Chemical Fingerprint of Floral Nectar in Apple (Malus sp.) Cultivars Grown in Norway
Abstract
1. Introduction
2. Materials and Methods
2.1. Ecologic Conditions
2.2. Plant Material and Nectar Collection
2.3. Reagents and Standards
2.4. Determination of Sugars and Sugar Alcohols by IC
2.5. UHPLC Q-ToF MS Analysis
2.6. Proximate Phytochemical Composition Expressed as Total Phenolic Content
2.7. Antioxidant Activity Examination
2.8. Raman Spectral Acquisition
2.9. Data Pre-Processing and Analysis
3. Results and Discussions
3.1. Sugar Profile of Nectar
3.2. UHPLC Q-ToF MS of Apple Nectar
3.3. Total Phenolic Content and Antioxidant Activity of Nectar Samples
3.4. Raman Spectroscopy as a Tool for Characterisation and Discrimination of Apple Nectar
3.5. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FaoStat, 2025. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 November 2025).
- Jackson, J.E. Biology of Apple and Pears; Cambridge University Press: Cambridge, UK, 2003; pp. 1–488. [Google Scholar]
- Natić, M.; Dabić Zagorac, D.; Jakanovski, M.; Smailagić, A.; Čolić, S.; Meland, M.; Fotirić Akšić, M. Fruit Quality Attributes of Organically Grown Norwegian Apples Are Affected by Cultivar and Location. Plants 2024, 13, 147. [Google Scholar] [CrossRef]
- Meland, M.; Frøynes, O.; Kviklys, D.; Dabić Zagorac, D.; Fotirić Akšić, M. Pomological, organoleptic, and biochemical values of Norwegian heritage apple. Acta Agric. Scand. B 2024, 74, 2366180. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Lazarević, K.; Šegan, S.; Natić, M.; Tosti, T.; Ćirić, I.; Meland, M. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Seeds from Apple Cultivars (Malus domestica Borkh.) Grown in Norway. Foods 2021, 10, 1956. [Google Scholar] [CrossRef]
- Ramírez, F.; Davenport, T.L. Apple pollination: A review. Sci. Hortic. 2013, 162, 188–203. [Google Scholar] [CrossRef]
- Quinet, M.; Warzée, M.; Vanderplanck, M.; Michez, D.; Lognay, G.; Jacquemart, A.-L. Do floral resources influence pollination rates and subsequent fruit set in pear (Pyrus communis L.) and apple (Malus x domestica Borkh) cultivars? Eur. J. Agron. 2016, 7, 59–69. [Google Scholar]
- Thomson, D.T.; Gooodell, K. Pollen removal and deposition by honeybee and bumblebee visitors to apple and almond flowers. J. Appl. Ecol. 2001, 38, 1032–1044. [Google Scholar] [CrossRef]
- Vicens, N.; Bosch, J. Pollinating efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on ‘Red Delicious’ apple. Environ. Entomol. 2000, 29, 235–240. [Google Scholar]
- Canto, A.; Herrera, C.M.; Medrano, M.; Perez, R.; Garcia, I.M. Pollinator foraging modifies nectar sugar composition in Helleborus foetidus (Ranunculaceae): An experimental test. Am. J. Bot. 2008, 95, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Somme, L.; van der Planck, M.; Michez, D.; Lombaerde, I.; Moerman, R.; Wathelet, B.; Wattiez, R.; Longnay, G.; Jacquemart, A.L. Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie 2015, 46, 92–106. [Google Scholar]
- Nagy Tóth, E.; Szabó, L.G.; Botz, L.; Orosz- Kovács, Z. Effect of rootstocks on floral nectar composition in apple cultivars. Plant Syst. Evol. 2003, 283, 43–55. [Google Scholar] [CrossRef]
- Waser, N.M.; Price, M.V. Drought, pollen and nectar availability, and pollination success. Ecology 2016, 97, 1400–1409. [Google Scholar] [CrossRef]
- Takkis, K.; Tscheulin, T.; Tsalkatis, P.; Petanidou, T. Climate change reduces nectar secretion in two common Mediterranean plants. AoB Plants 2015, 7, 111. [Google Scholar] [CrossRef]
- Nocentini, D.; Pacini, E.; Guarnieri, M.; Martelli, D.; Nepi, M. Intrapopulation heterogeneity in floral nectar attributes and foraging insects of an ecotonal Mediterranean species. Plant Ecol. 2013, 214, 799–809. [Google Scholar] [CrossRef]
- Nicolson, S.W.; Thornburg, R.W. Nectar chemistry. In Nectaries and Nectar; Nicolson, S.W., Nepi, M., Pacini, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 215–264. [Google Scholar]
- Baker, H.G.; Baker, I. The predictive value of nectar chemistry to the recognition of pollinator types. Israel J. Bot. 1990, 39, 157–166. [Google Scholar]
- Hendriksma, H.P.; Oxman, K.L.; Shafir, S. Amino acid and carbohydrate tradeoffs by honey bee nectar foragers and their implications for plant-pollinator interactions. J. Insect Physiol. 2014, 69, 56–64. [Google Scholar]
- Heil, M. Nectar: Generation, regulation and ecological functions. Trends Plant Sci. 2011, 16, 191–200. [Google Scholar] [CrossRef]
- Liu, Y.; Dunker, S.; Durka, W.; Dominik, C.; Heuschele, J.M.; Honchar, H.; Hoffmann, P.; Musche, M.; Paxton, R.J.; Settele, J.; et al. Eco-evolutionary processes shaping floral nectar sugar composition. Sci. Rep. 2024, 14, 13856. [Google Scholar] [CrossRef] [PubMed]
- Mujagic, S.; Sarkander, J.; Erber, B.; Erber, J. Sucrose acceptance and different forms of associative learning of the honey bee (Apis mellifera L.) in the field and laboratory. Front. Behav. Neurosci. 2010, 4, 46. [Google Scholar] [CrossRef]
- Page, R.E.; Scheiner, R.; Erber, J.; Amdam, G.V. The development and evolution of division of labor and foraging specialization in a social insect (Apis mellifera L.). Curr. Top. Dev. Biol. 2006, 74, 253–286. [Google Scholar]
