Sustaining Edible Grass (Rumex patientia L. × Rumex tianschanicus Losinsk.) Through Summer Lethal Stress: Multi-Omics Reveals Shading-Mediated Mitigation of High Light-Aggravated Heat Damage
Abstract
1. Introduction
2. Materials and Methods
2.1. Plants Material
2.2. Growth Indicators and Yield Measurement
2.3. Determination of Photosynthetic Parameters
2.4. Biochemical and Physiological Analysis
2.5. RNA Extraction and Transcriptome Sequencing
2.6. Extraction and Determination of Metabolites
2.7. Data Analysis
3. Results
3.1. The Impact of Shading Treatment on the Yield and Quality of Edible Grass
3.2. The Impact of Shading Treatment on the Antioxidative Indices of Edible Grass
3.3. The Impact of Shading Treatment on the Photosynthetic Parameters of Edible Grass
3.4. RNA-Seq Sequencing, Annotation, and Analysis
3.4.1. RNA Isolation, Transcriptome Sequencing, and De Novo Assembly
3.4.2. Quality Assessment and Annotation of the Filtering Component
3.4.3. Quantification and DEGs and Transcripts
3.5. Metabolite Analysis of Edible Grass Leaves
3.6. Combined Transcriptomic and Metabolomic Analysis of Edible Grass Leaves
4. Discussion
4.1. Summer Heat Stress Poses a Serious Threat to Edible Grass
4.2. Alleviation of High Light–Aggravated Heat Damage in Edible Grass by Shading
4.3. Integrated Transcriptomic and Metabolomic Analyses Reveal a Shift from Defense to Growth Under Shading
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, T.; Li, X.; Wang, Z.; Mao, J.; Mao, Y.; Sha, R. Studies on the Changes of Fermentation Metabolites and the Protective Effect of Fermented Edible Grass on Stress Injury Induced by Acetaminophen in HepG2 Cells. Foods 2024, 13, 470. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Liu, Y.; Li, G.; Gong, S.; Wang, H.; He, D. Exploring the Role of Edible Dock Powder (Rumex K-1) in Enhancing Growth Performance, Organ Health, and Cecal Microbiota in Sanhua Goslings. Agriculture 2025, 15, 112. [Google Scholar] [CrossRef]
- Li, X.; He, T.; Mao, Y.; Mao, J.; Lai, X.; Tu, H.; Zhou, Y.; Sha, R. Changes in Physicochemical Properties, Metabolites and Antioxidant Activity of Edible Grass during Spontaneous Fermentation. Fermentation 2023, 9, 377. [Google Scholar] [CrossRef]
- Jiang, T.; Li, X.; Wang, H.; Pi, M.; Hu, J.; Zeng, Z.; Li, B.; Xu, Z. Identification and quantification of flavonoids in edible dock based on UPLC-qTOF MS/MS and molecular networking. J. Food Compos. Anal. 2024, 133, 106399. [Google Scholar] [CrossRef]
- Ślesak, H.; Liszniańska, M.; Popielarska-Konieczna, M.; Góralski, G.; Sliwinska, E.; Joachimiak, A.J. Micropropagation protocol for the hybrid sorrel Rumex tianschanicus × Rumex patientia, an energy plant. Histological, SEM and flow cytometric analyses. Ind. Crop. Prod. 2014, 62, 156–165. [Google Scholar] [CrossRef]
- He, Z.; Zou, J.; Li, X.; Jiang, T.; Zeng, J.; Chen, M. Responses of nitrogen metabolism, photosynthetic parameter and growth to nitrogen fertilization in Rumex patientia L. × Rumex tianschanicus Losinsk. Chil. J. Agric. Res. 2025, 85, 459–468. [Google Scholar] [CrossRef]
