Effect of Platform Type on Clinical Efficacy of SARS-CoV-2 Vaccines in Prime Vaccination Settings: A Systematic Review and Meta-Regression of Randomized Controlled Trials
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Search
2.2. Study Selection
2.3. Endpoint
2.4. Data and Extraction, Quality Assessment
2.5. Data Synthesis and Analysis
3. Results
3.1. Search
3.2. Characteristics of Trials, Vaccines, and Participants, Sources of Bias and Effect Modifiers
3.3. Analysis of Platform Type Effect in PP Set
3.4. Analysis of Platform Type Effect in mITT Set
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022, 28, 202–221. [Google Scholar] [CrossRef]
- Molino, D.; Durier, C.; Radenne, A.; Desaint, C.; Ropers, J.; Courcier, S.; Vieillard, L.V.; Rekacewicz, C.; Parfait, B.; Appay, V.; et al. A comparison of SARS-CoV-2 vaccine platforms: The CoviCompare project. Nat. Med. 2022, 28, 882–884. [Google Scholar] [CrossRef]
- Krammer, F. A correlate of protection for SARS-CoV-2 vaccines is urgently needed. Nat. Med. 2021, 27, 1147–1148. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Langan, D.; Higgins, J.P.T.; Jackson, D.; Bowden, J.; Veroniki, A.A.; Kontopantelis, E.; Viechtbauer, W.; Simmonds, M. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res. Synth. Methods 2019, 10, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G. Controlling the risk of spurious findings from meta-regression. Stat. Med. 2004, 23, 1663–1682. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019; p. 249. [Google Scholar]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Summary of Clinical Efficacy. AZD1222—Prevention of COVID-19. 13 January 2021. Available online: https://clinical-information.canada.ca/ci-rc-vu.pdf?file=m2/27-clin-sum/summary-clin-efficacy-covid-19.pdf&id=244627 (accessed on 9 September 2023).
- Koen, A.L.; Izu, A.; Baillie, V.; Kwatra, G.; Cutland, C.L.; Fairlie, L.; Padayachee, S.D.; Dheda, K.; Barnabas, S.L.; Bhorat, Q.E.; et al. Efficacy of primary series AZD1222 (ChAdOx1 nCoV-19) vaccination against SARS-CoV-2 variants of concern: Final analysis of a randomized, placebo-controlled, phase 1b/2 study in South African adults (COV005). Vaccine 2023, 41, 3486–3492. [Google Scholar] [CrossRef]
- Madhi, S.A.; Baillie, V.; Cutland, C.L.; Voysey, M.; Koen, A.L.; Fairlie, L.; Padayachee, S.D.; Dheda, K.; Barnabas, S.L.; Bhorat, Q.E.; et al. Efficacy of the ChAdOx1 nCoV-19 COVID-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 2021, 384, 1885–1898. [Google Scholar] [CrossRef]
- Sobieszczyk, M.E.; Maaske, J.; Falsey, A.R.; Sproule, S.; Robb, M.L.; Frenck, R.W., Jr.; Tieu, H.-V.; Mayer, K.H.; Corey, L.; Neuzil, K.M.; et al. Durability of protection and immunogenicity of AZD1222 (ChAdOx1 nCoV-19) COVID-19 vaccine over 6 months. J. Clin. Investig. 2022, 132, e160565. [Google Scholar] [CrossRef]
- Falsey, A.R.; Sobieszczyk, M.E.; Hirsch, I.; Sproule, S.; Robb, M.L.; Corey, L.; Neuzil, K.M.; Hahn, W.; Hunt, J.; Mulligan, M.J.; et al. Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 2348–2360. [Google Scholar] [CrossRef] [PubMed]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Van Dromme, I.; Spiessens, B.; et al. Final Analysis of Efficacy and Safety of Single-Dose Ad26.CoV2.S. N. Engl. J. Med. 2022, 386, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Hardt, K.; Vandebosch, A.; Sadoff, J.; Le Gars, M.; Truyers, C.; Lowson, D.; Van Dromme, I.; Vingerhoets, J.; Kamphuis, T.; Scheper, G.; et al. Efficacy, safety, and immunogenicity of a booster regimen of Ad26.CoV2.S vaccine against COVID-19 (ENSEMBLE2): Results of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Infect. Dis. 2022, 22, 1703–1715. [Google Scholar] [CrossRef]
- Halperin, S.A.; Ye, L.; MacKinnon-Cameron, D.; Smith, B.; Cahn, P.E.; Ruiz-Palacios, G.M.; Ikram, A.; Lanas, F.; Lourdes Guerrero, M.; Muñoz Navarro, S.R.; et al. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: An international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. Lancet 2022, 399, 237–248. [Google Scholar]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Thomas, S.J.; Moreira, E.D., Jr.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Polack, F.P.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine through 6 Months. N. Engl. J. Med. 2021, 385, 1761–1773. [Google Scholar] [CrossRef]
- Health Canada. Interim Clinical Study Report. Protocol C4591001. 29 April 2021. Available online: https://clinical-information.canada.ca/ci-rc-vu.pdf?file=m5/53-clin-stud-rep/535-rep-effic-safety-stud/covid19/5351-stud-rep-contr/red-c4591001/red-c4591001-report-body-2.pdf&id=252736 (accessed on 9 September 2023).
