Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts—A Comprehensive Review
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Biology of Human Papillomavirus (HPV)
3.2. HPV and Host–Virus Interactions
3.3. Carcinogenic Cellular Transformation by HPV
3.4. Co-Infection with Other Viruses
3.4.1. Co-Infection of HPV with Human Immunodeficiency Virus (HIV)
3.4.2. Co-Infection of HPV and Epstein–Barr Virus (EBV)
3.4.3. Co-Infection of HPV with Herpes Simplex Virus (HSV)
3.4.4. Co-Infections of HPV and Bacteria (Microbiota)
Sr.No. | Co-Infection of HPV with Other Pathogens | Number of Samples/Patients | Methods of Detection | Clinical Implications | Cancer Incidence | References |
---|---|---|---|---|---|---|
1. | HIV/HPV co-infection | 56 | Antibody capture and chemiluminescent signal detection. | Atypical squamous cells | Anal squamous cell carcinoma (ASCC), low-grade squamous intraepithelial lesion | [66] |
2. | HIV-1, HTLV-1, and other Oncogenic viruses’ co-infection (EBV, HBV, HCV, HDV, and HPV) | --- | Systematic analyses | Neurocognitive disorders, Neuroinflammation, Neurodegeneration and cancer | HIV-1-associated cancers and adult T cell leukemia/lymphoma (ATL) | [67] |
3. | Co-infection with six pathogenic stis, HIV-1 and HSV 1 and 2 | 205 | Multiplex PCR STD direct flow chip assay and Hybrid Capture-2 assay. | Co-infection with ≥2 pathogens (52.7%) | Cervical cancer | [68] |
4. | HIV/HPV co-infection | 300 | Prospective cohort study. | HPV persistence −46% | Cervical intraepithelial neoplasia Grade 2 | [69] |
5. | HIV/HPV co-infection | 51 articles | Systematic review | Prevalence of HPV (41%), HPV52 (17%), and HPV58 (14%). | Anal and cervical cancer | [70] |
6. | ||||||
7. | HPV/EBV Co-infection | 166 | Type-specific PCR/nested-PCR and sequencing | 2 cases involved co-infection | Head and neck squamous cell carcinoma | [71] |
8. | Co-infection with HPV, EBV and Merkel Cell polyomavirus (MCPYV) | 144 | Quantitative real-time PCR | Infection with at least two viruses 21.1% | Oral irritation fibroma and Oral squamous cell carcinoma | [57] |
9. | HPV/EBV Co-infection | 63 | Genotyping using SPF10 PCR-DEIA-lipa25 system. | Co-infection (57.9%)EBV and HPV persistent infections | Oropharyngeal cancer (OPC) | [72] |
10. | HPV, EBV and Candida albicans co-infection | 30 | Histological analyses and PCR | EBV (73.3%), HPV (43.3%), and C. Albicans (23.3%). Oral leukoplakia with dysplastic changes. | Oral leukoplakia | [73] |
11. | HPV/EBV Co-infection | 63 | -- | Epstein–Barr virus (EBV) and oral HPV16/18 persistence | Oral carcinoma | [74] |
12. | HPV/EBV Co-infection | 90 | In situ hybridization with commercial EBER1 and HPV16/18 probes | 10% EBV/HPV co-infection | Nasopharyngeal carcinoma | [75] |
13. | HPV/EBV Co-infection | 84 | Microarray data analyses and cell line cultures | EBV and HPV co infection (27.4%) in tumor tissues and (4.8%) in normal tissues | Oral Squamous-Cell Carcinoma | [76] |
14. | HPV/EBV Co-infection | 108 | Real-time PCR | EBV (27.8%) HPV (13%) and Co-infection by EBV and HPV (5.6%) | Oral cancer | [77] |
15. | Co-infection of HPV with HSV and (Chlamydia trachomatis, Trichomonas vaginalis) | 300 | Polymerase chain reaction (PCR). | At least 3% different co-infections | Cervical cancer | [78] |