- Mareri, L.; Parrotta, L.; Cai, G. Environmental Stress and Plants. Int. J. Mol. Sci. 2022, 23, 5416. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int. J. Mol. Sci. 2021, 22, 117. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Xalxo, R.; Yadu, B.; Chandra, J.; Chandrakar, V.; Keshankant, S. Alteration in Carbohydrate Metabolism Modulates Thermotolerance of Plant under Heat Stress. In Heat Stress Tolerance in Plants: Physiological, Molecular and Genetic Perspectives, 1st ed.; Wani, S.H., Kumar, V., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 77–115. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, R.; Xu, X.; Fowler, J.; Miller, T.; Dong, T. Effect of summer warming on growth, photosynthesis and water status in female and male Populus cathayana: Implications for sex-specific drought and heat tolerances. Tree Physiol. 2020, 40, 1178–1191. [Google Scholar] [CrossRef]
- Jespersen, D. Heat shock induced stress tolerance in plants: Physiological, biochemical, and molecular mechanisms of acquired tolerance. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants, 1st ed.; Hossain, M.A., Liu, F., David, J., Burritt, D., Eds.; Academic Press Elsevier Inc.: London, UK, 2020; pp. 161–174. [Google Scholar] [CrossRef]
- Siddique, A.B.; Shabala, S.; Li, C.; Chen, Z.; Varshney, R.; Zhao, C.; Zhou, M. Reducing heat stress damage in cereal crops through agronomic management and breeding strategies. Plant Stress 2025, 16, 100888. [Google Scholar] [CrossRef]
- Pallotti, L.; Silvestroni, O.; Dottori, E.; Tania, L.; Lanari, L. Effects of shading nets as a form of adaptation to climate change on grapes production: A review. Oeno One 2023, 57, 467–776. [Google Scholar] [CrossRef]
- Milenkovic, L.; Ilic, Z.; Durovka, M.; Kapoulas, N.; Mirecki, N.; Fallik, E. Yield and pepper quality as affected by light intensity using colour shade nets. Agric. Forest 2012, 58, 19–33. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; Association of Ocial Analytical Chemists: Wanshington, DC, USA, 1995. [Google Scholar]
- Van Soest, P.J.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy. Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Tao, L.; Long, Q.; Shang, Q.; Zhang, Q.; Guo, G.; Cai, H.; Geng, J.; Song, X.; Zeng, H.; Wang, W.; et al. Comprehensive Transcriptome and Metabolome Analysis Reveals the Potential Mechanism Influencing Flower Color Formation in Macadamia integrifolia. Horticulturae 2025, 11, 1347. [Google Scholar] [CrossRef]
- Love, M.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Hinderer, I.; Moseley, H. GOcats: A tool for categorizing Gene Ontology into subgraphs of user-defined concepts. PLoS ONE 2020, 15, e0233311. [Google Scholar] [CrossRef] [PubMed]
- Singsaas, E.; Laporte, M.; Jain, S.; Monson, R.; Bowling, D.; Kristine, J.; Manuel, L.; Amal, J.; Sharkey, T. Kinetics of leaf temperature fluctuation affect isoprene emission from red oak (Quercus rubra) leaves. Tree Physiol. 1991, 19, 917–924. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Song, Y.; Hu, Y.; Yang, C.; Li, J.; Jin, S.; Gu, K.; Yang, Z.; Huang, W.; et al. Tobacco production under global climate change: Combined effects of heat and drought stress and coping strategies. Front. Plant Sci. 2024, 15, 1489993. [Google Scholar] [CrossRef]
- Ahanger, M.; Akram, N.; Ashraf, M.; Alyemeni, M.; Wijaya, L.; Ahmad, P. Plant responses to environmental stresses—From gene to biotechnology. AoB Plants 2017, 9, plx025. [Google Scholar] [CrossRef]
- Li, N.; Euring, D.; Cha, J.; Lin, Z.; Lu, M.; Huang, L.; Kim, W. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front. Plant Sci. 2021, 11, 627969. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Narayanan, S.; Erdayani, E.; Prasad, P. Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 2020, 20, 268. [Google Scholar] [CrossRef]
