Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves—Optimization by Response Surface Method and Application in Oil-in-Water Emulsions
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Borage Preparation
2.3. Extraction Procedure
2.4. Total Phenolic Content (TPC)
2.5. ORAC Assay
2.6. HPLC
2.7. Statistical Analysis
Extraction | Code | Temperature (°C) | Time (min) | Ethanol Concentration (%) |
---|---|---|---|---|
Ethanolic | ||||
−1 | 60 | 10 | 30 | |
0 | 70 | 15 | 45 | |
1 | 80 | 20 | 60 | |
Aqueous | ||||
−1 | 50 | 10 | ||
0 | 70 | 15 | ||
1 | 90 | 20 |
2.8. Oil-Water Emulsions
2.9. Peroxide Value (PV)
2.10. p-Anisidine Value (p-AV)
3. Results and Discussion
3.1. Extraction
Temperature (°C) | Time (min) | TPC (mg GAE/g Dry Weight) | ORAC (mg TE/g Dry Weight) | Rosmarinic Acid (mg/L) |
---|---|---|---|---|
41.72 | 15.00 | 20.75 ± 0.58 | 27.22 ± 0.33 | 1.25 ± 0.01 |
70.00 | 15.00 | 24.89 ± 0.90 | 101.80 ± 6.37 | 2.79 ± 0.01 |
70.00 | 15.00 | 24.88 ± 0.87 | 104.05 ± 2.15 | 2.79 ± 0.01 |
90.00 | 10.00 | 26.45 ± 0.35 | 57.67 ± 2.76 | 2.87 ± 0.36 |
50.00 | 20.00 | 22.42 ± 0.93 | 40.36 ± 1.16 | 1.40 ± 0.01 |
70.00 | 7.93 | 24.16 ± 0.79 | 89.64 ± 1.55 | 1.52 ± 0.10 |
70.00 | 15.00 | 25.01± 0.07 | 103.24 ± 4.27 | 2.79 ± 0.01 |
50.00 | 10.00 | 21.58 ± 0.12 | 83.80 ± 2.21 | 1.36 ± 0.03 |
70.00 | 15.00 | 25.67 ± 0.55 | 104.87 ± 5.07 | 2.80 ± 0.01 |
70.00 | 15.00 | 24.49 ± 0.35 | 105.37 ± 1.15 | 2.80 ± 0.01 |
70.00 | 22.07 | 25.49± 0.54 | 110.92 ± 3.61 | 2.80 ± 0.21 |
90.00 | 20.00 | 25.46 ± 0.07 | 117.05 ± 1.88 | 3.79 ± 0.12 |
98.28 | 15.00 | 26.72 ± 0.79 | 102.23 ± 7.59 | 3.64 ± 0.04 |
Temperature (°C) | Ethanol Concentration (%) | Time (min) | TPC (mg GAE/g Dry Weight) | ORAC (mg TE/g Dry Weight) | Rosmarinic Acid (mg/L) |
---|---|---|---|---|---|
86.82 | 45.00 | 15.00 | 23.93 ± 1.06 | 126.80 ± 2.21 | 8.82 ± 0.13 |
60.00 | 30.00 | 10.00 | 20.26 ± 0.71 | 108.70 ± 1.23 | 3.77 ± 0.64 |
80.00 | 60.00 | 20.00 | 22.58 ± 1.23 | 125.21 ± 2.77 | 14.08 ± 0.07 |
70.00 | 45.00 | 15.00 | 27.49 ± 1.77 | 141.77 ± 3.19 | 11.04 ± 0.46 |
70.00 | 45.00 | 15.00 | 27.02 ± 1.04 | 146.06 ± 3.57 | 11.13 ± 0.57 |
70.00 | 45.00 | 15.00 | 26.91 ± 0.92 | 144.00 ± 6.42 | 11.43 ± 0.96 |
70.00 | 45.00 | 15.00 | 27.13 ± 1.15 | 143.72 ± 0.35 | 11.10 ± 0.58 |
70.00 | 45.00 | 22.07 | 25.33 ± 1.64 | 143.79 ± 3.40 | 11.83 ± 0.53 |
60.00 | 60.00 | 20.00 | 23.86 ± 0.69 | 128.13 ± 2.03 | 17.20 ± 1.15 |
60.00 | 30.00 | 20.00 | 22.43 ± 1.07 | 109.47 ± 3.88 | 5.38 ± 0.13 |
53.18 | 45.00 | 15.00 | 23.38 ± 0.83 | 124.97 ± 1.29 | 11.62 ± 0.54 |
70.00 | 19.77 | 15.00 | 19.16 ± 0.11 | 109.26 ± 3.34 | 0.77 ± 0.02 |
70.00 | 45.00 | 7.93 | 24.57 ± 0.54 | 138.27 ± 1.62 | 11.68 ± 0.07 |
70.00 | 45.00 | 15.00 | 27.16 ± 1.21 | 143.88 ± 3.05 | 11.23 ± 0.72 |
80.00 | 30.00 | 20.00 | 22.27 ± 0.72 | 128.78 ± 1.81 | 5.83 ± 0.28 |
60.00 | 60.00 | 10.00 | 22.99 ± 0.12 | 140.22 ± 0.57 | 17.53 ± 1.30 |
80.00 | 60.00 | 10.00 | 23.97 ± 1.37 | 146.88 ± 4.77 | 16.64 ± 0.47 |
70.00 | 45.00 | 15.00 | 26.94 ± 0.87 | 143.86 ± 0.20 | 11.30 ± 0.80 |
70.00 | 70.23 | 15.00 | 23.50 ± 0.76 | 132.04 ± 5.82 | 20.30 ± 0.00 |
80.00 | 30.00 | 10.00 | 23.25 ± 0.75 | 122.09 ± 2.23 | 4.69 ± 0.78 |
Extraction | Equation | R2 Value | |
---|---|---|---|
Response | R2 | R2-Pred. | |
Ethanolic | |||
