Bioactive Compounds of Agro-Industrial By-Products: Current Trends, Recovery, and Possible Utilization
Abstract
:1. Introduction
2. Literature Search Methodology
3. AIBPs Are Rich Sources of Bioactive Compounds
3.1. Fruit and Vegetable Waste
3.2. Citrus Processing Waste
3.3. Crustaceans and Fish Processing Waste
3.4. Other Waste
4. Recovery of Bioactive Compounds from AIBPs
4.1. Processing of AIBPs
4.2. Recovery of Polyphenols
AIBPs | Extraction Method | Bioactive Compounds | References |
Sicana odorifera fruit epicarp | Heat-assisted extraction for 62 min, 90 °C, 27% ethanol, and UAE (23 min, 500 W, 40% ethanol) | Anthocyanin, 200–281 mg total anthocyanin content/g extract | [104] |
Cocoa shells | UAE using 30:49:21 (v/v) hexane/ethanol/water ratio with 15 min extraction time at 150 W, 19.9 kHz, and 40 °C | Gluconic acid, citric acid, protocatechuic acid, procyanidin, catechin, epicatechin and hydroxybenzoic acid, linoleic acid, and oleic acid | [50] |
Sardine (Sardina pilchardus) | Oil extraction with SCE with CO2 at 25 MPa and 40 °C to obtain the oil; supercritical water extraction at 90–250 °C to obtain fish protein hydrolysate | Oil rich in EPA (4.4%) and DHA (12.8%); fish protein hydrolysate rich in amino acids (404–818 mg/g) | [23] |
Wine lees (oenological waste) | Water extraction at 40 °C for 30 min stirring, with the lees/water ratio of 1:10 (v/v), followed by ultrafiltration using 30 kDa polyacrylonitrile (PAN) membrane | Astilbin, caftaric acid, cis-coutaric acid, trans-coutaric acid, and gallic acid | [47] |
Orange, lemon, and clementine peel | Solid-liquid extraction utilizing a ethanol/water ratio of 2:3 (v/v) for orange and lemon and 1:4 for clementine at 90 °C for 15 min | Hesperidin (280–673 mg/g), naringin, trans-ferulic and p-coumaric acid | [75] |
Tomato processing waste (peel and seeds) | Ultrasonic and enzymatic pretreatment with ultrasonic time of 60 min, pectinase concentration of 0.8 g/100 g DW, cellulase concentration of 2.5 g/100 g DW, and pH of 5.3 utilizing 2:1:1 (v/v) hexane/acetone/methanol | Lycopene (94.3 mg/kg DW) | [31] |
Olive tree pruning and olive mill leaves | Extraction utilizing 50% ethanol or 50% acetone with a solid/liquid ratio of 1:6 (w/v) and extraction temperature of 55 °C for 90 min | Rutin, luteolin, and its mono- and di-glucoside derivatives, and derivatives chrysoeriol (glucoside) and apigenin (rutinoside) | [101] |
Tea waste | Steam explosion pretreatment to destroy and restructure the porous network of waste resulted in the increased solubility and extractability of metabolites | Steam explosion enhanced polyphenols, caffeine, saponin, water-soluble sugars recovery, and antioxidant activity by 15.5, 14.1, 28.8, 74.8, and 20%, respectively | [105] |
Olive leaf | Polyphenol extraction by temperature-swing adsorption followed by solvent-resistant nanofiltration utilizing polybenzimidazole-based membranes | 95–99% pure polyphenols, namely oleuropein, luteolin, and pinoresinol | [106] |
Red pitaya (Hylocereus costaricensis) peel | UAE at 487 W power for 38 min | Betacyanin (36 mg/g dw), phyllocactin, isophyllocactin, isobetanin, betanin, oxalic acid malic acids, γ-tocopherol (11.8 mg/100 g dw), α-tocopherol (3.10 mg/100 g dw), δ-tocopherol and β-tocopherol | [52] |
Olive oil mill wastes | Extraction utilizing ethyl acetate | Tyrosol (12.9 g/L extract), hydroxytyrosol (1.22 g/L extract), oleuropein (2.1 g/L extract), caffeic acid, verbascoside, luteolin, vanillic acid, p-cumaric acid, ferulic acid, and apigenin, | [107] |
