Shewen, P.E. Mannheimia haemolytica and bovine respiratory disease. Anim. Health Res. Rev. 2007, 8, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.M.; O’Neill, R.G.; More, S.J.; McElroy, M.C.; Earley, B.; Cassidy, J.P. Evolving views on bovine respiratory disease: An appraisal of selected control measures—Part 2. Vet. J. 2016, 217, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.L.; Step, D.L. Evidence-based effectiveness of vaccination against Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni in feedlot cattle for mitigating the incidence and effect of bovine respiratory disease complex. Vet. Clin. North. Am. Food Anim. Pract. 2012, 28, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.; Chengappa, M.M.; Kuszak, J.; McVey, D.S. Bacterial pathogens of the bovine respiratory disease complex. Vet. Clin. North. Am. Food Anim. Pract. 2010, 26, 381–394. [Google Scholar] [CrossRef]
- Klima, C.L.; Alexander, T.W.; Hendrick, S.; McAllister, T.A. Characterization of Mannheimia haemolytica isolated from feedlot cattle that were healthy or treated for bovine respiratory disease. Can. J. Vet. Res. 2014, 78, 38–45. [Google Scholar] [PubMed]
- Perino, L.J.; Hunsaker, B.D. A review of bovine respiratory disease vaccine field efficacy. Bov. Pract. 1997, 59–66. [Google Scholar] [CrossRef]
- O’connor, A.M.; Hu, D.; Totton, S.C.; Scott, N.; Winder, C.B.; Wang, B.; Wang, C.; Glanville, J.; Wood, H.; White, B.; et al. A systematic review and network meta-analysis of bacterial and viral vaccines, administered at or near arrival at the feedlot, for control of bovine respiratory disease in beef cattle. Anim. Health Res. Rev. 2019, 20, 143–162. [Google Scholar] [CrossRef]
- Shewen, P.E.; Carrasco-Medina, L.; McBey, B.A.; Hodgins, D.C. Challenges in mucosal vaccination of cattle. Vet. Immunol. Immunopathol. 2009, 128, 192–198. [Google Scholar] [CrossRef]
- Holmgren, J.; Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 2005, 11 (Suppl. S4), S45–S53. [Google Scholar] [CrossRef] [PubMed]
- Cutting, S.M.; Hong, H.A.; Baccigalupi, L.; Ricca, E. Oral vaccine delivery by recombinant spore probiotics. Int. Rev. Immunol. 2009, 28, 487–505. [Google Scholar] [CrossRef] [PubMed]
- Ducle, H.; Hong, H.A.; Fairweather, N.; Ricca, E.; Cutting, S.M. Bacterial spores as vaccine vehicles. Infect. Immun. 2003, 71, 2810–2818. [Google Scholar] [CrossRef]
- Lee, J.E.; Kye, Y.C.; Park, S.M.; Shim, B.S.; Yoo, S.; Hwang, E.; Kim, H.; Kim, S.J.; Han, S.H.; Park, T.S.; et al. Bacillus subtilis spores as adjuvants against avian influenza H9N2 induce antigen-specific antibody and T cell responses in White Leghorn chickens. Vet. Res. 2020, 51, 68. [Google Scholar] [CrossRef] [PubMed]
- Ricca, E.; Baccigalupi, L.; Cangiano, G.; De Felice, M.; Isticato, R. Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis. Microb. Cell Fact. 2014, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Miao, Y.; Guo, Y.; Qiu, H.; Sun, S.; Kou, Z.; Yu, H.; Li, J.; Chen, Y.; Jiang, S.; et al. Development of a heat-stable and orally delivered recombinant M2e-expressing B. subtilis spore-based influenza vaccine. Hum. Vaccin. Immunother. 2014, 10, 3649–3658. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.M.; Hong, H.A.; Van Tong, H.; Hoang, T.H.; Brisson, A.; Cutting, S.M. Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine 2010, 28, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Copland, A.; Diogo, G.R.; Hart, P.; Harris, S.; Tran, A.C.; Paul, M.J.; Singh, M.; Cutting, S.M.; Reljic, R. Mucosal Delivery of Fusion Proteins with Bacillus subtilis Spores Enhances Protection against Tuberculosis by Bacillus Calmette-Guérin. Front. Immunol. 2018, 9, 346. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Hong, H.A.; Huang, J.M.; Colenutt, C.; Khang, D.D.; Nguyen, T.V.; Park, S.M.; Shim, B.S.; Song, H.H.; Cheon, I.S.; et al. Killed Bacillus subtilis spores as a mucosal adjuvant for an H5N1 vaccine. Vaccine 2012, 30, 3266–3277. [Google Scholar] [CrossRef]