TPC(mg GAE/g DW) | −132.03 + 2.37 T + 1.18 C + 3.13 t − 0.013 T2 − 0.009 C2 − 0.03 t2 − 0.003 T × C − 0.014 T × t − 0.003 C × t | 97.8 | 84.8 |
ORAC(mg TE/g DW) | −544.88 + 11.18 T + 7.75 C+ 6.97 t − 0.068 T2 − 0.038 C2 − 0.058 t2 − 0.024 T × C − 0.009 T × t − 0.069 C × t | 93.5 | 51.2 |
Rosmarinic Acid (mg/L) | −58.94 + 0.88 T + 1.09 C + 0.52 t − 0.004 T2 − 0.0012 C2 + 0.006 t2 − 0.004 T × C − 0.007 T × t − 0.009 C × t | 99.7 | 97.6 |
Aqueous | |||
TPC(mg GAE/g DW) | −132.03 + 2.371 T + 1.18 t − 0.002 T2 − 0.006 t2 − 0.005 T × t | 96.3 | 83.8 |
ORAC(mg TE/g DW) | −9.236 + 4.654 T − 12.357 t − 0.0538 T2 − 0.149 t2 − 0.257 T × t | 94.5 | 61.1 |
Rosmarinic Acid (mg/L) | −67.250 + 1.233 T + 4.140 t − 0.009 T2 − 0.146 t2 − 0.005 T × t | 98.5 | 89.1 |
3.2. Response Surface Method
3.3. Validation Conditions Optimized
3.4. Oil-Water Emulsions
Extraction | Term | p Value | ||
---|---|---|---|---|
Response | ||||
TPC | ORAC | Rosmarinic Acid | ||
Ethanolic | ||||
Constant | 0.000 | 0.001 | 0.000 | |
Temperature (°C) | 0.000 | 0.000 | 0.000 | |
Ethanol (%) | 0.000 | 0.000 | 0.000 | |
Time (min) | 0.000 | 0.092 | 0.133 | |
Temperature (°C) × Temperature (°C) | 0.000 | 0.000 | 0.003 | |
Ethanol (%) × Ethanol (%) | 0.000 | 0.000 | 0.022 | |
Time (min) × Time (min) | 0.000 | 0.248 | 0.149 | |
Temperature (°C) × Ethanol (%) | 0.044 | 0.046 | 0.001 | |
Temperature (°C) × Time (min) | 0.003 | 0.780 | 0.031 | |
Ethanol (%) × Time (min) | 0.236 | 0.009 | 0.000 | |
Aqueous | ||||
Constant | 0.536 | 0.899 | 0.000 | |
Temperature (°C) | 0.001 | 0.011 | 0.000 | |
Time (min) | 0.077 | 0.045 | 0.000 | |
Temperature (°C) × Temperature (°C) | 0.005 | 0.000 | 0.000 | |
Time (min) × Time (min) | 0.400 | 0.299 | 0.000 | |
Temperature (°C) × Time (min) | 0.088 | 0.001 | 0.180 |
Extraction | Conditions | Response | |||||||
---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | Ethanol (%) | Time (min) | TPC | ORAC | Rosmarinic Acid | ||||
Predicted | Actual | Predicted | Actual | Predicted | Actual | ||||
Ethanolic | 75.94 | 51.88 | 14.8 | 26.71 | 27.05 | 145.03 | 115.96 | 13.29 | 11.024 |
Aqueous | 98.28 | - | 22.07 | 26.02 | 22.27 | 120.33 | 81.6 | 4.09 | 3.9 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [PubMed]
- Gironi, F.; Piemonte, V. Temperature and solvent effects on polyphenol extraction process from chestnut tree wood. Chem. Eng. Res. Des. 2011, 89, 857–862. [Google Scholar] [CrossRef]
- Wettasinghe, M.; Shahidi, F. Phenolic acids in defatted seeds of borage (Borago officinalis L.). Food Chem. 2001, 75, 49–56. [Google Scholar] [CrossRef]
- Finley, J.W.; Kong, A.-N.; Hintze, K.J.; Jeffery, E.H.; Ji, L.L.; Lei, X.G. Antioxidants in foods: State of the science important to the food industry. J. Agric. Food Chem. 2011, 59, 6837–6846. [Google Scholar] [CrossRef] [PubMed]
- Perumalla, A.V.S.; Hettiarachchy, N.S. Green tea and grape seed extracts—Potential applications in food safety and quality. Food Res. Int. 2011, 44, 827–839. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.A.; Siddiqui, M.W.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int. 2011, 44, 1866–1874. [Google Scholar] [CrossRef]
- Wijngaard, H.; Brunton, N. The optimisation of solid-liquid extraction of antioxidants from apple pomace by response surface methodology. J. Food Eng. 2010, 96, 134–140. [Google Scholar] [CrossRef]
