Optimization of Sonotrode Ultrasonic-Assisted Extraction of Proanthocyanidins from Brewers’ Spent Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals
2.3. Experimental Design
2.4. Extraction of Proanthocyanidins from Brewers’ Spent Grains by Sonotrode Ultrasonic Extraction
2.5. Conventional Extraction of Proanthocyanidins
2.6. Determination of Proanthocyanidins in Brewing Spent Grain Extracts by HPLC-FLD-MS Analysis
3. Results and Discussion
3.1. Determination of Proanthocyanidin Compounds in Brewers’ Spent Grains
3.2. Fitting the Model
3.2.1. Analysis of Response Surfaces
3.2.2. Optimization of Sonotrode US Parameters
3.3. Comparison between Conventional and Established Sonotrode Extraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for brewing: characteristic changes during malting, brewing and applications of its by-products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 318–328. [Google Scholar] [CrossRef]
- Hajji, T.; Mansouri, S.; Vecino-Bello, X.; Cruz-Freire, J.M.; Rezgui, S.; Ferchichi, A. Identification and characterization of phenolic compounds extracted from barley husks by LC-MS and antioxidant activity in vitro. J. Cereal Sci. 2018, 81, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Longvah, T. Chapter 2: Barley. In Whole Grains: Processing, Product Development and Nutritional Aspects; Mir, S.A., Manickavasagan, A., Shah, M.A., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 25–49. [Google Scholar]
- Madigan, D.; McMurrough, I.; Smyth, M.R. Determination of proanthocyanidins and catechins in beer and barley by high-performance liquid chromatography with dual-electrode electrochemical detection. The Anal. 1994, 119, 863–868. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Verardo, V.; Berardinelli, A.; Marconi, E.; Caboni, M.F. A chemometric approach to determine the phenolic compounds in different barley samples by two different stationary phases: A comparison between C18 and pentafluorophenyl core shell columns. J. Chromatogr. A 2014, 1355, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Gebhardt, S.; Prior, R.L. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J. Nutr. 2004, 134, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Holtekjolen, A.K.; Kinitz, C.; Knutsen, S.H. Flavanol and bound phenolic acid contents in different barley varieties. J. Agric. Food Chem. 2006, 54, 2253–2260. [Google Scholar] [CrossRef] [PubMed]
- Verardo, V.; Cevoli, C.; Pasini, F.; Gómez-Caravaca, A.M.; Marconi, E.; Fabbri, A.; Caboni, M.F. Analysis of oligomer proanthocyanidins in different barley genotypes using high-performance liquid chromatography − fluorescence detection − mass spectrometry and near-infrared methodologies. J. Agric. Food Chem. 2015, 63, 4130–4137. [Google Scholar] [CrossRef] [PubMed]
- Verardo, V.; Gómez-Caravaca, A.M.; Marconi, E.; Caboni, M.F. Air classification of barley flours to produce phenolic enriched ingredients: Comparative study among MEKC-UV, RP-HPLC-DAD-MS and spectrophotometric determinations. LWT-Food Sci. Technol. 2011, 44, 1555–1561. [Google Scholar] [CrossRef]
- Li, H.J.; Deinzer, M.L. Proanthocyanidins in Hops. In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Accademic Press: Orlando, FL, USA, 2009; pp. 333–348. [Google Scholar]
- Yamamoto, H.; Nagano, C.; Takeuchi, F.; Shibata, J.; Tagashira, M.; Ohtake, Y. Extraction of polyphenols in hop bract part discharged from beer breweries. J. Chem. Eng. Jpn. 2006, 39, 956–962. [Google Scholar] [CrossRef]