- Farkas, Á.; Orosz Kovács, Z.; Bubán, T. Floral biological studies on pear cultivars in relation to fire blight susceptibility. Int. J. Hortic. Sci. 2004, 10, 25–30. [Google Scholar] [CrossRef]
- Pontais, I.; Treutter, D.; Paulin, J.P.; Brisset, M.N. Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system. Physiol. Plant 2008, 132, 262–271. [Google Scholar]
- Barberis, M.; Calabrese, D.; Galloni, M.; Nepi, M. Secondary Metabolites in Nectar-Mediated Plant-Pollinator Relationships. Plants 2023, 12, 550. [Google Scholar] [PubMed]
- Riddick, E.W. Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials. Insects 2024, 15, 956. [Google Scholar] [CrossRef]
- Wester, P.; Brühn, P. Fluorescent nectar in non-flying mammal-pollinated plants–observations and considerations in some Asparagaceae. Plant Ecol. Evol. 2024, 157, 327–335. [Google Scholar]
- Bertazzini, M.; Medrzycki, P.; Bortolotti, L.; Maistrello, L.; Forlani, G. Amino acid content and nectar choice by forager honeybees (Apis mellifera L.). Amino Acids 2010, 39, 315–318. [Google Scholar] [CrossRef]
- Gardener, M.C.; Gillman, M.P. The taste of nectar-a neglected area of pollination ecology. Oikos 2002, 98, 552–557. [Google Scholar]
- Wright, G.A.; Lutmerding, A.; Dudareva, N.; Smith, B.H. Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees (Apis mellifera). J. Comp. Physiol. A 2005, 191, 105–114. [Google Scholar]
- Lozovskaya, M.V.; Hossain, A.; Likhter, A.M.; Velikorodov, A.V.; Pirogovsky, M.I. Study the Nectars’ Chemical Composition of Apple, Cherry and Pumpkin. Thai J. Agric. Sci. 2013, 46, 75–84. [Google Scholar]
- Benedek, P.; Finta, K. The effect of nectar production to the gathering behaviour of honeybees and to the foraging activity of wild bees at apple flowers. Int. J. Hortic. Sci. 2006, 12, 45–57. [Google Scholar] [CrossRef]
- Orosz-Kovács, Z.S.; Bukovics, P.; Farkas, A.; Szabó, L.G.Y.; Horváth, A.; Déri, H.; Bubán, T. Influence of bioregulators on apple nectar characteristics, in relation to fireblight infection. Acta Hortic. 2006, 704, 139–146. [Google Scholar] [CrossRef]
- Kurilla, A.; Toth, T.; Dorgai, L.; Darula, Z.; Lakatos, T.; Silhavy, D.; Kerenyi, Z.; Dallmann, G. Nectar- and stigma exudate-specific expression of an acidic chitinase could partially protect certain apple cultivars against fire blight disease. Planta 2020, 251, 20. [Google Scholar]
- Meheriuk, M.; Lane, W.D.; Hall, J.W. Influence of Cultivar on Nectar Sugar Content in Several Species of Tree Fruits. HortScience 1987, 22, 448–450. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Mačukanović-Jocić, M.; Radošević, R.; Nedić, N.; Gašić, U.; Tosti, T.; Tešić, Ž.; Meland, M. The morpho-anatomy of nectaries and chemical composition of nectar in pear cultivars with different susceptibility to Erwinia amlylovora. Horticulturae 2023, 9, 424. [Google Scholar] [CrossRef]
- Benedek, P.; Szabó, T.; Nyéki, J. Honeybee (Apis mellifera L.) visitation at the flowers of quince cultivars (Cydonia oblonga Mill.). Int. J. Hortic. Sci. 2000, 6, 95–102. [Google Scholar] [CrossRef]
- Horváth, A.; Orosz-Kovács, Z.S.; Surányi, D. Nectar production of some plum cultivars. Acta Hortic. 2002, 577, 121–128. [Google Scholar] [CrossRef]
- Guffa, B.; Nedić, N.M.; Dabić Zagorac, D.Č.; Tosti, T.B.; Gašić, U.M.; Natić, M.M.; Fotirić Akšić, M.M. Characterization of Sugar and Polyphenolic Diversity in Floral Nectar of Different ‘Oblačinska’ Sour Cherry Clones. Chem. Biodivers. 2017, 14, e1700061. [Google Scholar] [CrossRef]
- Vimic, A.V.; Mandic, M.V.; Fotirić Akšić, M.; Vukicevic, K.; Meland, M. Climate potential for apple growing in Norway—Part 1: Zoning of areas with heat conditions favorable for apple growing under observed climate change. Atmosphere 2023, 14, 1993. [Google Scholar] [CrossRef]
- Krogstad, T.; Zivanovic, V.; Simic, A.; Fotirić Akšić, M.; Licina, V.; Meland, M. Nitrogen mineralization of apple orchard soils in regions of western and south-eastern Norway. Agronomy 2023, 13, 2570. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Polyphenolics and Chemical Profiles of Domestic Norwegian Apple (Malus × domestica Borkh.) Cultivars. Front. Nutr. 2022, 9, 941487. [Google Scholar] [CrossRef]
- Horvacki, N.M.; Jakanovski, M.V.; Krstić, Đ.D.; Nedić, J.M.; Dramićanin, A.M.; Fotirić-Akšić, M.M.; Milojković-Opsenica, D.M. Evaluation of Sugar and Organic Acid Composition of Apple Cultivars (Malus domestica Borkh.) Grown in Serbia. Processes 2025, 13, 3093. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Milinčić, D.D.; Špirović Trifunović, B.; Nedić, N.; Gašić, U.M.; Tešić, Ž.L.; Stanojević, S.P.; Pešić, M.B. Monofloral Corn Poppy Bee-Collected Pollen—A Detailed Insight into Its Phytochemical Composition and Antioxidant Properties. Antioxidants 2023, 12, 1424. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.M.; Pešić, M.B.; Pećinar, I.; Dramićanin, A.; Milinčić, D.D.; Kostić, A.Ž.; Gašić, U.; Jakanovski, M.; Kitanović, M.; Meland, M. Diversity and Chemical Characterization of Apple (Malus sp.) Pollen: High Antioxidant and Nutritional Values for Both Humans and Insects. Antioxidants 2024, 13, 1374. [Google Scholar] [CrossRef]
- Menges, F. Spectragryph Optical Spectroscopy Software, version 1.2.14; SpectroscopyNinja: Oberstdorf, Germany, 2016; Available online: http://www.effemm2.de/spectragryph/ (accessed on 27 October 2025).