16. | EBV, HPV and HSV co-infections | 319 | Enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain | (EBV and HPV Co-infection) = (1.6%), (EBV and HSV-2 co-infection) = (14.4%), (HPV and HSV-2 co-infection) = (6.9%) and (EBV, HPV and HSV-2 tri-infection) = (16.6%). | Mono, di and tri- viral infections | [79] |
17. | HPV, HSV, and Chlamydia trachomatis co-infection | 318 | Polymerase Chain Reaction method and Restriction Fragment Length Polymorphism (RFLP) | The HPV prevalence (42%) C. Trachomatis (16%) HSV (3%) and co-infections HPV-C (4%) | Oral squamous cell carcinomas (OSCC) | [80] |
18. | HPV/HSV co-infection | 137 | Multi-site HPV testing and P18 Cohort Study assessments. | HPV and HSV co-infection 95% | Anal cancer | [81] |
19. | Infection by Cytomegalovirus, Epstein–Barr virus (EBV), HSV 1 and 2, 6, varicella zoster virus and HPV | 18 | Real-time polymerase chain reaction | EBV (33.3%) and Human herpesvirus 6 (16.7%) | Adult-onset recurrent respiratory papillomatosis (AORRP) | [82] |
20. | Co-infections of high-risk human papillomavirus (hrhpv) and important mycoplasmas including Mycoplasma hominis, M. Genitalium, Ureaplasma urealyticum and U. Parvum | 283 | Polymerase chain reaction (PCR) and real-time PCR (rt-PCR) | Hrhpv 12.7% and mycoplasmas 53.7% | Low-Grade Squamous Intraepithelial Cervical Lesions | [83] |
21. | HPV co-infection with stis and bacterial vaginosis (BV) | Real-time (RT) PCR assays | BV- and/or STI-positive > 50% | Cervical cancer. | [84] | |
22. | Mycoplasma hominis (Mh) and Ureaplasma urealyticum (Uu) HPV co-infection | 120 | Molecular analyses | HPV (83.9%). HPV and Uu co-infection higher in invasive cancer. | Cervical intraepithelial neoplasia and carcinoma | [85] |
23. | HPV co-infection with Ureaplasma spp., Mycoplasma spp., Chlamydia trachomatis, and Neisseria gonorrheae | 44 | PCR assays | HPV 75% and 22.73% co-infection with Ureaplasma spp. and 9.09% with Mycoplasma spp. | Cervical cancer | [86] |
3.5. Prospective Therapeutics Strategies against HPV-Associated Health Complications
3.6. Future Vaccination Focus for HPV-Associated Afflictions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tommasino, M. The biology of beta human papillomaviruses. Virus Res. 2017, 231, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Harden, M.E.; Munger, K. Human papillomavirus molecular biology. Mutat. Res./Rev. Mutat. Res. 2017, 772, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Shiraz, A.; Egawa, N.; Pelt, D.M.; Crawford, R.; Nicholas, A.K.; Romashova, V.; Sasieni, P.; Griffin, H.; Doorbar, J. Cervical cell lift: A novel triage method for the spatial mapping and grading of precancerous cervical lesions. EBioMedicine 2022, 82, 104157. [Google Scholar] [CrossRef] [PubMed]
- Haedicke, J.; Iftner, T. Human papillomaviruses and cancer. Radiother. Oncol. 2013, 108, 397–402. [Google Scholar] [CrossRef]
- CDC. Center for Disease Control and Prevention. Available online: https://www.cdc.gov/hpv/index.html#:~:text=Human%20Papillomavirus%20(HPV),-Related%20Pagestext=HPV%20is%20a%20common%20virus%20that%20can%20lead%20to%20certain,vaccine%20can%20prevent%20these%20cancers.text=HPV%20vaccination%20is%20very%20safe,and%20the (accessed on 25 November 2022).