- Rubatzky, V.; Yamaguchi, M. World Vegetables: Principles, Production, and Nutritive Values, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Eghbal, E.; Aliniaeifard, S.; Mehrjerdi, M.; Abdi, S.; Hassani, S.; Rassaie, T.; Gruda, N. Growth, phytochemical, and phytohormonal responses of basil to different light durations and intensities under constant daily light integral. BMC Plant Biol. 2024, 24, 935. [Google Scholar] [CrossRef]
- Yang, B.; Tang, J.; Yu, Z.; Khare, T.; Srivastav, A.; Datir, S.; Kumar, V. Light stress responses and prospects for engineering light stress tolerance in crop plants. Journal of Plant Growth Regulation 2019, 38, 1489–1506. [Google Scholar]
- Sage, R.F.; Kubien, D.S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 2007, 30, 1086–1106. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, B. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 2000, 40, 503–510. [Google Scholar] [CrossRef]
- Zahra, N.; Hafeez, M.B.; Ghaffar, A.; Kausar, A.; Al Zeidi, M.; Siddique, K.H.; Farooq, M. Plant photosynthesis under heat stress: Effects and management. Environmental and Experimental Botany 2023, 206, 105178. [Google Scholar]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef]
- Xie, A.; Lv, M.; Zhang, D.; Shi, Y.; Yang, L.; Yang, X.; Du, J.; Sun, L.; Sun, X. Effects of slight shading in summer on the leaf senescence and endogenous hormone and polyamine contents in herbaceous peony. Sci. Rep. 2023, 13, 18714. [Google Scholar] [CrossRef]
- Zeng, G.; Guo, Y.; Xu, J.; Hu, M.; Zheng, J.; Wu, Z. Partial shade optimizes photosynthesis and growth in bayberry (Myrica rubra) trees. Hortic. Environ. Biotechnol. 2017, 58, 203–211. [Google Scholar] [CrossRef]
- Ilic, Z.; Fallik, E. Light quality manipulation improves vegetable quality at harvest and postharvest: A review. Environ. Exp. Bot. 2017, 139, 79–90. [Google Scholar] [CrossRef]
- Han, C.; Wang, Q.; Zhang, H.; Wan, S.; Song, H.; Hao, J.; Dong, H. Light shading improves the yield and quality of seed in oil-seed peony (Paeonia ostii Feng Dan). J. Integr. Agric. 2018, 17, 1631–1640. [Google Scholar] [CrossRef]
- Oliveira, G.; Vieira, W.; Bertolli, S.; Pacheco, A. Photosynthetic behavior, growth and essential oil production of Melissa officinalis L. cultivated under colored shade nets. Chil. J. Agric. Res. 2016, 76, 123–128. [Google Scholar] [CrossRef]
- AIlic, Z.; Milenkovic, L.; Sunic, L.; Fallik, E. Effect of coloured shade-nets on plant leaf parameters and tomato fruit quality. J. Sci. Food Agr. 2015, 95, 2660–2667. [Google Scholar] [CrossRef]
- Buthelezi, M.; Soundy, P.; Jifon, J.; Sivakumar, D.; Millicent, N.; Soundy, P.; Jifon, J.; Sivakumar, D. Spectral quality of photo-selective nets improves phytochemicals and aroma volatiles in coriander leaves (Coriandrum sativum L.) after postharvest storage. J. Photochem. Photobiol. 2016, 161, 328–334. [Google Scholar] [CrossRef]
- McGrath, J.; Funk, A.; Galewski, P.; Ou, S.; Townsend, B.; Davenport, K.; Daligault, H.; Johnson, S.; Lee, J.; Hastie, A.; et al. A contiguous de novo genome assembly of sugar beet EL10 (Beta vulgaris L.). DNA Res. 2023, 30, dsac033. [Google Scholar] [CrossRef]