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Nicolson, S.W. Sweet solutions: Nectar chemistry and quality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210163. [Google Scholar] [PubMed]
- Kostryco, M.; Chwil, M. Nectar Abundance and Nectar Composition in Selected Rubus idaeus L. Varieties. Agriculture 2022, 12, 1132. [Google Scholar] [CrossRef]
- Baker, H.G. Floral nectar sugar constituents in relation to pollinator type. In Handbook of Experimental Pollination Biology; Van Nostrand Reinhold Company: London, UK, 1983; pp. 117–141. [Google Scholar]
- Zauralov, O.A. The composition of nectar sugar in some apple and sour cherry cultivars in relation to bee activity. Sel’sk Khoz Biol. 1983, 3, 99–100. (In Russian) [Google Scholar]
- Sturm, A.; Tang, G.-Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 1999, 4, 401–407. [Google Scholar] [CrossRef]
- Dupont, Y.L.; Hansen, D.M.; Rasmussen, J.T.; Olesen, J.M. Evolutionary changes in nectar sugar composition associated with switches between bird and insect pollination: The Canarian bird-flower element revisited. Funct. Ecol. 2004, 18, 670–676. [Google Scholar] [CrossRef]
- Krömer, T.; Kessler, M.; Lohaus, G.; Schmidt-Lebuhn, A.N. Nectar sugar composition and concentration in relation to pollination syndromes in Bromeliaceae. Plant Biol. 2008, 10, 502–511. [Google Scholar] [CrossRef]
- Nayik, G.A.; Dar, B.N.; Nanda, V. Physico-chemical, rheological and sugar profile of different unifloral honeys from Kashmir valley of India. Arab. J. Chem. 2019, 12, 3151–3162. [Google Scholar] [CrossRef]
- Paul, M.J.; Primavesi, L.F.; Jhurreea, D.; Zhang, Y. Trehalose metabolism and signaling. Annu. Rev. Plant Biol. 2008, 59, 417–441. [Google Scholar] [CrossRef]
- Bieleski, R.L.; Redgwell, R.J. Sorbitol metabolism in nectaries from flowers of Rosaceae. Aust. J. Plant Physiol. 1980, 7, 15–25. [Google Scholar] [CrossRef]
- Brandenburg, A.; Dell’Olivo, A.; Bshary, R.; Kuhlemeier, C. The sweetest thing. Advances in nectar research. Curr. Opin. Plant Biol. 2009, 12, 486–490. [Google Scholar] [CrossRef]
- Rennie, E.A.; Turgeon, R. A comprehensive picture of phloem loading strategies. Proc. Natl. Acad. Sci. USA 2009, 106, 14162–14167. [Google Scholar]
- Soto, V.; Silva, M.F.; Galmarini, C. Effect of Nectar Composition on Bee Attraction for Onion Seed Production. In Nectar—Production, Chemical Composition and Benefits to Animals and Plants; II. Series: Plant Science Research and Practices; Peck, R.L., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2015; pp. 41–58. [Google Scholar]
- del Baño, M.J.; Lorente, J.; Castillo, J.; Benavente-Garcia, O.; del Río, J.A.; Ortuño, A.; Quirin, K.W.; Gerard, D. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. J. Agric. Food Chem. 2003, 51, 4247–4253. [Google Scholar] [CrossRef]
- Afik, O.; Dag, A.; Kerem, Z.; Shafir, S. Analyses of avocado (Persea americana) nectar properties and their perception by honey bees (Apis mellifera). J. Chem. Ecol. 2006, 32, 1949–1963. [Google Scholar] [CrossRef] [PubMed]
- Horvacki, N.; Andrić, F.; Gašić, U.; Đurović, D.; Tešić, Ž.; Fotirić Akšić, M.; Milojković-Opsenica, D. Phenolic Compounds as Phytochemical Tracers of Varietal Origin of Some Autochthonous Apple Cultivars Grown in Serbia. Molecules 2022, 27, 7651. [Google Scholar] [CrossRef] [PubMed]
- Horvacki, N.M.; Milinčić, D.D.; Jović, M.D.; Dramićanin, A.M.; Fotirić-Akšić, M.M.; Pešić, M.B.; Milojković-Opsenica, D.M. Bioassay-guided evaluation of antimicrobial properties and profile of bioactive compounds from leaf, peel and mesocarp of four apple cultivars (Malus domestica Borkh.) grown in Serbia: Application of HPTLC-EDA and UHPLC Q-ToF MS techniques. Food Chem. 2025, 467, 142336. [Google Scholar]
- Palmer-Young, E.C.; Farrell, I.W.; Adler, L.S.; Milano, N.J.; Egan, P.A.; Junker, R.R.; Irwin, R.E.; Stevenson, P.C. Chemistry of floral rewards: Intra-and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecol. Monogr. 2019, 89, e01335. [Google Scholar] [CrossRef]
- Ferreira, S.R.L.; Araújo, J.L.; Franco, M.S.; de Souza, C.M.M.; Pereira, D.S.; da Rocha, C.Q.; Rogez, H.L.G.; Muto, N.A. Evaluation of the Bioactive Compounds of Apis mellifera Honey Obtained from the Açai (Euterpe oleracea) Floral Nectar. Molecules 2024, 29, 4567. [Google Scholar] [CrossRef]