- Schiffman, M.; Doorbar, J.; Wentzensen, N.; De Sanjosé, S.; Fakhry, C.; Monk, B.J.; Stanley, M.A.; Franceschi, S. Carcinogenic human papillomavirus infection. Nat. Rev. Dis. Prim. 2016, 2, 16086. [Google Scholar] [CrossRef]
- Lehtinen, M.; Pimenoff, V.N.; Nedjai, B.; Louvanto, K.; Verhoef, L.; Heideman, D.A.; El-Zein, M.; Widschwendter, M.; Dillner, J. Assessing the risk of cervical neoplasia in the post-HPV vaccination era. Int. J. Cancer 2022. [Google Scholar] [CrossRef]
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human papillomaviruses. Vaccine 2012, 30, F55–F70. [Google Scholar] [CrossRef]
- Lei, J. Prevention and Prognosis of Cervical Cancer: The Interplay of Human Papillomavirus, Vaccination and Screening. Ph.D. Thesis, Karolinska Institutet, Stockholm, Sweden, 2022. [Google Scholar]
- De Marco, F. Oxidative stress and HPV carcinogenesis. Viruses 2013, 5, 708–731. [Google Scholar] [CrossRef]
- Pinidis, P.; Tsikouras, P.; Iatrakis, G.; Zervoudis, S.; Koukouli, Z.; Bothou, A.; Galazios, G.; Vladareanu, S. Human papilloma virus’ life cycle and carcinogenesis. Maedica 2016, 11, 48. [Google Scholar]
- Doorbar, J.; Jenkins, D.; Stoler, M.H.; Bergeron, C. Biology of the Human Papillomavirus Life Cycle: The Basis for Understanding the Pathology of Precancer and Cancer. In Human Papillomavirus; Academic Press: Cambridge, MA, USA, 2020; pp. 67–83. [Google Scholar]
- Aksoy, P.; Gottschalk, E.Y.; Meneses, P.I. HPV entry into cells. Mutat. Res. /Rev. Mutat. Res. 2017, 772, 13–22. [Google Scholar] [CrossRef]
- Tommasino, M. The human papillomavirus family and its role in carcinogenesis. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2014; Volume 26, pp. 13–21. [Google Scholar]
- Cosper, P.F.; Bradley, S.; Luo, Q.; Kimple, R.J. Biology of HPV Mediated Carcinogenesis and Tumor Progression. In Seminars in Radiation Oncology; WB Saunders: Philadelphia, PA, USA, 2021; Volume 31, pp. 265–273. [Google Scholar]
- Bienkowska-Haba, M.; Luszczek, W.; Myers, J.E.; Keiffer, T.R.; DiGiuseppe, S.; Polk, P.; Bodily, J.M.; Scott, R.S.; Sapp, M. A new cell culture model to genetically dissect the complete human papillomavirus life cycle. PLoS Pathog. 2018, 14, e1006846. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.S.; Stepp, W.H.; Stamos, J.D.; McBride, A.A. Host cell restriction factors that limit transcription and replication of human papillomavirus. Virus Res. 2017, 231, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Wallace, N.A. mSphere of Influence: The Value of Simplicity in Experiments and Solidarity among Lab Members. Msphere 2019, 4, e00172-19. [Google Scholar] [CrossRef]
- Spurgeon, M.E.; Lambert, P.F. Human papillomavirus and the stroma: Bidirectional crosstalk during the virus life cycle and carcinogenesis. Viruses 2017, 9, 219. [Google Scholar] [CrossRef] [PubMed]
- Campos, S.K. Subcellular trafficking of the papillomavirus genome during initial infection: The remarkable abilities of minor capsid protein L2. Viruses 2017, 9, 370. [Google Scholar] [CrossRef]
- Kajitani, N.; Satsuka, A.; Kawate, A.; Sakai, H. Productive lifecycle of human papillomaviruses that depends upon squamous epithelial differentiation. Front. Microbiol. 2012, 3, 152. [Google Scholar] [CrossRef] [PubMed]
- Della Fera, A.N.; Warburton, A.; Coursey, T.L.; Khurana, S.; McBride, A.A. Persistent human papillomavirus infection. Viruses 2021, 13, 321. [Google Scholar] [CrossRef]
- Kuguyo, O.; Dube Mandishora, R.S.; Thomford, N.E.; Makunike-Mutasa, R.; Nhachi, C.F.; Matimba, A.; Dandara, C. High-risk HPV genotypes in Zimbabwean women with cervical cancer: Comparative analyses between HIV-negative and HIV-positive women. PLoS ONE 2021, 16, e0257324. [Google Scholar] [CrossRef]
- Giuliano, A.R.; Nyitray, A.G.; Kreimer, A.R.; Pierce Campbell, C.M.; Goodman, M.T.; Sudenga, S.L.; Monsonego, J.; Franceschi, S. E UROGIN 2014 roadmap: Differences in human papillomavirus infection natural history, transmission and human papillomavirus-related cancer incidence by gender and anatomic site of infection. Int. J. Cancer 2014, 136, 2752–2760. [Google Scholar]