- Guerrero, M.S.; Torres, J.S.; Nuñez, M.J. Extraction of polyphenols from white distilled grape pomace: Optimization and modelling. Bioresour. Technol. 2008, 99, 1311–1318. [Google Scholar] [CrossRef]
- Wijngaard, H.; Brunton, N. The optimization of extraction of antioxidants from apple pomace by pressurized liquids. J. Agric. Food Chem. 2009, 57, 10625–10631. [Google Scholar] [CrossRef]
- Gilani, A.H.; Bashir, S.; Khan, A. Pharmacological basis for the use of Borago officinalis in gastrointestinal, respiratory and cardiovascular disorders. J. Ethnopharmacol. 2007, 114, 393–399. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Montero, P.; Giménez, B.; Gómez-Guillén, M.C. Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. J. Food Eng. 2009, 92, 78–85. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, M.; Velić, D. Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. J. Food Eng. 2007, 81, 236–242. [Google Scholar] [CrossRef]
- Bandoniene, D. The detection of radical scavenging compounds in crude extract of borage (Borago officinalis L.) by using an on-line HPLC-DPPH method. J. Biochem. Biophys. Methods 2002, 53, 45–49. [Google Scholar] [CrossRef]
- Wang, H.; Provan, G.J.; Helliwell, K. Food chemistry determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem. 2004, 87, 307–311. [Google Scholar] [CrossRef]
- Jordán, M.; Lax, V.; Rota, M.C.; Lora, S.; Sotomayor, J.A. Relevance of carnosic acid, carnosol, and rosmarinic acid concentrations in the in vitro antioxidant and antimicrobial activities of (Rosmarinus officinalis L.) methanolic extracts. J. Agric. Food Chem. 2012, 60, 9603–9608. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, W.; Zhang, W.; Hu, Q.; Zeng, X. Optimizing the extraction of phenolic antioxidants from kudingcha made from Ilex kudingcha C.J. Tseng by using response surface methodology. Sep. Purif. Technol. 2011, 78, 311–320. [Google Scholar] [CrossRef]
- Pompeu, D.R.; Silva, E.M.; Rogez, H. Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using Response Surface Methodology. Bioresour. Technol. 2009, 100, 6076–6082. [Google Scholar] [CrossRef]
- Ballard, T.S.; Mallikarjunan, P.; Zhou, K.; O’Keefe, S.F. Optimizing the extraction of phenolic antioxidants from peanut skins using response surface methodology. J. Agric. Food Chem. 2009, 57, 3064–3072. [Google Scholar] [CrossRef]
- Saha, J.; Debnath, M.; Saha, A.; Ghosh, T.; Sarkar, P.K. Response surface optimisation of extraction of antioxidants from strawberry fruit, and lipid peroxidation inhibitory potential of the fruit extract in cooked chicken patties. J. Sci. Food Agric. 2011, 91, 1759–1765. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiong, Y.L.; Chen, J. Antioxidant and emulsifying properties of potato protein hydrolysate in soybean oil-in-water emulsions. Food Chem. 2010, 120, 101–108. [Google Scholar] [CrossRef]
- Dwyer, S.P.; Beirne, D.; Ní, D.; Kennedy, B.T. Effects of sodium caseinate concentration and storage conditions on the oxidative stability of oil-in-water emulsions. Food Chem. 2013, 138, 1145–1152. [Google Scholar] [CrossRef]
- Almajano, M.P.; Delgado, M.E.; Gordon, M.H. Albumin causes a synergistic increase in the antioxidant activity of green tea catechins in oil-in-water emulsions. Food Chem. 2007, 102, 1375–1382. [Google Scholar] [CrossRef]