- Naef, R.; Jaquier, A.; Velluz, A.; Bachofen, B. From the Linden Flower to Linden Honey-Volatile Constituents of Linden Nectar, the Extract of Bee-Stomach and Ripe Honey. Chem. Biodivers. 2004, 1, 1870–1879. [Google Scholar] [CrossRef]
- Hagler, J.R.; Buchmann, S.L. Honey bee (Hymenoptera: Apidae) foraging responses to phenolc-rich nectars. J. Kans. Èntomol Soc. 1993, 66, 223–230. [Google Scholar]
- Cerović, R.; Fotirić Akšić, M.; Kitanović, M.; Meland, M. Abilities of the Newly Introduced Apple Cultivars (Malus × domestica Borkh.) ‘Eden’ and ‘Fryd’ to Promote Pollen Tube Growth and Fruit Set with Different Combinations of Pollinations. Agronomy 2025, 15, 909. [Google Scholar] [CrossRef]
- Gismondi, A.; Di Marco, G.; Canuti, L.; Altamura, M.M.; Canini, A. Ultrastructure and development of the floral nectary from Borago officinalis L. and phytochemical changes in its secretion. Plant Sci. 2024, 345, 112135. [Google Scholar] [CrossRef]
- Lopez-Rodulfo, I.M.; Tsochatzis, E.D.; Stentoft, E.W.; Martinez-Carrasco, P.; Bechtner, J.D.; Martinez, M.M. Partitioning and in vitro bioaccessibility of apple polyphenols during mechanical and physiological extraction: A hierarchical clustering analysis with LC-ESI-QTOF-MS/MS. Food Chem. 2024, 441, 138320. [Google Scholar] [CrossRef]
- Navarro-Hoyos, M.; Arnáez-Serrano, E.; Quesada-Mora, S.; Azofeifa-Cordero, G.; Wilhelm-Romero, K.; Quirós-Fallas, M.I.; Alvarado-Corella, D.; Vargas-Huertas, F.; Sánchez-Kopper, A. HRMS Characterization, Antioxidant and Cytotoxic Activities of Polyphenols in Malus domestica Cultivars from Costa Rica. Molecules 2021, 26, 7367. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; García-Villalba, R.; Tomás-Barberán, F.A. Polyphenolic characterisation of old local apple varieties from Southeastern European region. J. Food Compos. Anal. 2013, 31, 199–211. [Google Scholar] [CrossRef]
- Challice, J. Chemotaxonomic studies in the family Rosaceae and the evolutionary origins of the subfamily Maloideae. Preslia 1981, 53, 289–304. [Google Scholar]
- WaldÜbersicht, B.; Galensa, R. Nachweis von fruchtsaftmanipulationen bei apfel-und birnensaft. Z. Lebensm. Unters. Forsch. 1989, 188, 107–114. [Google Scholar] [CrossRef]
- Bayram, N.E.; Gercek, Y.C.; Çelik, S.; Mayda, N.; Kostić, A.Ž.; Dramićanin, A.M.; Özkök, A. Phenolic and free amino acid profiles of bee bread and bee pollen with the same botanical origin–similarities and differences. Arab. J. Chem. 2021, 14, 103004. [Google Scholar] [CrossRef]
- Gosch, C.; Halbwirth, H.; Stich, K. Phloridzin: Biosynthesis, distribution and physiological relevance in plants. Phytochemistry 2010, 71, 838–843. [Google Scholar] [CrossRef] [PubMed]
- González-Teuber, M.; Heil, M. Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal Behav. 2009, 4, 809–813. [Google Scholar] [PubMed]
- Magner, E.T.; Roy, R.; Saxhaug, K.F.; Zambre, A.; Bruns, K.; Snell-Rood, E.C.; Hampton, M.; Hegeman, A.D.; Carter, C.J. Post-secretory synthesis of a natural analog of iron-gall ink in the black nectar of Melianthus spp. New Phytol. 2023, 239, 2026–2040. [Google Scholar] [CrossRef]
- Niño, E.L.; Yokota, S.; Stacy, W.H.O.; Arathi, H.S. Dietary phytochemicals alter hypopharyngeal gland size in honey bee (Apis mellifera L.) workers. Heliyon 2022, 8, e10452. [Google Scholar] [CrossRef]
- Egan, P.A.; Adler, L.S.; Irwin, R.E.; Farrell, I.W.; Palmer-Young, E.C.; Stevenson, P.C. Crop Domestication Alters Floral Reward Chemistry With Potential Consequences for Pollinator Health. Front. Plant Sci. 2018, 26, 1357. [Google Scholar] [CrossRef] [PubMed]
- Bernklau, E.; Bjostad, L.; Hogeboom, A.; Carlisle, A.; Arathi, H.S. Dietary Phytochemicals, Honey Bee Longevity and Pathogen Tolerance. Insects 2019, 10, 14. [Google Scholar] [CrossRef]
- Malovrh, K.; Ravnjak, B.; Križman, M.; Bavcon, J. Phenolic Compounds in Nectar of Crataegus monogyna Jacq. and Prunus spinosa L. Plants 2025, 14, 2064. [Google Scholar] [CrossRef]