- Leto, M.D.; Santos Júnior, G.F.; Porro, A.M.; Tomimori, J. Human papillomavirus infection: Etiopathogenesis, molecular biology and clinical manifestations. An. Bras. De Dermatol. 2011, 86, 306–317. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, M.; Sun, J.; Li, R.; Li, M.; Wang, J.; Zhang, D.; Xu, A. Human papillomavirus infection and vaccination: Awareness and knowledge of HPV and acceptability of HPV vaccine among mothers of teenage daughters in Weihai, Shandong, China. PLoS ONE 2016, 11, e0146741. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, S.; Syrjänen, S.; Dominiak-Felden, G.; Brotons, M.; Castellsagué, X. Estimation of the epidemiological burden of human papillomavirus-related cancers and non-malignant diseases in men in Europe: A review. BMC Cancer 2012, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zheng, Z.M. Human papillomavirus type 16 circular RNA is barely detectable for the claimed biological activity. Mbio 2022, 13, e03594-21. [Google Scholar] [CrossRef]
- Rosales, R.; Rosales, C. Immune therapy for human papillomaviruses-related cancers. World J. Clin. Oncol. 2014, 5, 1002. [Google Scholar] [CrossRef]
- De Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, M.; Castle, P.E.; Jeronimo, J.; Rodriguez, A.C.; Wacholder, S. Human papillomavirus and cervical cancer. Lancet 2013, 382, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Hoppe-Seyler, K.; Bossler, F.; Lohrey, C.; Bulkescher, J.; Rösl, F.; Jansen, L.; Mayer, A.; Vaupel, P.; Dürst, M.; Hoppe-Seyler, F. Induction of dormancy in hypoxic human papillomavirus-positive cancer cells. Proc. Natl. Acad. Sci. USA 2017, 114, E990–E998. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Pan, W.; Jin, L.; Huang, W.; Li, Y.; Wu, D.; Gao, C.; Ma, D.; Liao, S. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Lett. 2020, 471, 88–102. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin-Drubin, M.E. Human papillomaviruses and non-melanoma skin cancer. In Seminars in Oncology; WB Saunders: Philadelphia, PA, USA, 2015; Volume 42, pp. 284–290. [Google Scholar]
- Bansal, A.; Singh, M.P.; Rai, B. Human papillomavirus-associated cancers: A growing global problem. Int. J. Appl. Basic Med. Res. 2016, 6, 84. [Google Scholar]
- Alkhilaiwi, F.; Yuan, H. Detection of HPV RNA in Extracellular Vesicles from Neuroendocrine Cervical Cancer Cells. Viruses 2022, 14, 2226. [Google Scholar] [CrossRef]
- Viens, L.J.; Henley, S.J.; Watson, M.; Markowitz, L.E.; Thomas, C.C.; DThompson, T.; Razzaghi, H.; Saraiya, M. Human papillomavirus–associated cancers—United States. Morb. Mortal. Wkly. Rep. 2016, 65, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, C.L.; Bertoli, H.K.; Sand, F.L.; Kjær, A.K.; Thomsen, L.T.; Kjær, S.K. The prognostic significance of HPV, p16, and p53 protein expression in vaginal cancer: A systematic review. Acta Obstet. Et Gynecol. Scand. 2021, 100, 2144–2156. [Google Scholar] [CrossRef]
- Soto, D.; Song, C.; McLaughlin-Drubin, M.E. Epigenetic alterations in human papillomavirus-associated cancers. Viruses 2017, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Ploner, A.; Elfström, K.M.; Wang, J.; Roth, A.; Fang, F.; Sundström, K.; Dillner, J.; Sparén, P. HPV vaccination and the risk of invasive cervical cancer. N. Engl. J. Med. 1340, 2020, 383–1348. [Google Scholar]
- WHO. World Health Organization (WHO). Available online: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer#:~:text=HPV%20and%20cervical%20Cancer,some%20may%20be%20repeatedly%20infected (accessed on 20 November 2022).
- Wang, M.B.; Liu, I.Y.; Gornbein, J.A.; Nguyen, C.T. HPV-positive oropharyngeal carcinoma: A systematic review of treatment and prognosis. Otolaryngol.-Head Neck Surg. 2015, 153, 758–769. [Google Scholar] [CrossRef]
- Lacey, C.J. HPV vaccination in HIV infection. Papillomavirus Res. 2019, 8, 100174. [Google Scholar] [CrossRef]
- Cachay, E.R.; Mathews, W.C. Human papillomavirus, anal cancer, and screening considerations among HIV-infected individuals. AIDS Rev. 2013, 15, 122–133. [Google Scholar] [PubMed]
- Boscolo-Rizzo, P.; Pawlita, M.; Holzinger, D. From HPV-positive towards HPV-driven oropharyngeal squamous cell carcinomas. Cancer Treat. Rev. 2016, 42, 24–29. [Google Scholar] [CrossRef]
- Hermansson, R.S.; Olovsson, M.; Hoxell, E.; Lindström, A.K. HPV prevalence and HPV-related dysplasia in elderly women. PLoS ONE 2018, 13, e0189300. [Google Scholar] [CrossRef]
- Wallace, N.A. Cutaneous Human Papillomaviruses as Co-Factors in Non-Melanoma Skin Cancer. MANHATTAN, Report Publihed by Defence Technical Informtion System. 2020. Available online: https://apps.dtic.mil/sti/pdfs/AD1114590.pdf (accessed on 20 November 2022).