Acerola (Malpighia emarginata DC.) pomace | SWE at a water flow rate of 4 mL/min, 10 MPa, and temperature of 130 °C | Kaempferol, isorhamnetin, quercetin, and ascorbic acid | [53] |
Pomegranate (Punica granatum L.) peel | PLE at 10.34 MPa pressure, temperature of 200 °C and 77% ethanol | Punicalagin β, Punicalagin γ, Gallic acid, and Ellagic acid | [108] |
Avocado peel | Hydrothermal treatment at 150 °C for the highest recovery of total oligosaccharides and 170 C° for the highest recovery of TFC, TPC, and antioxidant activities | Oligogalacturonides, gentisic acid/protocatechuic acid, benzoic acid, 4-hydroxybenzoic acid, syringic acid, vanillic acid, procyanidin dimer, catechin, and epicatechin | [109] |
Pomegranate seed | Protease treatment at a concentration of 50 U/g seeds for 14 h, at pH of 7.2 and 45 °C | Oil, proteins, and dietary fiber | [110] |
Mango peel | SCE at 25.0 MPa, 15% (w/w) ethanol at 60 °C | β-carotene (1.9 mg/g DW) | [54] |
Pomace press-cake | Aqueous enzyme-assisted extraction utilizing 1.2 units of alkaline protease/100 g press-cake, pH 9, 60 °C, 2 h | Polyphenols, fatty acids, tocols (α-tocopherol, γ-tocopherol), and phytosterol (β-sitosterol) | [111] |
Onion (Allium cepa L.) peel | Extraction utilizing DES solvent choline chloride/urea (molar ratio of 1:2), extraction time of 120 min at 60 °C, and solvent-to-sample ratio 50:1 | Quercetin (6.19 mg/g), myricetin (0.16 mg/g), and kaempferol (0.35 mg/g) | [56] |
Orange peel | Extraction utilizing the DES solvent choline chloride/ethylene glycol (1:4) at a temperature of 60 °C, solid-to-liquid ratio of 1:10, and 100 min extraction time | TPC of 3.61 mg GAE/g of orange peel. gallic acid, p-coumaric acid, caffeic acid, thymol, trans-cinnamic acid, and ferulic acid | [112] |
Kiwifruit pomace | SWE under 200 °C, extraction time of 90 min, and the extraction pressure of 5 MPs | (+)-catechin, protocatechuic acid, p-coumaric acid, caffeic acid, and chlorogenic acid, | [58] |
Jackfruit (Artocarpus heterophyllus Lam.) peel | Ultrasonic microwave-assisted extraction using 63% ethanol, solvent-to-solid ratio of 34:1, 160 W microwave power, and 20 min irradiation time | TPC (8.14 mg GAE/g DW), catechin, gallic acid, and chlorogenic acid | [59] |
Papaya seeds | SWE at 150 °C for 5 min | 3,4 Dihydroxybenzoic acid, 4-hydroxymethylbenzoic acid, ferulic acid, chlorogenic acid, gallic acid, methoxyphenylacetic acid, salicylic acid, vanillic acid, myricetin, and resveratrol with the TPC of 417 µg/g of extract. | [61] |
4.3. Recovery of Carotenoids
4.4. Novel Extraction Methods
4.5. Techno-Economic Assessment of Polyphenols and Carotenoids Recovery from AIBPs
5. Recovery of Oligosaccharides and Pectin
6. Microencapsulation
7. Applications of Bioactive Compounds Obtained from Food Waste and By-Products
7.1. Food, Nutraceuticals, and Probiotics
7.2. Stabilizer in Vegetable Oil
7.3. Biodegradable Packaging Materials
Active and Intelligent Packaging
8. Circular Bio-Economy Approach
9. Challenges in AIBPs Valorization
10. Safety Hazards Related to AIBPs Valorization
11. Conclusions and Future Perspective
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forbes, H.; Peacock, E.; Abbot, N.; Jones, M. Food Waste Index Report 2024. Think Eat Save: Tracking Progress to Halve Global Food Waste. 2024. Available online: https://wedocs.unep.org/handle/20.500.11822/45230;jsessionid=57255362A942DD6DFF52499C45F46B00 (accessed on 12 March 2025).