- Bodrug-Schepers, A.; Stralis-Pavese, N.; Buerstmayr, H.; Dohm, J.; Himmelbauer, H. Quinoa genome assembly employing genomic variation for guided scaffolding. Theor. Appl. Genet. 2021, 134, 3577–3594. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; She, H.; Xu, Z.; Zhang, H.; Zheng, S.; Qian, W. Comparative Transcriptome Analysis of Gene Expression Between Female and Monoecious Spinacia oleracea L. Genes 2025, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yu, L.; Xuan, J.; Lu, Y.; Lu, S.; Zhu, W. De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress. Sci. Rep. 2016, 6, 19473. [Google Scholar] [CrossRef] [PubMed]
- Nover, L.; Scharf, K. Heat stress proteins and transcription factors. In Cellular and Molecular Life Sciences, 1st ed.; Roberto, B., Jean, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2024; pp. 80–103. [Google Scholar] [CrossRef]
- Shomali, A.; Das, S.; Arif, N.; Sarraf, M.; Zahra, N.; Yadav, V.; Aliniaeifard, S.; Chauhan, D.K.; Hasanuzzaman, M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. Plants 2022, 11, 3158. [Google Scholar] [CrossRef]
- Fortunato, S.; Lasorella, C.; Dipierro, N.; Vita, F.; de Pinto, M.C. Redox Signaling in Plant Heat Stress Response. Antioxidants 2023, 12, 605. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Gupta, D.; Patel, M.; Vyver, C.V.D.; Koyama, H. Functionality of Reactive Oxygen Species (ROS) in Plants: Toxicity and Control in Poaceae Crops Exposed to Abiotic Stress. Plants 2024, 13, 2071. [Google Scholar] [CrossRef]
- Batool, I.; Ayyaz, A.; Qin, T.; Wu, X.; Chen, W.; Hannan, F.; Zafar, Z.U.; Naeem, M.S.; Farooq, M.A.; Zhou, W. Morphological, Physiological, and Molecular Responses to Heat Stress in Brassicaceae. Plants 2025, 14, 152. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, M.; Wang, M.; Yu, Y.; Ruan, B. Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes 2024, 15, 1529. [Google Scholar] [CrossRef]
- Dorion, S.; Ouellet, J.C.; Rivoal, J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021, 11, 641. [Google Scholar] [CrossRef]
- Cotgreave, I.; Gerdes, R. Recent trends in glutathione biochemistry—Glutathione-protein interactions: A molecular link between oxidative stress and cell proliferation? Biochem. Biophys. Res. Commun. 1998, 242, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, I.; Holzmeister, C.; Wirtz, M.; Geerlof, A.; Frohlich, T.; Roemling, G.; Kuruthukulangarakoola, G.; Linster, E.; Hell, R.; Arnold, G.; et al. ROS-Mediated Inhibition of S-nitrosoglutathione Reductase Contributes to the Activation of Anti-oxidative Mechanisms. Front. Plant Sci. 2016, 7, 1669. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Di, J.; Chen, Y.; Feng, K.; Lu, M.; Hu, Y. Effects of H2S donor NaHS on the adaptability and antioxidant properties of Agave americana plantlets under an in vitro culture of osmotic stress. J. Nanjing For. Univ. 2024, 48, 121–128. [Google Scholar] [CrossRef]







| Parameter | CK Group | ST Group | p Value |
|---|---|---|---|
| Plant height, cm | 30.53 ± 4.92 | 54.08 ± 4.85 | <0.001 |
| Leaf weight, cm | 7.68 ± 1.26 | 12.13 ± 2.24 | <0.001 |
| Fresh weight, t/hm 2 | 8.49 ± 0.81 | 16.31 ± 0.72 | <0.001 |
| Dry weight, t/hm 2 | 1.07 ± 0.11 | 1.64 ± 0.11 | <0.001 |
| Dry matter, g/kg | 12.63 ± 0.47 | 10.08 ± 0.23 | <0.001 |
| Nitrogen content, g/kg | 35.66 ± 1.85 | 43.42 ± 2.74 | <0.001 |
| Crude protein, g/kg | 222.88 ± 11.55 | 271.35 ± 17.16 | <0.001 |
| Neutral detergent fiber, g/kg | 443.14 ± 19.44 | 412.08 ± 15.36 | <0.001 |