- de Sanjose, S.; Brotons, M.; Pavon, M.A. The natural history of human papillomavirus infection. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 47, 2–13. [Google Scholar] [CrossRef]
- Castellsagué, X.; Muñoz, N.; Pitisuttithum, P.; Ferris, D.; Monsonego, J.; Ault, K.; Luna, J.; Myers, E.; Mallary, S.; Bautista, O.M.; et al. End-of-study safety, immunogenicity, and efficacy of quadrivalent HPV (types 6, 11, 16, 18) recombinant vaccine in adult women 24–45 years of age. Br. J. Cancer 2011, 105, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Jones, S. HPV Biology in VIN: Viral Biomarkers to Predict Response to Treatment. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2016. [Google Scholar]
- Berman, T.A.; Schiller, J.T. Human papillomavirus in cervical cancer and oropharyngeal cancer: One cause, two diseases. Cancer 2017, 123, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Khodabandehlou, N.; Mostafaei, S.; Etemadi, A.; Ghasemi, A.; Payandeh, M.; Hadifar, S.; Norooznezhad, A.H.; Kazemnejad, A.; Moghoofei, M. Human papilloma virus and breast cancer: The role of inflammation and viral expressed proteins. BMC Cancer 2019, 19, 61. [Google Scholar] [CrossRef]
- Badial, R.M.; Dias, M.C.; Stuqui, B.; dos Santos Melli, P.P.; Quintana, S.M.; do Bonfim, C.M.; Cordeiro, J.A.; Rabachini, T.; de Freitas Calmon, M.; Provazzi, P.J.; et al. Detection and genotyping of human papillomavirus (HPV) in HIV-infected women and its relationship with HPV/HIV co-infection. Medicine 2018, 97, e9545. [Google Scholar] [CrossRef] [PubMed]
- Pérez-González, A.; Cachay, E.; Ocampo, A.; Poveda, E. Update on the Epidemiological Features and Clinical Implications of Human Papillomavirus Infection (HPV) and Human Immunodeficiency Virus (HIV) Coinfection. Microorganisms 2022, 10, 1047. [Google Scholar] [CrossRef]
- Gurmu, E.D.; Bole, B.K.; Koya, P.R. Mathematical model for co-infection of HPV with cervical cancer and HIV with AIDS diseases. Int. J. Sci. Res. Math. Stat. Sci. 2020, 7, 107–121. [Google Scholar]
- Drop, B.; Strycharz-Dudziak, M.; Kliszczewska, E.; Polz-Dacewicz, M. Coinfection with Epstein–barr Virus (EBV), Human Papilloma Virus (HPV) and Polyoma BK Virus (BKPyV) in laryngeal, oropharyngeal and oral cavity cancer. Int. J. Mol. Sci. 2017, 18, 2752. [Google Scholar] [CrossRef] [PubMed]
- Saber Amoli, S.; Hasanzadeh, A.; Sadeghi, F.; Chehrazi, M.; Seyedmajidi, M.; Zebardast, A.; Yahyapour, Y. Prevalence of Co-infection by Human Papillomavirus, Epstein-Barr Virus and Merkel Cell Polyomavirus in Iranian Oral Cavity Cancer and Pre-malignant Lesions. Int. J. Mol. Cell. Med. 2022, 11, 64–77. [Google Scholar]
- Shi, Y.; Peng, S.L.; Yang, L.F.; Chen, X.; Tao, Y.G.; Cao, Y. Co-infection of Epstein-Barr virus and human papillomavirus in human tumorigenesis. Chin. J. Cancer 2016, 35, 16. [Google Scholar] [CrossRef]
- Bahena-Román, M.; Sánchez-Alemán, M.A.; Contreras-Ochoa, C.O.; Lagunas-Martínez, A.; Olamendi-Portugal, M.; López-Estrada, G.; Delgado-Romero, K.; Guzmán-Olea, E.; Madrid-Marina, V.; Torres-Poveda, K. Prevalence of active infection by herpes simplex virus type 2 in patients with high-risk human papillomavirus infection. J. Med. Virol. 1246, 2020, 92–1252. [Google Scholar] [CrossRef]
- Bakir, A.; Alacam, S.; Guney, M.; Yavuz, M.T. Investigation of herpes simplex virus type 2 seroprevalence in all age groups. Ann. Med. Res. 2022, 29, 346. [Google Scholar]
- Francis, A.Y.; Oksana, D.; Timmy, D.E.; Richard, A.H.; Mohammed, S.M. Co-infection prevalence of herpes simplex virus types 1 and 2 with human papillomavirus and associated risk factors among asymptomatic women in Ghana. Int. J. Infect. Dis. Ther. 2018, 3, 45–51. [Google Scholar] [CrossRef]