- UNEP. Food Waste Index Report 2021. 2021. Available online: https://wedocs.unep.org/handle/20.500.11822/35280 (accessed on 12 March 2025).
- FAO. The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019; pp. 2–13. [Google Scholar]
- Assefa, A.D.; Saini, R.K.; Keum, Y.S. Extraction of antioxidants and flavonoids from yuzu (Citrus junos Sieb ex Tanaka) peels: A response surface methodology study. J. Food Meas. Charact. 2016, 11, 364–379. [Google Scholar] [CrossRef]
- Shahidi, F.; Vamadevan, V.; Oh, W.Y.; Peng, H. Phenolic compounds in agri-food by-products, their bioavailability and health effects. J. Food Bioact. 2019, 5, 57–119. [Google Scholar]
- Saini, R.K.; Moon, S.H.; Keum, Y.S. An updated review on use of tomato pomace and crustacean processing waste to recover commercially vital carotenoids. Food Res. Int. 2018, 108, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Moayedi, A.; Mora, L.; Aristoy, M.C.; Safari, M.; Hashemi, M.; Toldra, F. Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from tomato waste proteins fermented using Bacillus subtilis. Food Chem. 2018, 250, 180–187. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Gao, R.; Ye, F.; Zhao, G. Sustainable valorisation of tomato pomace: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 172–187. [Google Scholar] [CrossRef]
- Medina-Herrera, N.; Martínez-Ávila, G.C.G.; Robledo-Jiménez, C.L.; Rojas, R.; Orozco-Zamora, B.S. From Citrus Waste to Valuable Resources: A Biorefinery Approach. Biomass 2024, 4, 784–808. [Google Scholar] [CrossRef]
- Vicente, F.A.; Ventura, S.P.M.; Passos, H.; Dias, A.C.R.V.; Torres-Acosta, M.A.; Novak, U.; Likozar, B. Crustacean waste biorefinery as a sustainable cost-effective business model. Chem. Eng. J. 2022, 442, 135937. [Google Scholar] [CrossRef]
- Assefa, A.D.; Saini, R.K.; Keum, Y.-S. Fatty acids, tocopherols, phenolic and antioxidant properties of six citrus fruit species: A comparative study. J. Food Meas. Charact. 2017, 11, 1665–1675. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, L.; Liu, H.; Zhao, T.; Meng, C.; Liu, Z.; Liu, X. Bioactive compounds andin vitroantioxidant activities of peel, flesh and seed powder of kiwi fruit. Int. J. Food Sci. Technol. 2018, 53, 2239–2245. [Google Scholar] [CrossRef]
- Dias, M.; Caleja, C.; Pereira, C.; Calhelha, R.C.; Kostic, M.; Sokovic, M.; Tavares, D.; Baraldi, I.J.; Barros, L.; Ferreira, I. Chemical composition and bioactive properties of byproducts from two different kiwi varieties. Food Res. Int. 2020, 127, 108753. [Google Scholar] [CrossRef]
- Fundo, J.F.; Miller, F.A.; Garcia, E.; Santos, J.R.; Silva, C.L.M.; Brandão, T.R.S. Physicochemical characteristics, bioactive compounds and antioxidant activity in juice, pulp, peel and seeds of Cantaloupe melon. J. Food Meas. Charact. 2017, 12, 292–300. [Google Scholar] [CrossRef]
- Corrado, S.; Sala, S. Food waste accounting along global and European food supply chains: State of the art and outlook. Waste Manag. 2018, 79, 120–131. [Google Scholar] [CrossRef]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef]