- Confer, A.W. Update on bacterial pathogenesis in BRD. Anim. Health Res. Rev. 2009, 10, 145–148. [Google Scholar] [CrossRef]
- Confer, A.W.; Ayalew, S. Mannheimia haemolytica in bovine respiratory disease: Immunogens, potential immunogens, and vaccines. Anim. Health Res. Rev. 2018, 19, 79–99. [Google Scholar] [CrossRef] [PubMed]
- Dassanayake, R.P.; Shanthalingam, S.; Herndon, C.N.; Lawrence, P.K.; Cassirer, E.F.; Potter, K.A.; Foreyt, W.J.; Clinkenbeard, K.D.; Srikumaran, S. Mannheimia haemolytica serotype A1 exhibits differential pathogenicity in two related species, Ovis canadensis and Ovis aries. Vet. Microbiol. 2009, 133, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Tatum, F.M.; Briggs, R.E.; Sreevatsan, S.S.; Zehr, E.S.; Hsuan, S.L.; Whiteley, L.O.; Ames, T.R.; Maheswaran, S.K. Construction of an isogenic leukotoxin deletion mutant of Pasteurella haemolytica serotype 1: Characterization and virulence. Microb. Pathog. 1998, 24, 37–46. [Google Scholar] [CrossRef]
- Petras, S.F.; Chidambaram, M.; Illyes, E.F.; Froshauer, S.; Weinstock, G.M.; Reese, C.P. Antigenic and virulence properties of Pasteurella haemolytica leukotoxin mutants. Infect. Immun. 1995, 63, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Confer, A.W.; Ayalew, S.; Panciera, R.J.; Montelongo, M.; Whitworth, L.C.; Hammer, J.D. Immunogenicity of recombinant Mannheimia haemolytica serotype 1 outer membrane protein PlpE and augmentation of a commercial vaccine. Vaccine 2003, 21, 2821–2829. [Google Scholar] [CrossRef] [PubMed]
- Confer, A.W.; Ayalew, S.; Panciera, R.J.; Montelongo, M.; Wray, J.H. Recombinant Mannheimia haemolytica serotype 1 outer membrane protein PlpE enhances commercial M. haemolytica vaccine-induced resistance against serotype 6 challenge. Vaccine 2006, 24, 2248–2255. [Google Scholar] [CrossRef] [PubMed]
- Pandher, K.; Murphy, G.L.; Confer, A.W. Identification of immunogenic, surface-exposed outer membrane proteins of Pasteurella haemolytica serotype 1. Vet. Microbiol. 1999, 65, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.W.; Cornelisse, M.; Ziauddin, A.; Slack, P.J.; Hodgins, D.C.; Strommer, J.N.; Shewen, P.E.; Lo, R.Y. Expression of a modified Mannheimia haemolytica GS60 outer membrane lipoprotein in transgenic alfalfa for the development of an edible vaccine against bovine pneumonic pasteurellosis. J. Biotechnol. 2008, 135, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Ayalew, S.; Step, D.L.; Montelongo, M.; Confer, A.W. Intranasal vaccination of calves with Mannheimia haemolytica chimeric protein containing the major surface epitope of outer membrane lipoprotein PlpE, the neutralizing epitope of leukotoxin, and cholera toxin subunit B. Vet. Immunol. Immunopathol. 2009, 132, 295–302. [Google Scholar] [CrossRef]
- Uddin, M.S.; Guluarte, J.O.; Abbott, D.W.; Inglis, G.D.; Guan, L.L.; Alexander, T.W. Development of a spore-based mucosal vaccine against the bovine respiratory pathogen Mannheimia haemolytica. Sci. Rep. 2023, 13, 12981. [Google Scholar] [CrossRef]
- Jones, D.R.; Uddin, M.S.; Gruninger, R.J.; Pham, T.T.; Thomas, D.; Boraston, A.B.; Briggs, J.; Pluvinage, B.; McAllister, T.A.; Forster, R.J.; et al. Discovery and characterization of family 39 glycoside hydrolases from rumen anaerobic fungi with polyspecific activity on rare arabinosyl substrates. J. Biol. Chem. 2017, 292, 12606–12620. [Google Scholar] [CrossRef] [PubMed]
- CCAC. Canadian Council on Animal Care (CCAC) Guidelines: Mice; CCAC: Ottawa, ON, Canada, 2019; Available online: https://ccac.ca/Documents/Standards/Guidelines/CCAC_Guidelines_Mice.pdf (accessed on 1 June 2019).