- Kim, J.H.; Mullin, C.A. An isorhamnetin rhamnoglycoside serves as a costimulant for sugars and amino acids in feeding responses of adult western corn rootworms (Diabrotica virgifera virgifera) to corn (Zea mays) pollen. J. Chem. Ecol. 2007, 33, 501–512. [Google Scholar] [CrossRef]
- Stanojević, S.P.; Milinčić, D.D.; Smiljanić, N.; Pešić, M.B.; Nedić, N.M.; Kolašinac, S.; Dojčinović, B.; Dajić-Stevanović, Z.; Kostić, A.Ž. Conventional vs. Organically Produced Honey—Are There Differences in Physicochemical, Nutritional and Sensory Characteristics? Foods 2024, 13, 3573. [Google Scholar] [CrossRef]
- Qiao, J.; Feng, Z.; Zhang, Y.; Xiao, X.; Dong, J.; Haubruge, E.; Zhang, H. Phenolamide and flavonoid glycoside profiles of 20 types of monofloral bee pollen. Food Chem. 2023, 405, 134800. [Google Scholar]
- Glavnik, V.; Bensa, M.; Vovk, I.; Guzelmeric, E. High-performance thin-layer chromatography–multi-stage mass spectrometry methods for analyses of bee pollen botanically originating from sweet chestnut (Castanea sativa Mill.). J. Planar Chromatogr. 2023, 36, 471–482. [Google Scholar] [CrossRef]
- Boutoub, O.; Jadhav, S.; Zheng, X.; El Ghadraoui, L.; Al Babili, S.; Fernie, A.R.; Figueiredo, A.C.; Miguel, M.C.; Borghi, M. Biochemical characterization of Euphorbia resinifera floral cyathia. J. Plant Physiol. 2024, 293, 154184. [Google Scholar] [CrossRef]
- Maksimović, Z.; Nedic, N. In vitro antioxidant activity of honeydew and multifloral types of honey from Serbia. Acta Period. Technol. 2013, 44, 269–277. [Google Scholar] [CrossRef]
- Benzie, I.F.; Devaki, M. The Ferric Reducing/Antioxidant Power (FRAP) Assay for Non-Enzymatic Antioxidant Capacity: Concepts, Procedures, Limitations and Applications. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; Wiley: Hoboken, NJ, USA, 2018; pp. 77–106. [Google Scholar]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Nickless, E.M.; Holroyd, S.E.; Hamilton, G.; Gordon, K.C.; Wargent, J.J. Analytical method development using FTIR-ATR and FT-Raman spectroscopy to assay fructose, sucrose, glucose and dihydroxyacetone, in Leptospermum scoparium nectar. Vib. Spectrosc. 2016, 84, 38–43. [Google Scholar] [CrossRef]
- Fernández Pierna, J.A.F.; Abbas, O.; Dardenne, P.; Baeten, V. Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics. Biotechnol. Agron. Soc. Environ. 2011, 15, 75–84. [Google Scholar]
- Anjos, O.; Santos, A.J.; Paixão, V.; Estevinho, L.M. Physicochemical characterization of Lavandula spp. honey with FT-Raman spectroscopy. Talanta 2018, 178, 43–48. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Zhihua, L.; Jiyong, S.; Zhai, X.; Wang, S.; Mariod, A.A. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy. Food Chem. 2017, 226, 202–211. [Google Scholar] [CrossRef]
- Magdas, D.A.; Guyon, F.; Berghian-Grosan, C.; Molnar, C.M. Challenges and a step forward in honey classification based on Raman spectroscopy. Food Control 2021, 123, 107769. [Google Scholar] [CrossRef]
- De Oliveira, L.F.C.; Colombara, R.; Edwards, H.G. Fourier transform Raman spectroscopy of honey. Appl. Spectrosc. 2002, 56, 306–311. [Google Scholar] [CrossRef]
- Singh, D.P.; Verma, S.; Prabha, R. Investigations on Antioxidant Potential of Phenolic Acids and Flavonoids: The Common Phytochemical Ingredients in Plants. J. Plant Biochem. Physiol. 2018, 6, 3. [Google Scholar]
- Sasaki, K.; Takahashi, T. A flavonoid from Brassica rapa flower as the UV-absorbing nectar guide. Phytochemistry 2002, 61, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.C. Bees. Their Vision, Chemical Senses, and Language by Karl von Frisch. Great Lakes Entomol. 1972, 5. Available online: https://scholar.valpo.edu/tgle/vol5/iss3/6 (accessed on 25 December 2025).
- Li, S.; Shan, Y.; Zhu, X.; Zhang, X.; Ling, G. Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. J. Food Compos. Anal. 2012, 28, 69–74. [Google Scholar] [CrossRef]
- Özbalci, B.; Boyaci, İ.H.; Topcu, A.; Kadılar, C.; Tamer, U. Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chem. 2013, 136, 1444–1452. [Google Scholar] [CrossRef]




| Cultivar | Species | Main Cultivar or Polliniser | Ripening Time | Yields | Code |
|---|---|---|---|---|---|
| ‘Red Aroma’ | M. domestica | Main cultivar | Late | High | N1 |