- Peydayesh, M.; Bagnani, M.; Soon, W.L.; Mezzenga, R. Turning Food Protein Waste into Sustainable Technologies. Chem. Rev. 2023, 123, 2112–2154. [Google Scholar] [CrossRef] [PubMed]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- Reguengo, L.M.; Salgaco, M.K.; Sivieri, K.; Marostica Junior, M.R. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res. Int. 2022, 152, 110871. [Google Scholar] [CrossRef]
- Vilas-Boas, A.A.; Pintado, M.; Oliveira, A.L.S. Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns. Foods 2021, 10, 1564. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y.S.; Lee, J.H. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits—A Review of Recent Advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Song, M.H.; Rengasamy, K.R.R.; Ko, E.Y.; Keum, Y.S. Red Shrimp Are a Rich Source of Nutritionally Vital Lipophilic Compounds: A Comparative Study among Edible Flesh and Processing Waste. Foods 2020, 9, 1179. [Google Scholar] [CrossRef] [PubMed]
- Melgosa, R.; Trigueros, E.; Sanz, M.T.; Cardeira, M.; Rodrigues, L.; Fernández, N.; Matias, A.A.; Bronze, M.R.; Marques, M.; Paiva, A.; et al. Supercritical CO2 and subcritical water technologies for the production of bioactive extracts from sardine (Sardina pilchardus) waste. J. Supercrit. Fluids 2020, 164, 104943. [Google Scholar] [CrossRef]
- Antonia Nunes, M.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total. Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Medina, E.; Mateo, M.A.; Brenes, M. New by-products rich in bioactive substances from the olive oil mill processing. J. Sci. Food Agric. 2018, 98, 225–230. [Google Scholar] [CrossRef]
- Sahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef]
- Pathak, P.D.; Mandavgane, S.A.; Puranik, N.M.; Jambhulkar, S.J.; Kulkarni, B.D. Valorization of potato peel: A biorefinery approach. Crit. Rev. Biotechnol. 2018, 38, 218–230. [Google Scholar] [CrossRef]
- Rahimpour, S.; Taghian Dinani, S. Lycopene extraction from tomato processing waste using ultrasound and cell-wall degrading enzymes. J. Food Meas. Charact. 2018, 12, 2394–2403. [Google Scholar] [CrossRef]
- Nour, V.; Panaite, T.D.; Ropota, M.; Turcu, R.; Trandafir, I.; Corbu, A.R. Nutritional and bioactive compounds in dried tomato processing waste. CyTA J. Food 2018, 16, 222–229. [Google Scholar] [CrossRef]
- Silva, Y.P.A.; Borba, B.C.; Pereira, V.A.; Reis, M.G.; Caliari, M.; Brooks, M.S.; Ferreira, T. Characterization of tomato processing by-product for use as a potential functional food ingredient: Nutritional composition, antioxidant activity and bioactive compounds. Int. J. Food Sci. Nutr. 2019, 70, 150–160. [Google Scholar] [CrossRef]
- Banerjee, S.; Arora, A.; Vijayaraghavan, R.; Patti, A.F. Extraction and crosslinking of bromelain aggregates for improved stability and reusability from pineapple processing waste. Int. J. Biol. Macromol. 2020, 158, 318–326. [Google Scholar] [CrossRef]
- Moreira, B.; Pereira, E.; Finimundy, T.C.; Pinela, J.; Calhelha, R.C.; Carocho, M.; Stojković, D.; Sokovic, M.; Ferreira, I.C.F.R.; Caleja, C.; et al. Pineapple by-products as a source of bioactive compounds with potential for industrial food application. Food Funct. 2022, 13, 9959–9972. [Google Scholar] [CrossRef] [PubMed]