- Mayer, R.; Stecher, G.; Wuerzner, R.; Silva, R.C.; Sultana, T.; Trojer, L.; Feuerstein, I.; Krieg, C.; Abel, G.; Popp, M.; et al. Proanthocyanidins: Target compounds as antibacterial agents. J. Agric. Food Chem. 2008, 56, 6959–6966. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xie, H.; Wang, Y.; Wei, X. A-Type proanthocyanidins from lychee seeds and their antioxidant and antiviral activities. J. Agric. Food Chem. 2010, 58, 11667–11672. [Google Scholar] [CrossRef] [PubMed]
- Nandakumar, V.; Singh, T.; Katiyar, S.K. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett. 2008, 269, 378–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatsuno, T.; Jinno, M.; Arima, Y.; Kawabata, T.; Hasegawa, T.; Yahagi, N.; Takano, F.; Ohta, T. Anti-inflammatory and anti-melanogenic proanthocyanidin oligomers from peanut skin. Biol. Pharm. Bull. 2012, 35, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Martín-Fernández, B.; de las Heras, N.; Valero-Muñoz, M.; Ballesteros, S.; Yao, Y.Z.; Stanton, P.G.; Fuller, P.J.; Lahera, V. Beneficial effects of proanthocyanidins in the cardiac alterations induced by aldosterone in rat heart through mineralocorticoid receptor blockade. PLoS ONE 2014, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xian, D.; Xiong, X.; Lai, R.; Song, J.; Zhong, J. Proanthocyanidins against oxidative stress: From molecular mechanisms to clinical applications. Biomed Res. Int. 2018, 8584136. [Google Scholar] [CrossRef] [PubMed]
- Zuorro, A.; Iannone, A.; Lavecchia, R. Water–organic solvent extraction of phenolic antioxidants from brewers’ spent grain. Processes 2019, 7, 126. [Google Scholar] [CrossRef]
- Meneses, N.M.G.; Martins, S.; Teixeira, J.A.; Mussatto, S.I. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep. Purif. Technol. 2013, 108, 152–158. [Google Scholar] [CrossRef]
- Heng, M.Y.; Tan, S.W.; Yong, J.W.H.; Ong, E.S. Trends in analytical chemistry emerging green technologies for the chemical standardization of botanicals and herbal preparations. Trends Analyt. Chem. 2013, 50, 1–10. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of high added value component from food wastes: Conventional, emerging technologies and commercialized applications. Trend Food Sci. Tech. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R.L. Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J. Agric. Food Chem. 2003, 51, 7513–7521. [Google Scholar] [CrossRef]
- Hellström, J.K.; Törrönen, A.R.; Mattila, P.H. proanthocyanidins in common food products of plant origin. J. Agric. Food Chem. 2009, 57, 7899–7906. [Google Scholar] [CrossRef] [PubMed]
- Monagas, M.; Quintanilla-López, J.E.; Gómez-Cordovés, C.; Bartolomé, B.; Lebrón-Aguilar, R. MALDI-TOF MS analysis of plant proanthocyanidins. J. Pharm. Biomed. Anal. 2010, 51, 358–372. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Sun, D.W. Critical reviews in food science and nutrition enhancement of food processes by ultrasound: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 570–594. [Google Scholar] [CrossRef] [PubMed]