| ‘Discovery’ | M. domestica | Main cultivar | Early | Average | N2 |
| ‘Summerred’ | M. domestica | Main cultivar | Mid | High | N3 |
| ‘Rubinstep’ | M. domestica | Main cultivar | Late | High | N4 |
| ‘Elstar’ | M. domestica | Main cultivar | Late | High | N5 |
| ‘Dolgo’ (crab apple) | M. sylvestris | Polliniser | Mid | Low | N6 |
| ‘Professor Sprenger’ (crab apple) | M. sylvestris | Polliniser | Late | Low | N7 |
| ‘Asfari’ | M. domestica | Main cultivar | Mid | Average | N8 |
| ‘Eden’ | M. domestica | Main cultivar | Mid | Average | N9 |
| ‘Fryd’ | M. domestica | Main cultivar | Late | Average | N10 |
| ‘Katja’ | M. domestica | Polliniser | Mid | Average | N11 |
| Sort | Sorbitol | Mannitol | Trehalose | Glucose | Fructose | Sucrose | Isomaltose | Sum |
|---|---|---|---|---|---|---|---|---|
| ‘Red Aroma’ | 0.56 ± 0.02 b * | 0.240 ± 0.004 c | 0.61 ± 0.03 b | 7.3 ± 0.3 c | 15 ± 2 d | 5.4 ± 0.3 e | 2.9 ± 0.2 b | 31.6 d |
| ‘Discovery’ | 0.73 ± 0.02 c | 0.460 ± 0.007 d | 0.59 ± 0.03 b | 13.4 ± 0.6 e | 19 ± 2 f | 0.29 ± 0.02 ab | 0.34 ± 0.03 a | 35.1 e |
| ‘Summerred’ | 1.55 ± 0.04 d | 0.190 ± 0.003 bc | 2.6 ± 0.2 e | 10.8 ± 0.5 d | 19 ± 2 ef | 0.84 ± 0.05 | 3.9 ± 0.3 c | 38.5 f |
| ‘Rubinstep’ | 0.72 ± 0.02 c | 0.140 ± 0.002 b | 1.67 ± 0.08 c | 19.5 ± 0.9 g | 25 ± 3 g | 0.48 ± 0.03 b | 0.21 ± 0.02 a | 47.3 g |
| ‘Elstar’ | 0.70 ± 0.02 c | 0.210 ± 0.003 c | 3.0 ± 0.2 f | 5.6 ± 0.3 b | 12 ± 1 c | 1.20 ± 0.08 c | 0.9 ± 0.1 a | 23.1 c |
| ‘Dolgo’ | 3.49 ± 0.08 f | - | 2.2 ± 0.1 d | 8.0 ± 0.4 c | 17 ± 2 e | 2.2 ± 0.1 d | 5.1 ± 0.4 e | 38.3 f |
| ‘Professor Sprenger’ | 2.29 ± 0.05 e | 2.88 ± 0.05 d | 4.5 ± 0.2 f | 15.6 ± 0.7 f | 21 ± 2 f | 0.50 ± 0.03 b | 4.2 ± 0.3 d | 50.8 g |
| ‘Asfari’ | 0.070 ± 0.001 a | 0.040 ± 0.001 a | 0.080 ± 0.004 a | 0.56 ± 0.03 a | 1.2 ± 0.1 ab | 1.47 ± 0.09 c | - | 3.4 b |
| ‘Eden’ | 0.040 ± 0.001 a | 0.240 ± 0.004 c | 0.110 ± 0.005 a | 0.190 ± 0.008 a | 0.33 ± 0.04 a | 0.130 ± 0.008 a | - | 1.0 a |
| ‘Fryd’ | - | - | - | 0.49 ± 0.03 a | 0.21 ± 0.03 a | 0.010 ± 0.001 a | - | 0.7 a |
| ‘Katja’ | 0.060 ± 0.001 a | 0.110 ± 0.002 b | - | 0.100 ± 0.007 a | 2.4 ± 0.3 b | 0.030 ± 0.002 a | - | 2.7 ab |
| No. | RT | Compound Name | Formula | Calculated Mass | m/z Exact Mass | mDa | MS Fragments | Presence of Compounds in Nectar Samples |
|---|---|---|---|---|---|---|---|---|
| Phenolic acids and derivatives | ||||||||
| Hydroxybenzoic acid and derivatives | ||||||||
| 1 | 5.66 | Hydroxybenzoic acid | C7H5O3− | 137.0239 | 137.0220 | 1.85 | 108.0180(100) | N1-5,N7-11 |
| 2 | 6.53 | Hydroxyphenylacetic acid | C8H7O3− | 151.0395 | 151.0368 | 2.71 | 107.0468(100), 108.0191(59) | N11 |
| 3 | 3.30 | Hydroxybenzoic acid hexoside is. I | C13H15O8− | 299.0767 | 299.0728 | 3.91 | 137.0212(100) | N4 |
| 4 | 5.73 | Hydroxybenzoic acid hexoside is. II | C13H15O8− | 299.0767 | 299.0742 | 2.54 | 137.0215(100), 136.0118(35) | N1,N2,N4,N5,N7,N8 |
| 5 | 3.30 | Dihydroxybenzoic acid (like gentisic acid) * | C7H5O4− | 153.0188 | 153.01645 | 2.34 | 108.0188(100), 109.0262(81) | N1-3,N5-8, N11 |
| 6 | 5.93 | Dihydroxybenzoic acid pentosyl hexoside | C18H23O13− | 447.1144 | 447.1154 | −0.94 | 152.0083(100), 108.0192(14), 109.0258(13), 153.0137(14), 315.0678(2), 447.11(36) | N2,N3,N11 |
| 7 | 1.55 | Gallic acid * | C7H5O5− | 169.0137 | 169.0112 | 2.46 | 125.021(100), 124.0132(70) | N1,N2,N5,N7,N8,N10 |
| 8 | 5.85 | Methyl gallate | C8H7O5− | 183.0293 | 183.0262 | 3.07 | 124.0128(100), 123.0053(54), 168.0004(2) | N8 |
| 9 | 7.68 | Ethyl gallate | C9H9O5− | 197.0450 | 197.0422 | 2.85 | 124.0134(100), 125.0201(27), 169.0098(2) | N5,N7-11 |
| 10 | 3.70 | Vanillyl alcohol | C8H9O3− | 153.0552 | 153.0519 | 3.25 | 123.0420(100), 122.0342(75) | N1-5,N8-10 |
| 11 | 4.44 | Vanillic acid hexoside | C14H17O9− | 329.0873 | 329.0849 | 2.38 | 121.0259(100), 123.0402(2), 152.0087(2), 167.0278(1) | N1-9,N11 |
| Hydroxycinnamic acid and derivatives | ||||||||
| 12 | 6.66 | Coumaric acid hexoside | C15H17O8− | 325.0923 | 325.0884 | 3.89 | 119.0472(100), 163.0367(20) | N5,N8,N10 |
| 13 | 7.68 | Coumaroylquinic acid | C16H17O8− | 337.0923 | 337.0883 | 4.03 | 191.0523(100), 119.0474(2), 127.0370(3), 163.0371(1), 173.0414(2) | N1-3,N5-10 |