- Mejri, F.; Selmi, S.; Martins, A.; Benkhoud, H.; Baati, T.; Chaabane, H.; Njim, L.; Serralheiro, M.L.M.; Rauter, A.P.; Hosni, K. Broad bean (Vicia faba L.) pods: A rich source of bioactive ingredients with antimicrobial, antioxidant, enzyme inhibitory, anti-diabetic and health-promoting properties. Food Funct. 2018, 9, 2051–2069. [Google Scholar] [CrossRef] [PubMed]
- Melgar, B.; Dias, M.I.; Ciric, A.; Sokovic, M.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barros, L.; Ferreira, I.C.R.F. Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants. Ind. Crop. Prod. 2018, 111, 212–218. [Google Scholar] [CrossRef]
- Squillaci, G.; Apone, F.; Sena, L.M.; Carola, A.; Tito, A.; Bimonte, M.; Lucia, A.D.; Colucci, G.; Cara, F.L.; Morana, A. Chestnut (Castanea sativa Mill.) industrial wastes as a valued bioresource for the production of active ingredients. Process. Biochem. 2018, 64, 228–236. [Google Scholar] [CrossRef]
- Wang, H.; Shi, M.; Cao, F.; Su, E. Ginkgo biloba seed exocarp: A waste resource with abundant active substances and other components for potential applications. Food Res. Int. 2022, 160, 111637. [Google Scholar] [CrossRef]
- Ruan, J.H.; Li, J.; Adili, G.; Sun, G.Y.; Abuduaini, M.; Abdulla, R.; Maiwulanjiang, M.; Aisa, H.A. Phenolic Compounds and Bioactivities from Pomegranate (Punica granatum L.) Peels. J. Agric. Food Chem. 2022, 70, 3678–3686. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef]
- Argun, M.E.; Argun, M.Ş.; Arslan, F.N.; Nas, B.; Ates, H.; Tongur, S.; Cakmakcı, O. Recovery of valuable compounds from orange processing wastes using supercritical carbon dioxide extraction. J. Clean. Prod. 2022, 375, 134169. [Google Scholar] [CrossRef]
- Resende, L.M.; Franca, A.S.; Oliveira, L.S. Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chem. 2019, 270, 53–60. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, Z.; Dai, S.; Che, X.; Liu, W. Identification and Quantification of Bioactive Compounds in Diaphragma juglandis Fructus by UHPLC-Q-Orbitrap HRMS and UHPLC-MS/MS. J. Agric. Food Chem. 2019, 67, 3811–3825. [Google Scholar] [CrossRef] [PubMed]
- Gülcü, M.; Uslu, N.; Özcan, M.M.; Gökmen, F.; Özcan, M.M.; Banjanin, T.; Gezgin, S.; Dursun, N.; Geçgel, Ü.; Ceylan, D.A.; et al. The investigation of bioactive compounds of wine, grape juice and boiled grape juice wastes. J. Food Process. Preserv. 2019, 43, e13850. [Google Scholar] [CrossRef]
- Karastergiou, A.; Gancel, A.-L.; Jourdes, M.; Teissedre, P.-L. Valorization of Grape Pomace: A Review of Phenolic Composition, Bioactivity, and Therapeutic Potential. Antioxidants 2024, 13, 1131. [Google Scholar] [CrossRef] [PubMed]
- Mir-Cerda, A.; Carretero, I.; Coves, J.R.; Pedrouso, A.; Castro-Barros, C.M.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M.; Sentellas, S. Recovery of phenolic compounds from wine lees using green processing: Identifying target molecules and assessing membrane ultrafiltration performance. Sci. Total. Environ. 2023, 857, 159623. [Google Scholar] [CrossRef]