- Frenck, R.W., Jr.; Klein, N.P.; Kitchin, N.; Gurtman, A.; Absalon, J.; Lockhart, S.; Perez, J.L.; Walter, E.B.; Senders, S.; Bailey, R.; et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 COVID-19 Vaccine in Adolescents. N. Engl. J. Med. 2021, 385, 239–250. [Google Scholar] [CrossRef]
- Health Canada. Interim Clinical Study Report. Protocol C4591001. 14 April 2021. Available online: https://clinical-information.canada.ca/ci-rc-vu.pdf?file=m5/53-clin-stud-rep/535-rep-effic-safety-stud/covid19/5351-stud-rep-contr/red-c4591001/red-c4591001-report-body-5.pdf&id=252736 (accessed on 9 September 2023).
- Walter, E.B.; Talaat, K.R.; Sabharwal, C.; Gurtman, A.; Lockhart, S.; Paulsen, G.C.; Barnett, E.D.; Muñoz, F.M.; Maldonado, Y.; Pahud, B.A.; et al. Evaluation of the BNT162b2 COVID-19 Vaccine in Children 5 to 11 Years of Age. N. Engl. J. Med. 2022, 386, 35–46. [Google Scholar] [CrossRef]
- European Medicines Agency. Committee for Medicinal Products for Human Use. Assessment Report on Extension of Marketing Authorisation EMA/719541/2021. 25 November 2021. Available online: https://www.ema.europa.eu/en/documents/variation-report/comirnaty-h-c-5735-x-0077-epar-assessment-report-extension_en.pdf (accessed on 9 September 2023).
- Muñoz, F.M.; Sher, L.D.; Sabharwal, C.; Gurtman, A.; Xu, X.; Kitchin, N.; Lockhart, S.; Riesenberg, R.; Sexter, J.M.; Czajka, H.; et al. Evaluation of BNT162b2 COVID-19 Vaccine in Children Younger than 5 Years of Age. N. Engl. J. Med. 2023, 388, 621–634. [Google Scholar] [CrossRef]
- European Medicines Agency. Committee for Medicinal Products for Human Use. Assessment Report on Extension of Marketing Authorisation EMA/890761/2022. 19 October 2022. Available online: https://www.ema.europa.eu/en/documents/variation-report/comirnaty-h-c-005735-x-0138-epar-assessment-report-extension_en.pdf (accessed on 9 September 2023).
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Committee for Medicinal Products for Human Use. Assessment Report EMA/15689/2021 Corr.1. 11 March 2021. Available online: https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf (accessed on 9 September 2023).
- Ali, K.; Berman, G.; Zhou, H.; Deng, W.; Faughnan, V.; Coronado-Voges, M.; Ding, B.; Dooley, J.; Girard, B.; Hillebrand, W.; et al. Evaluation of mRNA-1273 SARS-CoV-2 Vaccine in Adolescents. N. Engl. J. Med. 2021, 385, 2241–2251. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Emergency Use Authorization (EUA) Amendment for an Unapproved Product. Review Memorandum. 16 June 2022. Available online: https://www.fda.gov/media/159611/download (accessed on 9 September 2023).
- Health Canada. Available Information for SPIKEVAX—Submission Control Number 253430. EUA Table Topline and 1A. Available online: https://clinical-information.canada.ca/ci-rc-vu.pdf?file=M5/m5351-203-p-app162-EUA-tables-topline-and-1A.pdf&id=253430 (accessed on 9 September 2023).
- Creech, C.B.; Anderson, E.; Berthaud, V.; Yildirim, I.; Atz, A.M.; Melendez Baez, I.; Finkelstein, D.; Pickrell, P.; Kirstein, J.; Yut, C.; et al. Evaluation of mRNA-1273 COVID-19 Vaccine in Children 6 to 11 Years of Age. N. Engl. J. Med. 2022, 386, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.J.; Creech, C.B.; Berthaud, V.; Piramzadian, A.; Johnson, K.A.; Zervos, M.; Garner, F.; Griffin, C.; Palanpurwala, K.; Turner, M.; et al. Evaluation of mRNA-1273 Vaccine in Children 6 Months to 5 Years of Age. N. Engl. J. Med. 2022, 387, 1673–1687. [Google Scholar] [CrossRef]
- Kremsner, P.G.; Ahuad Guerrero, R.A.; Arana-Arri, E.; Aroca Martinez, G.J.; Bonten, M.; Chandler, R.; Corral, G.; De Block, E.J.L.; Ecker, L.; Gabor, J.J.; et al. Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): A randomised, observer-blinded, placebo-controlled, phase 2b/3 trial. Lancet Infect. Dis. 2022, 22, 329–340. [Google Scholar] [CrossRef]
- EU Clinical Trials Register. Clinical Trial Results: COVID-19: A Phase 2b/3, Randomized, Observer-Blinded, Placebo-Controlled, Multicenter Clinical Study Evaluating the Efficacy and Safety of Investigational SARS-CoV-2 mRNA Vaccine CVnCoV in Adults 18 Years of Age and Older. Available online: https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-003998-22/results (accessed on 11 September 2023).