| 14 | 6.86 | Caffeic acid * | C9H7O4− | 179.0344 | 179.0339 | 0.46 | 135.0416(100), 134.0335(72) | N1-3,N5,N7-11 |
| 15 | 10.04 | Ethyl caffeic acid (ethyl caffeate) | C11H11O4− | 207.0657 | 207.0628 | 2.92 | 135.0399(100), 133.0254(82), 134.0308(36), 161.0149(10) | N1 |
| 16 | 6.60 | Caffeoylquinic acid (like chlorogenic acid) * | C16H17O9− | 353.0873 | 353.0842 | 3.09 | 191.0523(100), 135.0407(2), 161.0204(2), 173.0409(1), 179.0326(1) | N1-3,N6-10 |
| 17 | 7.41 | Ferulic acid hexoside | C16H19O9− | 355.1029 | 355.0974 | 5.45 | 134.0343(100), 149.0571(30), 160.0118(60), 175.0357(68), 193.0462(38) | N2,N3,N5,N9,N10 |
| 18 | 7.48 | Feruloylquinic acid | C17H19O9− | 367.1029 | 367.0991 | 3.83 | 191.0523 (100), 111.0421(11), 134.0345(30), 149.0581(2), 155.0320(2), 173.0415(10), 193.0481(17) | N1,N2,N6-11 |
| 19 | 9.70 | Feruloyl-caffeoylquinic acid | C26H25O12− | 529.1352 | 529.1324 | 2.72 | 127.0372(100), 153.0153(83), 161.0242(5), 173.0414(4), 179.0309(5), 191.0522(24), 529.1478(7) | N3 |
| Hydroxycinnamic acid amides (Phenylamides) | ||||||||
| 20 | 4.17 | Coumaroyl putrescine (N1-coumaroyl putrescine) | C13H19N2O2+ | 235.1447 | 235.1443 | 0.43 | 119.0493(100), 147.0437(99) | N1-5,N7-10 |
| 21 | 8.82 | Dicoumaroyl putrescine (N1,N6-di-coumaroyl putrescine) | C22H25N2O4+ | 381.1814 | 381.1845 | −3.08 | 147.0438(100), 119.0495(10), 218.1168(5), 235.1438(4) | N1,N5-11 |
| 22 | 7.81 | Dicoumaroyl spermidine (N1,N5-di-coumaroyl spermidine) | C25H32N3O4+ | 438.2393 | 438.2387 | 0.63 | 147.0438(100), 119.0495(6), 204.1014(57), 218.1165(16), 275.1750(16), 292.2013(47), 421.2144(11) | N1-5,N7,N9-11 |
| 23 | 10.10 | Tricoumaroyl spermidine (N1,N5,N10-tri-coumaroyl spermidine) | C34H38N3O6+ | 584.2755 | 584.2802 | −4.65 | 438.2389(100), 147.0442(43), 204.1016(49), 218.1178(5), 275.1752(15), 292.2015(23), 420.2277(26) | N1-11 |
| 24 | 9.76 | Dicoumaroyl caffeoyl spermidine (N1,N5-di-coumaroyl-N10-caffeoyl spermidine) | C34H38N3O7+ | 600.2711 | 600.2751 | −4.06 | 454.2333(100), 147.0439(42), 204.1018(48), 220.0960(14), 275.1748(15), 292.1998(30), 438.23783(61), | N1,N2,N4,N5,N8,N9 |
| Coumarins and derivatives | ||||||||
| 25 | 6.79 | Aesculetin | C9H5O4− | 177.0193 | 177.0181 | 1.21 | 105.0319(100), 121.0264(28), 133.0262(62), 149.0209(27) | N1-5,N7-11 |
| 26 | 6.53 | Aesculin | C15H15O9− | 339.0716 | 339.0678 | 3.79 | 177.0161(100), 133.0256(6) | N5 |
| Flavonoids | ||||||||
| Flavonol aglycones and glycosides | ||||||||
| 27 | 10.71 | Kaempferol | C15H9O6− | 285.0399 | 285.0403 | −0.41 | 285.0359(100), 143.047(9), 159.0412(11), 171.0415(6), 187.0361(14), 211.0344(9), 229.0460(12), 239.0299(11) | N9,N10 |
| 28 | 10.97 | Kaempferide | C16H11O6− | 299.0556 | 299.0503 | 5.32 | 255.0262(100), 211.0364(3), 227.0311(80), 228.0341(13), 284.0286(23), 285.0317(5) | N7,N8 |
| 29 | 8.89 | Kaempferol 3-O-pentoside | C20H17O10− | 417.0822 | 417.0817 | 0.53 | 284.0284(100), 227.0315(30), 255.0258(53), 285.0356(51) | N1,N4,N9,N10 |
| 30 | 9.03 | Kaempferol 3-O-rhamnoside | C21H19O10− | 431.0978 | 431.0963 | 1.46 | 284.0288(100), 227.0309(18), 255.0262(34), 285.0357(95) | N1-11 |
| 31 | 10.98 | Quercetin-dimethyl-ether | C17H13O7− | 329.0661 | 329.0619 | 4.23 | 211.1321(11), 215.0294(9), 243.0254(9), 255.0243(5), 271.021(57), 299.0149(100), 300.0187(20) | N2,N4,N5,N7-10 |
| 32 | 8.49 | Quercetin 3-O-pentoside | C20H17O11− | 433.0771 | 433.0776 | −0.50 | 301.0289(100), 150.9987(16), 178.9952(19), 300.0242(79) | N10 |
| 33 | 8.56 | Quercetin 3-O-rhamnoside | C21H19O11− | 447.0933 | 447.0931 | 0.14 | 300.0234(100), 151.0003(8), 178.9960(6), 271.0205(15), 301.0301(68) | N3,N7,N8,N10,N11 |
| 34 | 10.64 | Isorhamnetin * | C16H11O7− | 315.0505 | 315.0487 | 1.79 | 300.0238(100), 137.9923(22), 165.9874(49), 174.0287(25), 243.0261(23), 255.0257(33), 271.0204(21), 301.0269(22) | N1,N2,N4,N5,N7-11 |
| 35 | 8.43 | Isorhamnetin 3-O-hexoside | C22H21O12− | 477.1033 | 477.1086 | −5.35 | 299.0155(100), 271.0204(20), 300.0212(45), 314.0384(45), 315.0458(18), 477.0987(6) | N2,N10 |