- Dworzański, J.; Drop, B.; Kliszczewska, E.; Strycharz-Dudziak, M.; Polz-Dacewicz, M. Prevalence of Epstein-Barr virus, human papillomavirus, cytomegalovirus and herpes simplex virus type 1 in patients with diabetes mellitus type 2 in south-eastern Poland. PLoS ONE 2019, 14, e0222607. [Google Scholar] [CrossRef] [PubMed]
- Robayo, D.A.; Erira, H.A.; Jaimes, F.O.; Torres, A.M.; Galindo, A.I. Oropharyngeal squamous cell carcinoma: Human papilloma virus coinfection with Streptococcus anginosus. Braz. Dent. J. 2019, 30, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, T.T.; Malaguti, N.; Damke, E.; Uchimura, N.S.; Gimenes, F.; Souza, R.P.; da Silva, V.R.; Consolaro, M.E. Association of human papillomavirus and bacterial vaginosis with increased risk of high-grade squamous intraepithelial cervical lesions. Int. J. Gynecol. Cancer 2019, 29. [Google Scholar] [CrossRef]
- Gilbert, D.C.; Wakeham, K.; Langley, R.E.; Vale, C.L. Increased risk of second cancers at sites associated with HPV after a prior HPV-associated malignancy, a systematic review and meta-analysis. Br. J. Cancer 2019, 120, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Kakar, A.; Bakshi, P.; Tripathi, S.; Gogia, A. Anal cytological abnormalities in human immunodeficiency virus-infected men and prevalence of high-risk human papillomavirus co-infection. Curr. Med. Res. Pract. 2022, 12, 152. [Google Scholar] [CrossRef]
- Mulherkar, T.H.; Gómez, D.J.; Sandel, G.; Jain, P. Co-Infection and Cancer: Host–Pathogen Interaction between Dendritic Cells and HIV-1, HTLV-1, and Other Oncogenic Viruses. Viruses 2022, 14, 2037. [Google Scholar] [CrossRef]
- Taku, O.; Brink, A.; Meiring, T.L.; Phohlo, K.; Businge, C.B.; Mbulawa, Z.Z.; Williamson, A.L. Detection of sexually transmitted pathogens and co-infection with human papillomavirus in women residing in rural Eastern Cape, South Africa. PeerJ 2021, 9, e10793. [Google Scholar] [CrossRef]
- Luckett, R.; Painter, H.; Hacker, M.R.; Simon, B.; Seiphetlheng, A.; Erlinger, A.; Eakin, C.; Moyo, S.; Kyokunda, L.T.; Esselen, K.; et al. Persistence and clearance of high-risk human papillomavirus and cervical dysplasia at 1 year in women living with human immunodeficiency virus: A prospective cohort study. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 1986–1996. [Google Scholar] [CrossRef]
- Paraná, V.C.; Souza Santos, D.; Barreto de Souza Silva, D.I.; Lima, G.C.; Gois, L.L.; Santos, L.A. Anal and cervical human papillomavirus genotypes in women co-infected with human immunodeficiency virus: A systematic review. Int. J. STD AIDS 2022, 33, 530–543. [Google Scholar] [CrossRef]
- Makvandi, M.; Jalilian, S.; Faghihloo, E.; Khanizadeh, S.; Ramezani, A.; Bagheri, S.; Mirzaei, H. Prevalence of Human Papillomavirus and Co-Infection with Epstein-Barr Virus in Oral and Oropharyngeal Squamous Cell Carcinomas. Asian Pac. J. Cancer Prev. 2022, 23, 3931–3937. [Google Scholar] [CrossRef] [PubMed]
- Dickey, B.L.; Giuliano, A.R.; Sirak, B.; Abrahamsen, M.; Lazcano-Ponce, E.; Villa, L.L.; Coghill, A.E. Co-infection with Epstein-Barr virus impacts oral HPV persistence. Cancer Res. 2022, 82, 2264. [Google Scholar]
- Erira, A.T.; Navarro, A.F.; Robayo, D.A. Human papillomavirus, Epstein–Barr virus, and Candida albicans co-infection in oral leukoplakia with different degrees of dysplasia. Clin. Exp. Dent. Res. 2021, 7, 914–923. [Google Scholar] [CrossRef]