- Shinde, V.; Bhikha, S.; Hoosain, Z.; Archary, M.; Bhorat, Q.; Fairlie, L.; Lalloo, U.; Masilela, M.S.L.; Moodley, D.; Hanley, S.; et al. Efficacy of NVX-CoV2373 COVID-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 2021, 384, 1899–1909. [Google Scholar] [CrossRef]
- European Medicines Agency. CHMP Assessment Report EMA/783213/2021. 4 January 2022. Available online: https://www.ema.europa.eu/en/documents/assessment-report/nuvaxovid-epar-public-assessment-report_en.pdf (accessed on 9 September 2023).
- Health Canada. Protocol 2019nCoV-501: Interim Report. Version 1.0. 19 May 2021. Available online: https://clinical-information.canada.ca/ci-rc-vu.pdf?file=m5/53-clin-stud-rep/535-rep-effic-safety-stud/covid-19/5351-stud-rep-contr/protocol-2019ncov-501/m5351-2019ncov501-p-csr-body-interim.pdf&id=255370 (accessed on 9 September 2023).
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; et al. Safety and Efficacy of NVX-CoV2373 COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 1172–1183. [Google Scholar] [CrossRef]
- Health Canada. Protocol 2019nCoV-302: Interim Report. Version 1.0. 6 May 2021. Available online: https://clinical-information.canada.ca/ci-rc-vu.pdf?file=m5/53-clin-stud-rep/535-rep-effic-safety-stud/covid-19/5351-stud-rep-contr/protocol-2019ncov-302-study/m5351-2019ncov302-p-csr-body-interim.pdf&id=255370 (accessed on 9 September 2023).
- Dunkle, L.M.; Kotloff, K.L.; Gay, C.L.; Áñez, G.; Adelglass, J.M.; Barrat Hernández, A.Q.; Harper, W.L.; Duncanson, D.M.; McArthur, M.A.; Florescu, D.F.; et al. Efficacy and Safety of NVX-CoV2373 in Adults in the United States and Mexico. N. Engl. J. Med. 2022, 386, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Protocol 2019nCoV-301: Interim Report. Version 1.0. 9 August 2021. Available online: https://clinical-information.canada.ca/ci-rc-vu.pdf?file=m5/53-clin-stud-rep/535-rep-effic-safety-stud/covid-19/5351-stud-rep-contr/protocol-2019ncov301-int/m5351-2019ncov301-p-csr-body-interim.pdf&id=255370 (accessed on 9 September 2023).
- Áñez, G.; Dunkle, L.M.; Gay, C.L.; Kotloff, K.L.; Adelglass, J.M.; Essink, B.; Campbell, J.D.; Cloney-Clark, S.; Zhu, M.; Plested, J.S.; et al. Safety, Immunogenicity, and Efficacy of the NVX-CoV2373 COVID-19 Vaccine in Adolescents: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e239135. [Google Scholar] [CrossRef]
- Gunale, B.; Kapse, D.; Kar, S.; Bavdekar, A.; Kohli, S.; Lalwani, S.; Meshram, S.; Raut, A.; Kulkarni, P.; Samuel, C.; et al. Safety and Immunogenicity of SARS-CoV-2 Recombinant Spike Protein Vaccine in Children and Adolescents in India. A Phase 2–3 Randomized Clinical Trial. JAMA Pediatr. 2023, 177, 911–920. [Google Scholar] [CrossRef]
- Clinical Trials Registry—India (CTRI). CTRI/2021/02/031554. Available online: https://ctri.nic.in/Clinicaltrials/showallp.php?mid1=49327&EncHid=&userName=covovax (accessed on 20 September 2023).
- Dai, L.; Gao, L.; Tao, L.; Hadinegoro, S.R.; Erkin, M.; Ying, Z.; He, P.; Girsang, R.T.; Vergara, H.; Akram, J.; et al. Efficacy and Safety of the RBD-Dimer-Based COVID-19 Vaccine ZF2001 in Adults. N. Engl. J. Med. 2022, 386, 2097–2111. [Google Scholar] [CrossRef]
- Bravo, L.; Smolenov, I.; Han, H.H.; Li, P.; Hosain, R.; Rockhold, F.; Clemens, S.A.C.; Roa, C., Jr.; Borja-Tabora, C.; Quinsaat, A.; et al. Efficacy of the adjuvanted subunit protein COVID-19 vaccine, SCB-2019: A phase 2 and 3 multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2022, 399, 461–472. [Google Scholar] [CrossRef]
- Dayan, G.H.; Rouphael, N.; Walsh, S.R.; Chen, A.; Grunenberg, N.; Allen, M.; Antony, J.; Asante, K.P.; Bhate, A.S.; Beresnev, T.; et al. Efficacy of a bivalent (D614 + B.1.351) SARS-CoV-2 Protein Vaccine. medRxiv 2023, 2022, 12.05.22282933. [Google Scholar]
- European Medicines Agency. Committee for Medicinal Products for Human Use. Assessment report EMA/893684/2022. 10 November 2022. Available online: https://www.ema.europa.eu/en/documents/assessment-report/vidprevtyn-beta-epar-public-assessment-report_en.pdf (accessed on 16 September 2023).