| Acid detergent fiber, g/kg | 288.57 ± 14.87 | 256.79 ± 12.58 | <0.001 |
| Parameter | CK Group | ST Group | p Value |
|---|---|---|---|
| SOD activity, U/g FW | 11,607.66 ± 197.96 | 10,863.76 ± 225.72 | <0.001 |
| APX activity, U/g FW | 6.12 ± 0.77 | 3.95 ± 0.77 | 0.002 |
| POD activity, U/g FW | 600.26 ± 29.08 | 441.83 ± 14.25 | <0.001 |
| CAT activity, U/g FW | 23.75 ± 1.84 | 17.90 ± 2.84 | 0.005 |
| MDA, nmol/g FW | 9.44 ± 1.72 | 4.36 ± 0.56 | <0.001 |
| H2O2, μmol/g FW | 13.03 ± 1.71 | 7.40 ± 2.06 | 0.006 |
| O2− content, μmol/g FW | 19.48 ± 0.65 | 12.85 ± 0.48 | 0.002 |
| Parameter | CK Group | ST Group | p Value |
|---|---|---|---|
| Net photosynthetic rate, mmol/(m2·s) | 8.93 ± 1.20 | 10.88 ± 1.86 | <0.001 |
| Stomatal conductance, mmol/(m2·s) | 0.32 ± 0.06 | 0.58 ± 0.27 | <0.001 |
| Intercellular CO2 concentration, μmol/(m2·s) | 357.93 ± 8.30 | 393.24 ± 17.90 | <0.001 |
| Rate of transpiration, mmol/(m2·s) | 38.97 ± 0.48 | 35.76 ± 1.67 | <0.001 |
| Air temperature, ℃ | 38.85 ± 0.50 | 36.48 ± 0.51 | 0.857 |
| Leaf temperature, ℃ | 38.14 ± 0.93 | 35.18 ± 0.76 | 0.005 |
| Parameter | Unigene of Raw Assembly | Transcript of Raw Assembly | Unigene of Filtere Assembly | Transcript of Filtere Assembly |
|---|---|---|---|---|
| Total number | 103,182 | 279,651 | 86,785 | 192,766 |
| Total base | 82,813,202 | 334,732,670 | 78,369,704 | 217,743,050 |
| Largest length (bp) | 21,819 | 21,819 | 21,819 | 21,819 |
| Smallest length (bp) | 201 | 201 | 201 | 201 |
| Average length (bp) | 802.59 | 1196.97 | 903.03 | 1129.57 |
| N50 length (bp) | 1428 | 1979 | 1546 | 1769 |
| E90 length (bp) | 2631 | 2128 | 2622 | 2076 |
| Fragment mapped percent (%) | 54.512 | 80.17 | 54.593 | 78.973 |
| GC percent (%) | 40.6 | 41.46 | 40.72 | 41.34 |
| TransRate score | 0.22187 | 0.325 | 0.29065 | 0.42604 |
| Complete BUSCO (%) | 70.9% | 86.8% | 71.4% | 86.6% |
| Single-copy gene BUSCO (%) | 67.5% | 10.8% | 68.1% | 23.5% |
| Duplicate BUSCO (%) | 3.4% | 76.0% | 3.3% | 63.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
He, Z.; Zhong, Q.; Li, X.; Chen, M.; Liu, W.; Jiang, T.; Zou, J. Sustaining Edible Grass (Rumex patientia L. × Rumex tianschanicus Losinsk.) Through Summer Lethal Stress: Multi-Omics Reveals Shading-Mediated Mitigation of High Light-Aggravated Heat Damage. Antioxidants 2026, 15, 33. https://doi.org/10.3390/antiox15010033
He Z, Zhong Q, Li X, Chen M, Liu W, Jiang T, Zou J. Sustaining Edible Grass (Rumex patientia L. × Rumex tianschanicus Losinsk.) Through Summer Lethal Stress: Multi-Omics Reveals Shading-Mediated Mitigation of High Light-Aggravated Heat Damage. Antioxidants. 2026; 15(1):33. https://doi.org/10.3390/antiox15010033
Chicago/Turabian StyleHe, Zengyang, Qinzhuo Zhong, Xinyao Li, Miaofen Chen, Wei Liu, Tao Jiang, and Jianfeng Zou. 2026. "Sustaining Edible Grass (Rumex patientia L. × Rumex tianschanicus Losinsk.) Through Summer Lethal Stress: Multi-Omics Reveals Shading-Mediated Mitigation of High Light-Aggravated Heat Damage" Antioxidants 15, no. 1: 33. https://doi.org/10.3390/antiox15010033
APA StyleHe, Z., Zhong, Q., Li, X., Chen, M., Liu, W., Jiang, T., & Zou, J. (2026). Sustaining Edible Grass (Rumex patientia L. × Rumex tianschanicus Losinsk.) Through Summer Lethal Stress: Multi-Omics Reveals Shading-Mediated Mitigation of High Light-Aggravated Heat Damage. Antioxidants, 15(1), 33. https://doi.org/10.3390/antiox15010033