- Dickey, B.L.; Giuliano, A.R.; Sirak, B.; Abrahamsen, M.; Lazcano-Ponce, E.; Villa, L.L.; Coghill, A.E. Control of Epstein-Barr virus (EBV) in the oral cavity is associated with persistence of oral HPV 16/18 among men from the HPV Infection i in Men (HIM) Study. J. Infect. Dis. 2022. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Xu, Y.; Ma, N.; Midorikawa, K.; Oikawa, S.; Kobayashi, H.; Nakamura, S.; Ishinaga, H.; Zhang, Z.; Huang, G.; et al. Influence of Epstein–Barr virus and human papillomavirus infection on macrophage migration inhibitory factor and macrophage polarization in nasopharyngea carcinoma. BMC Cancer 2021, 21, 929. [Google Scholar] [CrossRef]
- Heawchaiyaphum, C.; Ekalaksananan, T.; Patarapadungkit, N.; Worawichawong, S.; Pientong, C. Epstein-Barr Virus Infection Alone or Jointly with Human Papillomavirus Associates with Down-Regulation of miR-145 in Oral Squamous-Cell Carcinoma. Microorganisms 2021, 9, 2496. [Google Scholar] [CrossRef]
- Vanshika, S.; Preeti, A.; Sumaira, Q.; Vijay, K.; Shikha, T.; Shivanjali, R.; Shankar, S.U.; Mati, G.M. Incidence OF HPV and EBV in oral cancer and their clinico-pathological correlation–a pilot study of 108 cases. J. Oral Biol. Craniofacial Res. 2021, 11, 180–184. [Google Scholar] [CrossRef]
- Champin, D.; Tarazona-Castro, Y.; Martins-Luna, J.; Carrillo-Ng, H.; Becerra-Goicochea, L.; Domiguez, G.; Pinillos-Vilca, L.; Alvitres-Arana, J.; Tinco-Valdez, C.; Aguilar-Luis, M.A.; et al. Detection of Human papillomavirus and Co-infection With Other Sexually Transmitted Pathogens in Northern Peru. Int. J. Infect. Dis. 2022, 116, S86. [Google Scholar] [CrossRef]
- Okoye, J.O.; Ngokere, A.A.; Onyenekwe, C.C.; Omotuyi, O.; Dada, D.I. Epstein-Barr virus, human papillomavirus and herpes simplex virus 2 co-presence severely dysregulates miRNA expression. Afr. J. Lab. Med. 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Mosmann, J.P.; Talavera, A.D.; Criscuolo, M.I.; Venezuela, R.F.; Kiguen, A.X.; Ferreyra de Prato, R.; López de Blanc, S.; Ré, V.E.; Cuffini, C.G. Human Papillomavirus, Chlamydia trachomatis and Herpes Simplex Virus; Universidad Nacional de Colombia: Bogotá, Colombia, 2018. [Google Scholar]
- LoSchiavo, C.; D’Avanzo, P.A.; Emmert, C.; Krause, K.D.; Ompad, D.C.; Kapadia, F.; Halkitis, P.N. Predictors of Anal High-Risk HPV Infection Across Time in a Cohort of Young Adult Sexual Minority Men and Transgender Women; SSRN: Rochester, NY, USA, 2022. [Google Scholar]
- Formánek, M.; Formánková, D.; Hurník, P.; Vrtková, A.; Komínek, P. Epstein-Barr virus may contribute to the pathogenesis of adult-onset recurrent respiratory papillomatosis: A preliminary study. Clin. Otolaryngol. 2021, 46, 373–379. [Google Scholar] [CrossRef]
- Noma, I.H.; Shinobu-Mesquita, C.S.; Suehiro, T.T.; Morelli, F.; De Souza, M.V.; Damke, E.; da Silva, V.R.; Consolaro, M.E. Association of Righ-Risk Human Papillomavirus and Ureaplasma parvum Co-Infections with Increased Risk of Low-Grade Squamous Intraepithelial Cervical Lesions. Asian Pac. J. Cancer Prev. APJCP 2021, 22, 1239. [Google Scholar] [CrossRef] [PubMed]
- Fracella, M.; Oliveto, G.; Sorrentino, L.; Roberto, P.; Cinti, L.; Viscido, A.; Di Lella, F.M.; Giuffrè, F.; Gentile, M.; Pietropaolo, V.; et al. Common Microbial Genital Infections and Their Impact on the Innate Immune Response to HPV in Cervical Cells. Pathogens 2022, 11, 1361. [Google Scholar] [CrossRef] [PubMed]
- Adamopoulou, M.; Avgoustidis, D.; Voyiatjaki, C.; Beloukas, A.; Yapijakis, C.; Tsiambas, E.; Charvalos, E. Impact of combined mycoplasmataceae and HPV co-infection on females with cervical intraepithelial neoplasia and carcinoma. Off. J. Balk. Union Oncol. 1313, 2021, 26–1319. [Google Scholar]