- Hoang, T.H.; Hong, H.A.; Clark, G.C.; Titball, R.W.; Cutting, S.M. Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect. Immun. 2008, 76, 5257–5265. [Google Scholar] [CrossRef] [PubMed]
- Ayalew, S.; Confer, A.W.; Payton, M.E.; Garrels, K.D.; Shrestha, B.; Ingram, K.R.; Montelongo, M.A.; Taylor, J.D. Mannheimia haemolytica chimeric protein vaccine composed of the major surface-exposed epitope of outer membrane lipoprotein PlpE and the neutralizing epitope of leukotoxin. Vaccine 2008, 26, 4955–4961. [Google Scholar] [CrossRef] [PubMed]
- Hertle, R.; Mrsny, R.; Fitzgerald, D.J. Dual-function vaccine for Pseudomonas aeruginosa: Characterization of chimeric exotoxin A-pilin protein. Infect. Immun. 2001, 69, 6962–6969. [Google Scholar] [CrossRef]
- Lavelle, E.C.; Ward, R.W. Mucosal vaccines—Fortifying the frontiers. Nat. Rev. Immunol. 2022, 22, 236–250. [Google Scholar] [CrossRef]
- Bergquist, C.; Johansson, E.L.; Lagergård, T.; Holmgren, J.; Rudin, A. Intranasal vaccination of humans with recombinant cholera toxin B subunit induces systemic and local antibody responses in the upper respiratory tract and the vagina. Infect. Immun. 1997, 65, 2676–2684. [Google Scholar] [CrossRef] [PubMed]
- Saggese, A.; Baccigalupi, L.; Donadio, G.; Ricca, E.; Isticato, R. The Bacterial Spore as a Mucosal Vaccine Delivery System. Int. J. Mol. Sci. 2023, 24, 880. [Google Scholar] [CrossRef] [PubMed]
- Batra, S.A.; Shanthalingam, S.; Donofrio, G.; Haldorson, G.J.; Chowdhury, S.; White, S.N.; Srikumaran, S. Immunization of bighorn sheep against Mannheimia haemolytica with a bovine herpesvirus 1-vectored vaccine. Vaccine 2017, 35, 1630–1636. [Google Scholar] [CrossRef] [PubMed]
- Hoelzer, K.; Bielke, L.; Blake, D.P.; Cox, E.; Cutting, S.M.; Devriendt, B.; Erlacher-Vindel, E.; Goossens, E.; Karaca, K.; Lemiere, S.; et al. Vaccines as alternatives to antibiotics for food producing animals. Part 2: New approaches and potential solutions. Vet. Res. 2018, 49, 70. [Google Scholar] [CrossRef] [PubMed]
- Katsande, P.M.; Nguyen, V.D.; Nguyen, T.L.; Nguyen, T.K.; Mills, G.; Bailey, D.M.; Christie, G.; Hong, H.A.; Cutting, S.M. Prophylactic immunization to Helicobacter pylori infection using spore vectored vaccines. Helicobacter 2023, 28, e12997. [Google Scholar] [CrossRef]
- Oh, Y.; Kim, J.A.; Kim, C.H.; Choi, S.K.; Pan, J.G. Bacillus subtilis spore vaccines displaying protective antigen induce functional antibodies and protective potency. BMC Vet. Res. 2020, 16, 259. [Google Scholar] [CrossRef] [PubMed]
- James, J.; Meyer, S.M.; Hong, H.A.; Dang, C.; Linh, H.T.; Ferreira, W.; Katsande, P.M.; Vo, L.; Hynes, D.; Love, W.; et al. Intranasal Treatment of Ferrets with Inert Bacterial Spores Reduces Disease Caused by a Challenging H7N9 Avian Influenza Virus. Vaccines 2022, 10, 1559. [Google Scholar] [CrossRef] [PubMed]
- Orouji, S.; Hodgins, D.C.; Lo, R.Y.; Shewen, P.E. Serum IgG response in calves to the putative pneumonic virulence factor Gs60 of Mannheimia haemolytica A1. Can. J. Vet. Res. 2012, 76, 292–300. [Google Scholar] [PubMed]
- Kaldis, A.; Uddin, M.S.; Guluarte, J.O.; Martin, C.; Alexander, T.W.; Menassa, R. Development of a plant-based oral vaccine candidate against the bovine respiratory pathogen Mannheimia haemolytica. Front. Plant Sci. 2023, 14, 1251046. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, E.D.; Bröker, M.; Wassil, J.; Welsch, J.A.; Borrow, R. Serum bactericidal antibody assays—The role of complement in infection and immunity. Vaccine 2015, 33, 4414–4421. [Google Scholar] [CrossRef]