| 36 | 7.95 | Isorhamnetin 3-O-(2″-O-rhamnosyl)hexoside | C28H31O16− | 623.1618 | 623.1596 | 2.18 | 314.0389(100), 271.0202(5), 299.0154(43), 300.0202(11), 315.0438(29), 459.0897(3) | N1,N2,N4,N5,N7,N9,N10 |
| 37 | 7.74 | Isorhamnetin 3-O-(2″-O-hexosyl)hexoside | C28H31O17− | 639.1561 | 639.1533 | 2.82 | 314.0391(100), 271.0204(6), 299.0156 (46), 300.0217(20), 315.0445(44), 459.0921(5), 639.1508(53) | N1,N2,N4,N5,N7-10 |
| 38 | 8.01 | Isorhamnetin 3-O-(2″-hexosyl-6″-maloyl) hexoside | C31H33O20− | 725.1565 | 725.1596 | −3.13 | 681.1621(100), 299.0144(30), 300.0212(12), 314.0391(86), 315.0432(31), 501.1024(4) | N1,N2,N4,N5,N10 |
| 39 | 10.78 | Syringetin | C17H13O8− | 345.0616 | 345.0569 | 4.62 | 330.0342(100), 149.0209(19), 243.0259(22), 259.0211(15), 271.0206(18), 287.0159(18), 315.0107(78) | N1,N2,N4,N5,N7-11 |
| 40 | 8.55 | Syringetin 3-O-hexoside | C23H23O13− | 507.1139 | 507.1136 | 0.28 | 329.0260(100), 301.0314(17), 330.0302(27), 344.0484(29), 345.0542(10), 507.1101(11) | N2,N4,N10 |
| 41 | 8.01 | Syringetin 3-O-(2″-O-rhamnosyl)hexoside | C29H33O17− | 653.1718 | 653.1654 | 6.40 | 344.0494(100), 329.0261(51), 330.0302(13), 345.0542(34), 489.0944(2), 653.1669(48) | N1,N2,N4,N5,N7-11 |
| Other detected flavonoids | ||||||||
| 42 | 9.70 | Eriodictyol | C15H11O6− | 287.0556 | 287.0522 | 3.36 | 135.042(100), 107.0107(17), 123.0415(41), 125.0208(21), 150.9999(18), 167.0315(36) | N2,N7-9 |
| 43 | 7.75 | Taxifolin | C15H11O7− | 303.0505 | 303.0487 | 1.77 | 230.0182(100), 149.0572(8), 175.036(10), 186.0286(15), 189.0518(23), 213.0522(10), 231.022(18), 241.0465(9) | N2-5,N7-11 |
| Dihydrochalcone glycosides | ||||||||
| 44 | 8.96 | Phloretin 2′-O-hexoside (Phlorizin) | C21H23O10− | 435.1291 | 435.1258 | 3.28 | 167.0323(100), 123.0401(23), 125.0208(28), 273.0724(45) | N7 |
| 45 | 8.29 | Phloretin 2′-O-(6″-O-hexosyl)hexoside | C27H33O15− | 597.1819 | 597.1757 | 6.18 | 273.0727(100), 123.0421(2), 125.0209(6), 167.0313(24), 168.0350(2), 597.1803(4) | N7 |
| Organic acid and derivatives | ||||||||
| 46 | 0.87 | Citric acid | C6H7O7− | 191.0192 | 191.0165 | 2.74 | 111.0059(100), 112.0091(5) | N1-11 |
| 47 | 5.99 | Isopropylmalic acid | C7H11O5− | 175.0606 | 175.0582 | 2.39 | 115.0373(100), 113.0581(53), 131.0681(3) | N1-11 |
| Phenolic Compounds | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N10 | N11 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| (mg/kg Nectar) | |||||||||||
| Dihydroxybenzoic acid (Gentisic acid) | 1.75 | 4.50 | 6.35 | - | 1.48 | <LOQ | <LOQ | 3.18 | - | - | 39.06 |
| Gallic acid | <LOQ | <LOQ | - | - | <LOQ | - | <LOQ | 1.22 | - | 1.53 | - |
| Caffeic acid | <LOQ | <LOQ | <LOQ | - | <LOQ | - | 2.54 | 1.24 | 1.15 | 0.87 | <LOQ |
| Caffeoylquinic acid (Chlorogenic acid) | 0.67 | 2.04 | 3.32 | - | - | 7.09 | 3.67 | 7.20 | 8.59 | 5.42 | - |
| Isorhamnetin | 1.34 | 4.92 | - | 1.72 | 5.43 | - | 12.52 | 15.63 | 49.04 | 50.83 | 6.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Akšić, M.F.; Pešić, M.; Pećinar, I.; Jakanovski, M.; Milinčić, D.; Kostić, A.; Kitanović, M.; Gašić, U.; Dabić Zagorac, D.; Opsenica, D.M.; et al. Chemical Fingerprint of Floral Nectar in Apple (Malus sp.) Cultivars Grown in Norway. Antioxidants 2026, 15, 103. https://doi.org/10.3390/antiox15010103
Akšić MF, Pešić M, Pećinar I, Jakanovski M, Milinčić D, Kostić A, Kitanović M, Gašić U, Dabić Zagorac D, Opsenica DM, et al. Chemical Fingerprint of Floral Nectar in Apple (Malus sp.) Cultivars Grown in Norway. Antioxidants. 2026; 15(1):103. https://doi.org/10.3390/antiox15010103
Chicago/Turabian StyleAkšić, Milica Fotirić, Mirjana Pešić, Ilinka Pećinar, Mihajlo Jakanovski, Danijel Milinčić, Aleksandar Kostić, Marko Kitanović, Uroš Gašić, Dragana Dabić Zagorac, Dušanka Milojković Opsenica, and et al. 2026. "Chemical Fingerprint of Floral Nectar in Apple (Malus sp.) Cultivars Grown in Norway" Antioxidants 15, no. 1: 103. https://doi.org/10.3390/antiox15010103
APA StyleAkšić, M. F., Pešić, M., Pećinar, I., Jakanovski, M., Milinčić, D., Kostić, A., Kitanović, M., Gašić, U., Dabić Zagorac, D., Opsenica, D. M., & Meland, M. (2026). Chemical Fingerprint of Floral Nectar in Apple (Malus sp.) Cultivars Grown in Norway. Antioxidants, 15(1), 103. https://doi.org/10.3390/antiox15010103