- Elias, R.J.; Mcclements, D.J.; Decker, E.A. Impact of thermal processing on the antioxidant mechanisms of continuous phase β-lactoglobulin in oil-in-water emulsions. Food Chem. 2007, 104, 1402–1409. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Ninfali, P.; Mea, G.; Giorgini, S.; Rocchi, M.; Bacchiocca, M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br. J. Nutr. 2007, 93, 257–266. [Google Scholar]
- Frankel, E.N. Methods to Determine Extent of Oxidation. In Lipid Oxidation; The Oily Press: Dundee, UK, 1998; pp. 79–97. [Google Scholar]
- Singh, G.; Maurya, S.; deLampasona, P.; Catalan, C. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituent. Food Chem. Toxicol. 2007, 45, 1650–1661. [Google Scholar] [CrossRef]
- Cacace, J.E.; Mazza, G. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 2003, 59, 379–389. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Wettasinghe, M.; Shahidi, F. Antioxidant and free radical-scavenging properties of ethanolic extracts of defatted borage (Borago o cinalis L.) seeds. Food Chem. 1999, 67, 399–414. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; Hashemi, P.; Badiei, A.; Safdarian, M.; Rashidipour, M. Microextraction of rosmarinic acid using CMK-3 nanoporous carbon in a packed syringe. Chromatographia 2013, 76, 857–860. [Google Scholar] [CrossRef]
- Durling, N.; Catchpole, O.; Grey, J.; Webby, R.; Mitchell, K.; Foo, L.; Perry, N. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol-water mixtures. Food Chem. 2007, 101, 1417–1424. [Google Scholar] [CrossRef]
- Mhamdi, B.; Wannes, W.A.; Bourgou, S.; Marzouk, B. Biochemical characterization of borage. J. Food Biochem. 2009, 33, 331–341. [Google Scholar] [CrossRef]
- Michiels, J.A.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chem. 2012, 130, 986–993. [Google Scholar] [CrossRef]
- Díaz Reinoso, B.; Couto, D.; Moure, A.; Fernandes, E.; Domínguez, H.; Parajó, J.C. Optimization of antioxidants—Extraction from Castanea sativa leaves. Chem. Eng. J. 2012, 203, 101–109. [Google Scholar] [CrossRef]
- Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Rodríguez, M.; Martínez de la Ossa, E. Extraction of antioxidant compounds from different varieties of Mangifera indica leaves using green technologies. J. Supercrit. Fluids 2012, 72, 168–175. [Google Scholar] [CrossRef]
- Pinelo, M.; Sineiro, J.; Núñez, M.J. Mass transfer during continuous solid-liquid extraction of antioxidants from grape byproducts. J. Food Eng. 2006, 77, 57–63. [Google Scholar] [CrossRef]
- Fiori, L.; Basso, D.; Costa, P. Seed oil supercritical extraction: Particle size distribution of the milled seeds and modeling. J. Supercrit. Fluids 2008, 47, 174–181. [Google Scholar] [CrossRef]
- Owczarek-Fendor, A.; Meulenaer, B.; Scholl, G.; Adams, A.; van Lancker, F.; Yogendrarajah, P.; Uytterhoeven, V.; Eppe, G.; de Pauw, E.; Scippo, M.-L.; et al. Importance of fat oxidation in starch-based emulsions in the generation of the process contaminant furan. J. Agric. Food Chem. 2010, 58, 9579–9586. [Google Scholar] [CrossRef]
- Poyato, C.; Navarro-blasco, I.; Isabel, M.; Yolanda, R.; Astiasarán, I.; Ansorena, D. Oxidative stability of O/W and W/O/W emulsions: Effect of lipid composition and antioxidant polarity. Food Res. Int. 2013, 51, 132–140. [Google Scholar] [CrossRef]