- Rouphael, N.G.; Satola, S.; Farley, M.M.; Rudolph, K.; Schmidt, D.S.; Gomez-de-León, P.; Robbins, J.B.; Schneerson, R.; Carlone, G.M.; Romero-Steiner, S. Evaluation of serum bactericidal antibody assays for Haemophilus influenzae serotype a. Clin. Vaccine Immunol. 2011, 18, 243–247. [Google Scholar] [CrossRef]
Exp. No. | Treatment Group | No. of Mice | Route of Administration | Vaccine Formulations (Amount per Dose) | Vaccination Days | Samples Collected |
---|---|---|---|---|---|---|
Exp. 1 | IM:MhCP1 | 12 | Intramuscular | MhCP1 (10 µg) mixed with IFA *; No Spore | Days 0 and 21 | Blood, BAL #, feces, saliva |
IN:Spore+MhCP1 | 12 | Intranasal | Spore (2 × 109)-bound MhCP1 (10 µg) | Days 0 and 21 | Blood, BAL, feces, saliva | |
IN:MhCP1 | 12 | Intranasal | MhCP1 (10 µg) only; No Spore | Days 0 and 21 | Blood, BAL, feces, saliva | |
IN:Spore | 12 | Intranasal | Spore (2 × 109) only; No MhCP1 | Days 0 and 21 | Blood, BAL, feces, saliva | |
IG:Spore+MhCP1 | 12 | Intragastric | Spore (2 × 109)-bound MhCP1 (10 µg) | Days 0 and 21 | Blood, BAL, feces, saliva | |
Control | 12 | N/A | No MhCP1; No Spore | Days 0 and 21 | Blood, BAL, feces, saliva | |
Exp. 2 | IM:MhCP2 | 12 | Intramuscular | MhCP2 (50 µg) mixed with IFA; No Spore | Days 0 and 21 | Blood, BAL, feces, saliva |
IN:Spore+MhCP2 | 12 | Intranasal | Spore (2 × 109)-bound MhCP2 (50 µg) | Days 0 and 21 | Blood, BAL, feces, saliva | |
IN:MhCP2 | 12 | Intranasal | MhCP2 (50 µg) only; No Spore | Days 0 and 21 | Blood, BAL, feces, saliva | |
IN:Spore | 12 | Intranasal | Spore (2 × 109) only; No MhCP2 | Days 0 and 21 | Blood, BAL, feces, saliva | |
IG:Spore+MhCP2 | 12 | Intragastric | Spore (2 × 109)-bound MhCP2 (50 µg) | Days 0 and 21 | Blood, BAL, feces, saliva | |
Control | 12 | N/A | No MhCP2; No Spore | Days 0 and 21 | Blood, BAL, feces, saliva |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024, Daniel R. Barreda, Le Luo Guan, and His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada for the contribution of Muhammed Salah Uddin, Angelo Kaldis, Rima Menassa, Jose Ortiz Guluarte, and Trevor W. Alexander. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Share and Cite
Uddin, M.S.; Kaldis, A.; Menassa, R.; Ortiz Guluarte, J.; Barreda, D.R.; Guan, L.L.; Alexander, T.W. Mucosal Immunization with Spore-Based Vaccines against Mannheimia haemolytica Enhances Antigen-Specific Immunity. Vaccines 2024, 12, 375. https://doi.org/10.3390/vaccines12040375
Uddin MS, Kaldis A, Menassa R, Ortiz Guluarte J, Barreda DR, Guan LL, Alexander TW. Mucosal Immunization with Spore-Based Vaccines against Mannheimia haemolytica Enhances Antigen-Specific Immunity. Vaccines. 2024; 12(4):375. https://doi.org/10.3390/vaccines12040375
Chicago/Turabian StyleUddin, Muhammed Salah, Angelo Kaldis, Rima Menassa, José Ortiz Guluarte, Daniel R. Barreda, Le Luo Guan, and Trevor W. Alexander. 2024. "Mucosal Immunization with Spore-Based Vaccines against Mannheimia haemolytica Enhances Antigen-Specific Immunity" Vaccines 12, no. 4: 375. https://doi.org/10.3390/vaccines12040375
APA StyleUddin, M. S., Kaldis, A., Menassa, R., Ortiz Guluarte, J., Barreda, D. R., Guan, L. L., & Alexander, T. W. (2024). Mucosal Immunization with Spore-Based Vaccines against Mannheimia haemolytica Enhances Antigen-Specific Immunity. Vaccines, 12(4), 375. https://doi.org/10.3390/vaccines12040375