- Al Kaabi, N.; Zhang, Y.; Xia, S.; Yang, Y.; Al Qahtani, M.M.; Abdulrazzaq, N.; Al Nusair, M.; Hassany, M.; Jawad, J.S.; Abdalla, J.; et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. JAMA 2021, 326, 35–45. [Google Scholar] [CrossRef]
- Palacios, P.; Batista, A.P.; Albuquerque, C.S.N.; Patiño, E.G.; do Prado Santos, J.; Conde, M.T.R.P.; de Oliveira Piorelli, R.; Júnior, L.C.P.; Raboni, S.M.; Ramos, F.; et al. Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study. Social Science Research Network. Available online: https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3822780_code4664046.pdf?abstractid=3822780&mirid=1 (accessed on 21 September 2023).
- Palacios, R.; Patiño, E.G.; de Oliveira Piorelli, R.; Conde, M.T.R.P.; Batista, A.P.; Zeng, G.; Xin, Q.; Kallas, E.G.; Flores, J.; Ockenhouse, C.F.; et al. Double-Blind, Randomized, Placebo-Controlled Phase III Clinical Trial to Evaluate the Efficacy and Safety of treating Healthcare Professionals with the Adsorbed COVID-19 (Inactivated) Vaccine Manufactured by Sinovac—PROFISCOV: A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 853. [Google Scholar]
- Tanriover, M.D.; Doğanay, H.L.; Akova, M.; Güner, H.R.; Azap, A.; Akhan, S.; Köse, Ş.; Erdinç, F.Ş.; Akalın, E.H.; Tabak, Ö.F.; et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021, 398, 213–222. [Google Scholar] [CrossRef]
- Akova, M.; Unal, S. A randomized, double-blind, placebo-controlled phase III clinical trial to evaluate the efficacy and safety of SARS-CoV-2 vaccine (inactivated, Vero cell): A structured summary of a study protocol for a randomised controlled trial. Trials 2021, 22, 276. [Google Scholar] [CrossRef]
- Ella, R.; Reddy, S.; Blackwelder, W.; Potdar, V.; Yadav, P.; Sarangi, V.; Aileni, V.K.; Kanungo, S.; Rai, S.; Reddy, P.; et al. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): Interim results of a randomised, double-blind, controlled, phase 3 trial. Lancet 2021, 398, 2173–2184. [Google Scholar] [CrossRef]
- Khobragade, A.; Bhate, S.; Ramaiah, V.; Deshpande, S.; Giri, K.; Phophle, H.; Supe, P.; Godara, I.; Revanna, R.; Nagarkar, R.; et al. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): The interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet 2022, 399, 1313–1321. [Google Scholar] [CrossRef]
- Clinical Trials Registry—India (CTRI) CTRI/2021/01/030416. Available online: https://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=51254&EncHid=&userName=CTRI/2021/01/030416 (accessed on 20 September 2023).
- Hager, K.J.; Pérez Marc, G.; Gobeil, P.; Diaz, R.S.; Heizer, G.; Llapur, C.; Makarkov, A.I.; Vasconcellos, E.; Pillet, S.; Riera, F.; et al. Efficacy and Safety of a Recombinant Plant-Based Adjuvanted COVID-19 Vaccine. N. Engl. J. Med. 2022, 386, 2084–2096. [Google Scholar] [CrossRef]
- Health Canada. Primary Vaccine Efficacy (PVE) Clinical Study Report. 2 December 2021. Available online: https://clinical-information.canada.ca/ci-rc-vu.pdf?file=m5/5351/cp-pro-covlp-021-phase-3-pve-acsr-addendum-03-red.pdf&id=254598 (accessed on 9 September 2023).
- Health Canada. Phase 3 Summary Vaccine Efficacy. Table 3.1. Available online: https://clinical-information.canada.ca/ci-rc-vu.pdf?file=m5/5351/phase-3-table-31-sum-vaccine-efficacy-clarifax-10-red.pdf&id=254598 (accessed on 9 September 2023).
- U.S. Food and Drug Administration. Center for Biologics Evaluation and Research. Development and Licensure of Vaccines to Prevent COVID-19. June 2020. Available online: https://www.fda.gov/media/139638/download (accessed on 17 October 2023).
- Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19) 2020 Interim Case Definition. Approved 5 August 2020. Available online: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2020-08-05/ (accessed on 17 October 2023).