- Wardhani, D.H.; Fuciños, P.; Vázquez, J.A.; Pandiella, S.S. Inhibition kinetics of lipid oxidation of model foods by using antioxidant extract of fermented soybeans. Food Chem. 2013, 139, 837–844. [Google Scholar] [CrossRef]
- Ramful, D.; Aumjaud, B.; Neergheen, V.S.; Soobrattee, M.A.; Googoolye, K.; Aruoma, O.I.; Bahorun, T. Polyphenolic content and antioxidant activity of Eugenia pollicina leaf extract in vitro and in model emulsion systems. Food Res. Int. 2011, 44, 1190–1196. [Google Scholar] [CrossRef]
- Bonoli-Carbognin, M.; Erretani, L.O.C.; Endini, A.L.B.; Goidanich, P.; Cesena, I. Bovine serum albumin produces a synergistic increase in the antioxidant activity of virgin olive oil phenolic compounds in oil-in-water emulsions. J. Agric. Food Chem. 2008, 56, 7076–7081. [Google Scholar] [CrossRef] [PubMed]
- Ries, D.; Ye, A.; Haisman, D.; Singh, H. Antioxidant properties of caseins and whey proteins in model oil-in-water emulsions. Int. Dairy J. 2010, 20, 72–78. [Google Scholar] [CrossRef]
- Sun, C.; Gunasekaran, S. Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocoll. 2009, 23, 165–174. [Google Scholar] [CrossRef]
- Abdelazim, A.A.; Mahmoud, A. Oxidative stability of vegetable oils as affected by sesame extracts during accelerated oxidative storage. J. Food Sci. Technol. 2013, 50, 868–878. [Google Scholar] [CrossRef]
- Kargar, M.; Spyropoulos, F.; Norton, I.T. The effect of interfacial microstructure on the lipid oxidation stability of oil-in-water emulsions. J. Colloid Interface Sci. 2011, 357, 527–533. [Google Scholar] [CrossRef]
- Dwyer, S.P.; Beirne, D.; Deirdre, N.; Kennedy, B.T. Effects of green tea extract and α-tocopherol on the lipid oxidation rate of omega-3 oils, incorporated into table spreads, prepared using multiple emulsion technology. J. Food Sci. 2012, 77, 58–65. [Google Scholar]
- Luengo, E.; Álvarez, I.; Raso, J. Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov. Food Sci. Emerg. Technol. 2013, 17, 79–84. [Google Scholar] [CrossRef]
- Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Segovia, F.; Lupo, B.; Peiró, S.; Gordon, M.H.; Almajano, M.P. Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves—Optimization by Response Surface Method and Application in Oil-in-Water Emulsions. Antioxidants 2014, 3, 339-357. https://doi.org/10.3390/antiox3020339
Segovia F, Lupo B, Peiró S, Gordon MH, Almajano MP. Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves—Optimization by Response Surface Method and Application in Oil-in-Water Emulsions. Antioxidants. 2014; 3(2):339-357. https://doi.org/10.3390/antiox3020339
Chicago/Turabian StyleSegovia, Francisco, Bryshila Lupo, Sara Peiró, Michael H. Gordon, and María Pilar Almajano. 2014. "Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves—Optimization by Response Surface Method and Application in Oil-in-Water Emulsions" Antioxidants 3, no. 2: 339-357. https://doi.org/10.3390/antiox3020339
APA StyleSegovia, F., Lupo, B., Peiró, S., Gordon, M. H., & Almajano, M. P. (2014). Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves—Optimization by Response Surface Method and Application in Oil-in-Water Emulsions. Antioxidants, 3(2), 339-357. https://doi.org/10.3390/antiox3020339