- Lu, F.; Rodriguez-Garcia, J.; Van Damme, I.; Westwood, N.J.; Shaw, L.; Robinson, J.S.; Warren, G.; Chatzifragkou, A.; McQueen Mason, S.; Gomez, L.; et al. Valorisation strategies for cocoa pod husk and its fractions. Curr. Opin. Green Sustain. Chem. 2018, 14, 80–88. [Google Scholar] [CrossRef]
- Vargas-Arana, G.; Merino-Zegarra, C.; Tang, M.; Pertino, M.W.; Simirgiotis, M.J. UHPLC–MS Characterization, and Antioxidant and Nutritional Analysis of Cocoa Waste Flours from the Peruvian Amazon. Antioxidants 2022, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Grillo, G.; Boffa, L.; Binello, A.; Mantegna, S.; Cravotto, G.; Chemat, F.; Dizhbite, T.; Lauberte, L.; Telysheva, G. Cocoa bean shell waste valorisation; extraction from lab to pilot-scale cavitational reactors. Food Res. Int. 2019, 115, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.; Burgos, N.; Barnard, A.; Evans, G.; Preece, J.; Graz, M.; Ruthes, A.C.; Jimenez-Quero, A.; Martinez-Abad, A.; Vilaplana, F.; et al. Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chem. 2019, 292, 176–187. [Google Scholar] [CrossRef]
- Roriz, C.L.; Heleno, S.A.; Alves, M.J.; Oliveira, M.; Pinela, J.; Dias, M.I.; Calhelha, R.C.; Morales, P.; Ferreira, I.; Barros, L. Red pitaya (Hylocereus costaricensis) peel as a source of valuable molecules: Extraction optimization to recover natural colouring agents. Food Chem. 2022, 372, 131344. [Google Scholar] [CrossRef]
- Mesquita, P.C.; Rodrigues, L.G.G.; Mazzutti, S.; Ribeiro, P.R.V.; de Brito, E.S.; Lanza, M. Untargeted metabolomic profile of recovered bioactive compounds by subcritical water extraction of acerola (Malpighia emarginata DC.) pomace. Food Chem. 2022, 397, 133718. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.d.P.; Gutiérrez, L.-F.; Vargas, S.M.; Martinez-Correa, H.A.; Parada-Alfonso, F.; Narváez-Cuenca, C.-E. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J. Supercrit. Fluids 2019, 152, 104574. [Google Scholar] [CrossRef]
- Lenucci, M.S.; Tornese, R.; Mita, G.; Durante, M. Bioactive Compounds and Antioxidant Activities in Different Fractions of Mango Fruits (Mangifera indica L., Cultivar Tommy Atkins and Keitt). Antioxidants 2022, 11, 484. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Deep eutectic solvent-based extraction of polyphenolic antioxidants from onion (Allium cepa L.) peel. J. Sci. Food Agric. 2019, 99, 1969–1979. [Google Scholar] [CrossRef]
- Stoica, F.; Rațu, R.N.; Veleșcu, I.D.; Stănciuc, N.; Râpeanu, G. A comprehensive review on bioactive compounds, health benefits, and potential food applications of onion (Allium cepa L.) skin waste. Trends Food Sci. Techol. 2023, 141, 104173. [Google Scholar] [CrossRef]
- Kheirkhah, H.; Baroutian, S.; Quek, S.Y. Evaluation of bioactive compounds extracted from Hayward kiwifruit pomace by subcritical water extraction. Food Bioprod. Process. 2019, 115, 143–153. [Google Scholar] [CrossRef]
- Jiang, Z.; Shi, R.; Chen, H.; Wang, Y. Ultrasonic microwave-assisted extraction coupled with macroporous resin chromatography for the purification of antioxidant phenolics from waste jackfruit (Artocarpus heterophyllus Lam.) peels. J. Food Sci. Technol. 2019, 56, 3877–3886. [Google Scholar] [CrossRef]