- Menegale, F.; Manica, M.; Zardini, A.; Guzzetta, G.; Marziano, V.; d’Andrea, V.; Trentini, F.; Ajelli, M.; Poletti, P.; Merler, S. Evaluation of Waning of SARS-CoV-2 Vaccine-Induced Immunity: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e2310650. [Google Scholar] [CrossRef] [PubMed]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, S.P.; Connors, T.J.; Zhu, Y.; Baldwin, M.R.; Lin, W.H.; Wontakal, S.; Szabo, P.A.; Wells, S.B.; Dogra, P.; Gray, J.; et al. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat. Immunol. 2021, 22, 25–31. [Google Scholar] [CrossRef]
- Úbeda, M.; Maza, M.D.C.; Delgado, P.; Horndler, L.; Abia, D.; García-Bermejo, L.; Serrano-Villar, S.; Calvo, C.; Bastolla, U.; Sainz, T.; et al. Diversity of immune responses in children highly exposed to SARS-CoV-2. Front. Immunol. 2023, 14, 1105237. [Google Scholar] [CrossRef] [PubMed]
Trial Acronym or ID | Vaccine | Doses | COVID-19 Case | Start Date (dd/mm/yy) § | Mean Age, y | Age Group <18/≥65, % | Men, % | White/Black/Asian, % | Sero+, % | ≥1 Co-Existing Disease, % | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Criteria † | Judging Method ‡ | Count Day ∫ | ||||||||||
Vector | ||||||||||||
COV002 (low dose) [8,9] | ChAdOx1 nCoV-19 | 2 | ALT | COM | 15 | 31.05.20 | 42.0 | 0.0/7.4 | 40.0 | 92.0/0.5/5.1 | - | 35.9 |
COV002 (standard dose) [8,9] | ChAdOx1 nCoV-19 | 2 | ALT | COM | 15 | 09.06.20 | ||||||
COV003 [8,9] | ChAdOx1 nCoV-19 | 2 | ALT | COM | 15 | 23.06.20 | 37.0 | 0.0/3.1 | 45.5 | 68.3/9.2/2.3 | - | 36.5 |
COV005 [10,11] | ChAdOx1 nCoV-19 | 2 | ALT | COM | 15 | 24.06.20 | 30.0 | 0.0/2.1 | 56.5 | 12.8/70.3/- | 27.4 | 7.5 |
NCT04516746 [12,13] | ChAdOx1 nCoV-19 | 2 | ALT | COM | 15 | 28.08.20 | 51.0 | 0.0/22.4 | 55.6 | 79.0/8.3/4.4 | 2.8 | 60.0 |
ENSEMBLE [14,15] | Ad26.COV2.S | 1 | STD | COM | 14 | 21.09.20 | 52.0 | 0.0/33.5 | 54.9 | 58.7/19.4/3.3 | 9.6 | 40.8 |
ENSEMBLE2 [16] | Ad26.COV2.S | 2 | STD | COM | 14 | 16.11.20 | 52.0 | 0.0/35.9 | 52.6 | 76.4/8.2/8.7 | 11.1 | 41.4 |
NCT04526990 [17] | Ad5-nCoV | 1 | STD | COM | 28 | 22.09.20 | 39.2 | 0.0/10.1 | 66.0 | 21.9/0.0/46.4 | - | - |
mRNA | ||||||||||||
C4591001 [18,19,20] | BNT162b2 | 2 | STD | OBS | 7 | 27.07.20 | 49.7 | 1.7/20.0 | 50.9 | 82.0/9.6/4.3 | 3.2 | 44.0 |
C4591001 (12–15 years) [21,22] | BNT162b2 | 2 | STD | OBS | 7 | 15.10.20 | 13.6 | 100.0/0.0 | 51.0 | 85.5/4.8/6.3 | 4.1 | - |
C4591007 (5–11 years) [23,24] | BNT162b2 | 2 | STD | OBS | 7 | 07.06.21 | 8.2 | 100.0/0.0 | 52.1 | 78.9/6.5/6.0 | 8.7 | 20.5 |
C4591007 (2–4 years) [25,26] | BNT162b2 | 3 | STD | OBS | 7 | 21.06.21 | 3.0 | 100.0/0.0 | 49.9 | 79.6/4.9/7.4 | 13.0 | 12.8 |
C4591007 (0.5–1 years) [25,26] | BNT162b2 | 3 | STD | OBS | 7 | 21.06.21 | 1.3 | 100.0/0.0 | 49.5 | 78.9/3.7/7.4 | 7.5 | 4.7 |
COVE [27,28] | mRNA-1273 | 2 | STD | COM | 14 | 27.07.20 | 51.4 | 0.0/24.8 | 52.7 | 79.2/10.2/4.6 | 2.0 | 22.2 |
TeenCOVE [29,30,31] | mRNA-1273 | 2 | STD | OBS | 14 | 09.12.20 | 14.3 | 100.0/0.0 | 51.4 | 83.9/3.4/5.9 | 5.4 | - |