- Tantengco, O.A.; Nakura, Y.; Yoshimura, M.; Nishiumi, F.; Llamas-Clark, E.F.; Yanagihara, I. Co-infection of human papillomavirus and other sexually transmitted bacteria in cervical cancer patients in the Philippines. Gynecol. Oncol. Rep. 2022, 40, 100943. [Google Scholar] [CrossRef]
- Schiller, J.T.; Castellsagué, X.; Garland, S.M. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 2020, 30, F123–F138. [Google Scholar] [CrossRef] [PubMed]
- Farmer, E.; Cheng, M.A.; Hung, C.F.; Wu, T.C. Vaccination strategies for the control and treatment of HPV infection and HPV-associated cancer. In Viruses and Human Cancer; Springer: Berlin/Heidelberg, Germany, 2021; pp. 157–195. [Google Scholar] [CrossRef]
- NIH. National Cancer Institute. 2022. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/hpv-vaccine-fact-sheet#:~:text=Three%20vaccines%20that%20prevent%20infection,%2C%20Gardasil%209%2C%20and%20Cervarix (accessed on 25 November 2022).
- Gohar, A.; Ali, A.A.; Elkhatib, W.F.; El-Sayyad, G.S.; Elfadil, D.; Noreddin, A.M. Combination therapy between prophylactic and therapeutic human papillomavirus (HPV) vaccines with special emphasis on implementation of nanotechnology. Microb. Pathog. 2022, 171, 105747. [Google Scholar] [CrossRef] [PubMed]
- Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 2021, 19, 1–27. [Google Scholar] [CrossRef]
- Franconi, R.; Massa, S.; Paolini, F.; Vici, P.; Venuti, A. Plant-derived natural compounds in genetic vaccination and therapy for HPV-associated cancers. Cancers 2020, 12, 3101. [Google Scholar] [CrossRef]
- Lin, K.; Doolan, K.; Hung, C.F.; Wu, T.C. Perspectives for preventive and therapeutic HPV vaccines. J. Formos. Med. Assoc. 2010, 109, 4–24. [Google Scholar] [CrossRef]
- Venuti, A.; Curzio, G.; Mariani, L.; Paolini, F. Immunotherapy of HPV-associated cancer: DNA/plant-derived vaccines and new orthotopic mouse models. Cancer Immunol. Immunother. 2015, 64, 1329–1338. [Google Scholar] [CrossRef]
- Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules 2021, 26, 1109. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Oliveira, P.; Otero, P.; Pereira, A.G.; Chamorro, F.; Carpena, M.; Echave, J.; Fraga-Corral, M.; Simal-Gandara, J.; Prieto, M.A. Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals 2021, 14, 157. [Google Scholar] [CrossRef] [PubMed]
- Salaria, D.; Rolta, R.; Mehta, J.; Awofisayo, O.; Fadare, O.A.; Kaur, B.; Kumar, B.; Araujo da Costa, R.; Chandel, S.R.; Kaushik, N.; et al. Phytoconstituents of traditional Himalayan Herbs as potential inhibitors of Human Papillomavirus (HPV-18) for cervical cancer treatment: An In silico Approach. PLoS ONE 2022, 17, e0265420. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.; Sah, R.; Muhammad, K.; Waheed, Y. Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts—A Comprehensive Review. Vaccines 2023, 11, 102. https://doi.org/10.3390/vaccines11010102
Malik S, Sah R, Muhammad K, Waheed Y. Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts—A Comprehensive Review. Vaccines. 2023; 11(1):102. https://doi.org/10.3390/vaccines11010102
Chicago/Turabian StyleMalik, Shiza, Ranjit Sah, Khalid Muhammad, and Yasir Waheed. 2023. "Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts—A Comprehensive Review" Vaccines 11, no. 1: 102. https://doi.org/10.3390/vaccines11010102
APA StyleMalik, S., Sah, R., Muhammad, K., & Waheed, Y. (2023). Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts—A Comprehensive Review. Vaccines, 11(1), 102. https://doi.org/10.3390/vaccines11010102