- Díaz-de-Cerio, E.; Tylewicz, U.; Verardo, V.; Fernández-Gutiérrez, A.; Segura-Carretero, A.; Romani, S. Design of sonotrode ultrasound-assisted extraction of phenolic compounds from Psidium guajava L. leaves. Food Anal. Met. 2017, 10, 2781–2791. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Sologubik, C.A.; Fernández, M.B.; Manrique, G.D.; D’Alessandro, L.G. Extraction of antioxidant phenolic compounds from brewer’s spent grain: Optimization and kinetics modeling. Antioxidants 2018, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Robbins, R.J.; Leonczak, J.; Johnson, J.C.; Li, J.; Kwik-Uribe, C.; Prior, R.L.; Gu, L. Method performance and multi-laboratory assessment of a normal phase high pressure liquid chromatography-fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa and chocolate containing samples. J. Chromatogr. A 2009, 1216, 4831–4840. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.M.; Morais, S.; Carvalho, D.O.; Barros, A.A.; Delerue-Matos, C.; Guido, L.F. Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Res. Int. 2013, 54, 382–388. [Google Scholar] [CrossRef]
- Ikram, S.; Huang, L.; Zhang, H.; Wang, J.; Yin, M. Composition and nutrient value proposition of brewers spent grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef]
Experiment | Independent Factors | Dependent Factor | ||
---|---|---|---|---|
X1 | X2 | X3 | Total (µg∙g−1 d.w.) | |
1 | 50 | 5 | 240 | 540.04 |
2 | 100 | 5 | 240 | 548.25 |
3 | 50 | 55 | 240 | 690.90 |
4 | 100 | 55 | 240 | 802.25 |
5 | 50 | 30 | 80 | 547.91 |
6 | 100 | 30 | 80 | 849.32 |
7 | 50 | 30 | 400 | 601.43 |
8 | 100 | 30 | 400 | 792.07 |
9 | 75 | 5 | 80 | 796.40 |
10 | 75 | 55 | 80 | 977.69 |
11 | 75 | 5 | 400 | 993.15 |
12 | 75 | 55 | 400 | 1002.31 |
13 | 75 | 30 | 240 | 832.04 |
14 | 75 | 30 | 240 | 857.04 |
15 | 75 | 30 | 240 | 752.68 |
Peak | Rt (min) | Compound | [M-H]- |
---|---|---|---|
1 | 6.7 | Catechin/epicatechin | 289 |
2 | 17.6 | Procyanidin dimer | 577 |
3 | 19.0 | Prodelphinidin dimer | 593 |
4 | 21.2 | Prodelphinidin dimer II | 593 |
5 | 24.4 | Procyanidin trimer | 865 |
6 | 26.8 | Prodelphinidin trimer I (monogalloylated) | 881 |
7 | 29.5 | Prodelphinidin trimer II (digalloylated) | 897 |
8 | 32.8 | Procyanidin tetramer | 1153 |
9 | 33.9 | Prodelphinidin tetramer (digalloylated) | 1457 |
10 | 36 | Procyanidin pentamer | 1441 |
11 | 51.7 | Polymers (degree of polymerization >5) |
Proanthocyanidin Compounds | UAE 1 | UAE 2 | UAE 3 | UAE 4 | UAE 5 | UAE 6 | UAE 7 | UAE 8 | UAE 9 | UAE 10 | UAE 11 | UAE 12 | UAE 13 | UAE 14 | UAE 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Catechin/epicatechin | 8.34 | 9.17 | 10.16 | 9.71 | 8.05 | 10.03 | 10.07 | 10.37 | 9.59 | 10.33 | 10.41 | 8.41 | 9.62 | 9.53 | 8.89 |
Procyanidin dimer | 50.08 | 70.49 | 52.50 | 85.90 | 40.06 | 73.45 | 44.02 | 82.34 | 57.47 | 76.36 | 100.92 | 64.17 | 98.56 | 88.97 | 73.94 |
Prodelphinidin dimer | 22.68 | 33.01 | 26.09 | 25.96 | 30.44 | 38.86 | 31.93 | 43.95 | 49.16 | 57.03 | 38.74 | 25.68 | 31.04 | 33.97 | 31.60 |
Prodelphinidin dimer II | 25.69 | 35.62 | 51.16 | 66.60 | 38.16 | 78.03 | 37.09 | 79.55 | 59.02 | 72.00 | 74.00 | 79.08 | 64.73 | 76.73 | 60.15 |
Procyanidin trimer | 73.11 | 28.69 | 61.50 | 54.93 | 54.45 | 67.35 | 37.20 | 64.29 | 88.65 | 92.85 | 103.78 | 52.06 | 103.23 | 97.27 | 95.05 |
Prodelphinidin trimer I (monogalloylated) | 35.58 | 73.86 | 56.78 | 97.85 | 49.08 | 101.98 | 45.60 | 95.27 | 92.53 | 122.39 | 121.94 | 81.68 | 98.98 | 107.81 | 83.69 |
Prodelphinidin trimer II (digalloylated) | <LOQ | 48.58 | <LOQ | 82.52 | <LOQ | 80.67 | <LOQ | 71.26 | 79.53 | 92.77 | 83.62 | 75.12 | 65.34 | 78.03 | 59.54 |