KidCOVE (6–11 years) [30,32] | mRNA-1273 | 2 | STD | OBS | 14 | 09.08.21 | 8.5 | 100.0/0.0 | 50.8 | 65.6/10.0/9.9 | 8.6 | 27.5 |
KidCOVE (2–5 years) [30,33] | mRNA-1273 | 2 | STD | OBS | 14 | 18.10.21 | 3.0 | 100.0/0.0 | 50.8 | 76.5/4.5/6.0 | 8.6 | 14.3 |
KidCOVE (0.5–1 years) [30,33] | mRNA-1273 | 2 | STD | OBS | 14 | 18.10.21 | 1.3 | 100.0/0.0 | 51.1 | 79.0/3.1/4.9 | 6.1 | 22.8 |
HERALD [34,35] | CVnCoV | 2 | STD | COM | 15 | 11.12.20 | 43.0 | 0.0/12.7 | 54.8 | 45.5/1.9/0.3 | 11.9 | - |
Protein subunit | ||||||||||||
2019nCoV-501 [36,37,38] | NVX-CoV2373 | 2 | STD | OBS | 7 | 17.08.20 | 32.0 | 0.0/4.2 | 57.4 | 3.5/95.3/1.2 | 30.2 | 23.0 |
2019nCoV-302 [39,40] | NVX-CoV2373 | 2 | STD | OBS | 7 | 28.09.20 | 55.0 | 0.0/27.2 | 51.6 | 94.3/0.4/3.1 | 4.2 | 44.7 |
PREVENT-19 [41,42] | NVX-CoV2373 | 2 | STD | OBS | 7 | 27.12.20 | 46.7 | 0.0/12.6 | 52.2 | 75.0/11.8/4.1 | 6.5 | 47.3 |
PREVENT-19 (12–17 years) [43] | NVX-CoV2373 | 2 | STD | OBS | 7 | 26.04.21 | 13.8 | 100.0/0.0 | 52.5 | 74.4/13.9/3.4 | 16.1 | - |
COVOVAX-Ped (12–17 years) [44,45] | SII-NVX-CoV2373 | 2 | STD | OBS | 14 | --.08.21 | 14.3 | 100.0/0.0 | 52.6 | 0.0/0.0/100.0 | 12.8 | - |
COVOVAX-Ped (2–11 years) [44,45] | SII-NVX-CoV2373 | 2 | STD | OBS | 14 | --.09.21 | 6.7 | 100.0/0.0 | 49.8 | 0.0/0.0/100.0 | 11.5 | - |
NCT04646590 [46] | ZF2001 | 3 | STD | COM | 7 | 12.12.20 | 36.8 | 0.0/6.4 | 67.5 | 0.3/0.0/81.2 | 0.0 | 13.2 |
SPECTRA [47] | SCB-2019 | 2 | ALT | COM | 14 | 24.03.21 | 32.1 | 0.0/1.4 | 53.1 | 20.2/9.9/45.5 | 48.5 | 18.1 |
VAT00008 [48,49] | CoV2 preS dTM-AS03 | 2 | ALT | COM | 14 | 19.10.21 | 36.1 | 0.0/6.0 | 58.4 | 0.6/44.3/39.7 | 75.0 | 32.2 |
Inactivated | ||||||||||||
NCT04510207 [50] | WIV04 | 2 | ALT | COM | 14 | 16.07.20 | 36.2 | 0.0/2.1 | 84.5 | -/-/- | 4.9 | - |
NCT04510207 [50] | HB02 | 2 | ALT | COM | 14 | 16.07.20 | 36.2 | 0.0/2.1 | 84.7 | -/-/- | 5.0 | - |
PROFISCOV [51,52] | CoronaVac | 2 | ALT | COM | 14 | 21.07.20 | 39.5 | 0.0/5.1 | 35.8 | 75.2/5.2/2.5 | 10.1 | 55.9 |
NCT04582344 [53,54] | CoronaVac | 2 | ALT | OBS | 14 | 15.09.20 | 45.0 | 0.0/0.0 | 57.8 | -/-/- | 0.0 | 60.9 |
NCT04641481 [55] | BBV152 | 2 | ALT | COM | 14 | 16.11.20 | 40.1 | 0.0/10.9 | 67.1 | 0.0/0.0/100.0 | 30.4 | - |
DNA | ||||||||||||
CTRI/2021/01/030416 [56,57] | ZyCoV-D | 3 | - | COM | 28 | 16.01.21 | 36.5 | 3.4/7.5 | 67.1 | 0.0/0.0/100.0 | 13.4 | 5.2 |
VLP | ||||||||||||
NCT04636697 [58,59,60] | CoVLP + AS03 | 2 | STD | COM | 7 | 15.03.21 | 32.8 | 0.0/0.5 | 49.1 | 88.8/7.0/1.2 | 14.8 | 14.4 |
Trial Acronym or ID | Vaccine | PP Population | mITT Population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Vaccine | Control | IRR [95% CI] | Vaccine | Control | IRR [95% CI] | ||||||
n/N † | Rate ‡ | n/N † | Rate ‡ | n/N † | Rate ‡ | n/N † | Rate ‡ | ||||
Vector | |||||||||||
COV002 (low dose) [8,9] | ChAdOx1 nCoV-19 | 3/1367 | 14.9 | 30/1374 | 150.2 | 0.10 [0.03; 0.33] | 108/10 013 | - | 227/9 999 | - | 0.47 [0.38; 0.60] |
COV002 (standard dose) [8,9] | ChAdOx1 nCoV-19 | 15/2377 | 56.4 | 38/2430 | 142.4 | 0.40 [0.22; 0.72] | |||||
COV003 [8,9] | ChAdOx1 nCoV-19 | 12/2063 | 56.2 | 33/2025 | 157.0 | 0.36 [0.19; 0.69] | |||||
COV005 [10,11] | ChAdOx1 nCoV-19 | 43/935 | 66.3 | 81/960 | 121.1 | 0.55 [0.37; 0.80] | 25/944 | 63.7 | 37/938 | 95.9 | 0.67 [0.38; 1.13] |
NCT04516746 [12,13] | ChAdOx1 nCoV-19 | 141/17,617 | 39.2 | 184/8528 | 118.8 | 0.33 [0.27; 0.41] | 374/21 583 | 59.7 | 370/10 797 | 129.3 | 0.46 [0.40; 0.53] |
ENSEMBLE [14,15] | Ad26.COV2.S | 114/19,514 | 36.6 | 345/19,544 | 111.4 | 0.33 [0.26; 0.41] | 192/19 744 | 60.3 | 429/19 822 | 135.2 | 0.45 [0.37; 0.53] |
ENSEMBLE2 [16] | Ad26.COV2.S | 12/6024 | 6.9 | 52/5615 | 32.6 | 0.21 [0.10; 0.40] | - | - | - | - | - |
NCT04526990 [17] | Ad5-nCoV | 45/10,660 | - | 105/10,590 | - | 0.43 [0.30; 0.60] | 169/17 899 | 84.2 ¶ | 336/17 878 | 169.7 ¶ | 0.50 [0.41; 0.60] |
Pooled § | 0.36 [0.30; 0.42] | 0.47 [0.43; 0.51] | |||||||||
mRNA | |||||||||||
C4591001 [18,19,20] | BNT162b2 | 8/17,411 | 3.6 | 162/17,511 | 72.9 | 0.05 [0.02; 0.10] | 50/21 314 | 12.5 | 275/21 258 | 69.1 | 0.18 [0.13; 0.24] |
C4591001 (12–15 years) [21,22] | BNT162b2 | 0.5/1002 | 3.2 | 16.5/973 | 112.2 | 0.03 [0.00; 0.48] | 3/1 120 | 11.7 | 35/1 119 | 140.0 | 0.08 [0.02; 0.27] |
C4591007 (5–11 years) [23,24] | BNT162b2 | 3/1273 | 9.3 | 16/637 | 100.6 | 0.09 [0.02; 0.32] | 3/1 463 | 6.2 | 17/719 | 72.3 | 0.09 [0.02; 0.30] |
C4591007 (2–4 years) [25,26] | BNT162b2 | 9/498 | 111.1 | 13/204 | 393.9 | 0.28 [0.11; 0.71] | 169/2 135 | 214.7 | 121/1 058 | 317.6 | 0.68 [0.53; 0.86] |
C4591007 (0.5–1 years) [25,26] | BNT162b2 | 4/296 | 95.2 | 8/147 | 400.0 | 0.24 [0.05; 0.90] | 123/1 272 | 236.5 | 78/631 | 298.9 | 0.79 [0.59; 1.06] |
COVE [27,28] | mRNA-1273 | 11/14,134 | 3.3 | 221/14,073 | 67.6 | 0.05 [0.02; 0.09] | 26/15 181 | - | 276/15 170 | - | 0.09 [0.06; 0.14] |
TeenCOVE [29,30,31] | mRNA-1273 | 2/2142 | 3.3 | 9/1045 | 32.4 | 0.10 [0.01; 0.49] | - | - | - | - | - |
KidCOVE (6–11 years) [30,32] | mRNA-1273 | 3/2644 | 5.0 | 4/853 | 21.7 | 0.23 [0.03; 1.37] | - | - | - | - | - |
KidCOVE (2–5 years) [30,33] | mRNA-1273 | 119/2594 | 175.0 | 61/858 | 277.0 | 0.63 [0.46; 0.88] | - | - | - | - | - |
KidCOVE (0.5–1 years) [30,33] | mRNA-1273 | 51/1511 | 138.2 | 34/513 | 279.8 | 0.49 [0.31; 0.79] | - | - | - | - | - |
HERALD [34,35] | CVnCoV | 83/12,851 | 47.8 | 145/12,211 | 92.4 | 0.52 [0.39; 0.69] | - | - | - | - | - |
Pooled § | 0.19 [0.10; 0.37] | 0.22 [0.10; 0.53] | |||||||||
Protein subunit | |||||||||||
2019nCoV-501 [36,37,38] | NVX-CoV2373 | 51/1408 | - | 96/1362 | - | 0.51 [0.37; 0.72] | 107/2 107 | - | 170/2 096 | - | 0.63 [0.50; 0.79] |
2019nCoV-302 [39,40] | NVX-CoV2373 | 10/7020 | 6.5 | 96/7019 | 63.4 | 0.10 [0.05; 0.20] | 42/7 569 | 18.5 | 141/7 570 | 62.6 | 0.30 [0.21; 0.42] |
PREVENT-19 [41,42] | NVX-CoV2373 | 14/17,312 | 3.3 | 63/8 140 | 34.0 | 0.10 [0.05; 0.17] | 121/19 714 | 21.2 | 141/9 868 | 51.9 | 0.41 [0.32; 0.52] |
PREVENT-19 (12–17 years) [43] | NVX-CoV2373 | 6/1205 | 2.9 | 14/594 | 14.2 | 0.21 [0.08; 0.53] | 11/1 484 | 3.0 | 18/748 | 9.9 | 0.30 [0.14; 0.64] |