Procyanidin tetramer | <LOQ | 29.46 | <LOQ | 46.57 | <LOQ | 51.15 | <LOQ | 44.52 | 45.68 | 56.49 | 55.10 | 45.12 | <LOQ | <LOQ | <LOQ |
Prodelphinidin tetramer (digalloylated) | <LOQ | 32.70 | <LOQ | 52.06 | <LOQ | 58.55 | <LOQ | 51.20 | 50.76 | 64.87 | 68.59 | 63.57 | <LOQ | <LOQ | <LOQ |
Procyanidin pentamer | <LOQ | 17.64 | <LOQ | 26.50 | <LOQ | 28.01 | <LOQ | 19.34 | 24.84 | 35.28 | 30.44 | 42.78 | <LOQ | <LOQ | <LOQ |
Polymers | 324.57 | 169.04 | 432.71 | 253.66 | 327.67 | 261.23 | 395.52 | 229.98 | 239.17 | 297.31 | 305.60 | 464.64 | 360.52 | 364.73 | 339.83 |
Total | 540.04 | 548.25 | 690.90 | 802.25 | 547.91 | 849.32 | 601.43 | 792.07 | 796.40 | 977.69 | 993.15 | 1002.31 | 832.04 | 857.04 | 752.68 |
Regression Coefficients | Total Proanthocyanidins |
---|---|
β0 | −1256.27 * |
Linear | |
β1 | 53.07 ** |
β2 | −1.19 ** |
β3 | −0.68 |
Cross product | |
β12 | 0.04 |
β13 | −0.01 |
β23 | −0.01 |
Quadratic | |
β11 | −0.33 * |
β22 | 0.06 |
β33 | 0.00 ** |
R2 | 0.8999 |
p (regression model) | 0.0074 |
p (lack-of-fit) | 0.3420 |
Optimal Conditions | Sum of Proanthocyanidins (µg∙g−1 d.w.) |
---|---|
Acetone/ water ratio (% (v/v)) | 80 |
Time (min) | 55 |
US power | 400 |
Predicted (µg∙g−1 d.w.) | 1012.7 ± 15.1 |
Obtained value (µg∙g−1 d.w.) | 1023.0 ± 8.9 |
Significant differences between predicted and obtained value | N.S. |
Proanthocyanidin Compounds | Sonotrode Extraction | Conventional Extraction |
---|---|---|
Catechin/epicatechin | 8.96 ± 0.23 | 3.89 ± 0.36 |
Procyanidin dimer | 66.21 ± 1.10 | 21.34 ± 1.04 |
Prodelphinidin dimer | 26.08 ± 0.29 | 10.25 ± 0.92 |
Prodelphinidin dimer II | 80.43 ± 1.62 | 39.41 ± 1.37 |
Procyanidin trimer | 53.19 ± 1.06 | 18.69 ± 2.06 |
Prodelphinidin trimer I (monogalloylated) | 83.70 ± 2.12 | 42.16 ± 1.89 |
Prodelphinidin trimer II (digalloylated) | 76.14 ± 0.98 | 35.47 ± 1.25 |
Procyanidin tetramer | 47.09 ± 0.63 | 19.36 ± 0.47 |
Prodelphinidin tetramer (digalloylated) | 65.22 ± 1.52 | 20.93 ± 1.12 |
Procyanidin pentamer | 46.81 ± 1.70 | 18.71 ± 0.43 |
Polymers | 469.21 ± 6.69 | 200.36 ± 2.89 |
Total | 1023.04 ± 8.9 | 430.57 ± 3.62 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-García, B.; Pasini, F.; Verardo, V.; Díaz-de-Cerio, E.; Tylewicz, U.; Gómez-Caravaca, A.M.; Caboni, M.F. Optimization of Sonotrode Ultrasonic-Assisted Extraction of Proanthocyanidins from Brewers’ Spent Grains. Antioxidants 2019, 8, 282. https://doi.org/10.3390/antiox8080282
Martín-García B, Pasini F, Verardo V, Díaz-de-Cerio E, Tylewicz U, Gómez-Caravaca AM, Caboni MF. Optimization of Sonotrode Ultrasonic-Assisted Extraction of Proanthocyanidins from Brewers’ Spent Grains. Antioxidants. 2019; 8(8):282. https://doi.org/10.3390/antiox8080282
Chicago/Turabian StyleMartín-García, Beatriz, Federica Pasini, Vito Verardo, Elixabet Díaz-de-Cerio, Urszula Tylewicz, Ana María Gómez-Caravaca, and Maria Fiorenza Caboni. 2019. "Optimization of Sonotrode Ultrasonic-Assisted Extraction of Proanthocyanidins from Brewers’ Spent Grains" Antioxidants 8, no. 8: 282. https://doi.org/10.3390/antiox8080282
APA StyleMartín-García, B., Pasini, F., Verardo, V., Díaz-de-Cerio, E., Tylewicz, U., Gómez-Caravaca, A. M., & Caboni, M. F. (2019). Optimization of Sonotrode Ultrasonic-Assisted Extraction of Proanthocyanidins from Brewers’ Spent Grains. Antioxidants, 8(8), 282. https://doi.org/10.3390/antiox8080282