COVOVAX-Ped (12–17 years) [44,45] | SII-NVX-CoV2373 | 2/346 | 14.7 ¶ | 2/114 | 44.9 ¶ | 0.33 [0.05; 2.33] | 3/346 | 19.2 ¶ | 2/114 | 38.9 ¶ | 0.49 [0.08; 2.94] |
COVOVAX-Ped (2–11 years) [44,45] | SII-NVX-CoV2373 | 1/345 | 7.4 ¶ | 1/115 | 22.2 ¶ | 0.33 [0.02; 5.31] | 1/345 | 6.4 ¶ | 1/115 | 19.2 ¶ | 0.33 [0.02; 5.31] |
NCT04646590 [46] | ZF2001 | 158/12,625 | - | 580/12,568 | - | 0.24 [0.20; 0.29] | 405/13 909 | - | 850/13 899 | - | 0.45 [0.40; 0.50] |
SPECTRA [47] | SCB-2019 | 52/5935 | 100.5 | 155/5806 | 306.3 | 0.33 [0.23; 0.46] | 63/12 153 | 58.9 | 185/11 983 | 176.9 | 0.33 [0.25; 0.45] |
VAT00008 [48,49] | CoV2 preS dTM-AS03 | 15/315 | 312.5 | 22/333 | 449.0 | 0.69 [0.33; 1.39] | 68/6 418 | - | 169/6 390 | - | 0.40 [0.30; 0.53] |
Pooled § | 0.26 [0.16; 0.42] | 0.41 [0.34; 0.49] | |||||||||
Inactivated | |||||||||||
NCT04510207 [50] | WIV04 | 26/12,743 | 12.1 | 95/12,737 | 44.7 | 0.27 [0.18; 0.42] | 69/13 428 | 20.3 | 138/13 425 | 40.7 | 0.50 [0.37; 0.66] |
NCT04510207 [50] | HB02 | 21/12,726 | 9.8 | 95/12,737 | 44.7 | 0.22 [0.14; 0.35] | 48/13 436 | 14.1 | 138/13 425 | 40.7 | 0.35 [0.25; 0.48] |
PROFISCOV [51,52] | CoronaVac | 67/3637 | 133.0 | 133/3587 | 268.0 | 0.50 [0.37; 0.66] | 126/6 195 | - | 252/6 201 | - | 0.49 [0.40; 0.61] |
NCT04582344 [53,54] | CoronaVac | 9/6559 | 31.7 | 32/3470 | 192.3 | 0.17 [0.08; 0.35] | 74/6 646 | 94.8 ¶ | 76/3 568 | 196.7 ¶ | 0.48 [0.35; 0.66] |
NCT04641481 [55] | BBV152 | 24/8 471 | - | 106/8502 | - | 0.22 [0.14; 0.35] | - | - | - | - | - |
Pooled § | 0.27 [0.18; 0.40] | 0.46 [0.40; 0.53] | |||||||||
DNA | |||||||||||
CTRI/2021/01/030416 [56,57] | ZyCoV-D | 20/12,350 | - | 61/12,320 | - | 0.33 [0.19; 0.52] | - | - | - | - | - |
VLP | |||||||||||
NCT04636697 [58,59,60] | CoVLP + AS03 | 32/8975 | 49.0 | 114/8033 | 200.0 | 0.24 [0.16; 0.36] | 156/12 074 | 89.4 | 258/12 067 | 163.6 | 0.55 [0.45; 0.67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goryaynov, S.; Gurova, O. Effect of Platform Type on Clinical Efficacy of SARS-CoV-2 Vaccines in Prime Vaccination Settings: A Systematic Review and Meta-Regression of Randomized Controlled Trials. Vaccines 2024, 12, 130. https://doi.org/10.3390/vaccines12020130
Goryaynov S, Gurova O. Effect of Platform Type on Clinical Efficacy of SARS-CoV-2 Vaccines in Prime Vaccination Settings: A Systematic Review and Meta-Regression of Randomized Controlled Trials. Vaccines. 2024; 12(2):130. https://doi.org/10.3390/vaccines12020130
Chicago/Turabian StyleGoryaynov, Sergey, and Olesya Gurova. 2024. "Effect of Platform Type on Clinical Efficacy of SARS-CoV-2 Vaccines in Prime Vaccination Settings: A Systematic Review and Meta-Regression of Randomized Controlled Trials" Vaccines 12, no. 2: 130. https://doi.org/10.3390/vaccines12020130
APA StyleGoryaynov, S., & Gurova, O. (2024). Effect of Platform Type on Clinical Efficacy of SARS-CoV-2 Vaccines in Prime Vaccination Settings: A Systematic Review and Meta-Regression of Randomized Controlled Trials. Vaccines, 12(2), 130. https://doi.org/10.3390/vaccines12020130