- Ly, L.; Sothornvit, R. Novel Sequential Microwave-Ultrasonic-Assisted Extraction of Phenolic Compounds from Jackfruit (Artocarpus heterophyllus Lam.) Peel Waste Using Choline Chloride-Lactic Acid Deep Eutectic Solvent. Food Bioprocess. Technol. 2024, 17, 4249–4261. [Google Scholar] [CrossRef]
- Gonçalves Rodrigues, L.G.; Mazzutti, S.; Vitali, L.; Micke, G.A.; Ferreira, S.R.S. Recovery of bioactive phenolic compounds from papaya seeds agroindustrial residue using subcritical water extraction. Biocatal. Agric. Biotechnol. 2019, 22, 101367. [Google Scholar] [CrossRef]
- Mada, T.; Duraisamy, R.; Guesh, F. Optimization and characterization of pectin extracted from banana and papaya mixed peels using response surface methodology. Food Sci. Nutr. 2022, 10, 1222–1238. [Google Scholar] [CrossRef]
- Pereira, D.T.V.; Zabot, G.L.; Reyes, F.G.R.; Iglesias, A.H.; Martínez, J. Integration of pressurized liquids and ultrasound in the extraction of bioactive compounds from passion fruit rinds: Impact on phenolic yield, extraction kinetics and technical-economic evaluation. Innov. Food Sci. Emerg. Technol. 2021, 67, 102549. [Google Scholar] [CrossRef]
- Razola-Diaz, M.D.C.; Gomez-Caravaca, A.M.; Lopez de Andres, J.; Voltes-Martinez, A.; Zamora, A.; Perez-Molina, G.M.; Castro, D.J.; Marchal, J.A.; Verardo, V. Evaluation of Phenolic Compounds and Pigments Content in Yellow Bell Pepper Wastes. Antioxidants 2022, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, J.; Hoe, B.C.; Krishnamurthy, N.P.; Ramakrishnan, N.R.; Galanakis, C.M.; Alamri, A.S.; Ooi, C.W. Co-extraction of lycopene and pectin from pink guava decanter by water-induced colloidal complexation: Optimization and techno-economic assessment. Food Bioprod. Process. 2022, 134, 181–192. [Google Scholar] [CrossRef]
- Kumar, M.; Kapoor, S.; Dhumal, S.; Tkaczewska, J.; Changan, S.; Saurabh, V.; Mekhemar, M.; Radha; Rais, N.; Satankar, V.; et al. Guava (Psidium guajava L.) seed: A low-volume, high-value byproduct for human health and the food industry. Food Chem. 2022, 386, 132694. [Google Scholar] [CrossRef]
- Saini, R.K.; Ahn, H.-Y.; Park, G.-W.; Shin, J.-W.; Lee, J.-H.; Yu, J.-W.; Song, M.-H.; Keum, Y.-S.; Lee, J.-H. Quantitative Profiling of Carotenoids, Tocopherols, Phytosterols, and Fatty Acids in the Flower Petals of Ten Marigold (Tagetes spp. L.) Cultivars. Foods 2023, 12, 3549. [Google Scholar] [CrossRef] [PubMed]
- Madureira, J.; Margaca, F.M.A.; Santos-Buelga, C.; Ferreira, I.; Verde, S.C.; Barros, L. Applications of bioactive compounds extracted from olive industry wastes: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 453–476. [Google Scholar] [CrossRef]
- Coelho, M.C.; Pereira, R.N.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. The use of emergent technologies to extract added value compounds from grape by-products. Trends Food Sci. Technol. 2020, 106, 182–197. [Google Scholar] [CrossRef]
- Andrade, M.A.; Barbosa, C.H.; Shah, M.A.; Ahmad, N.; Vilarinho, F.; Khwaldia, K.; Silva, A.S.; Ramos, F. Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants 2022, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Dubey, P.; Tripathi, G.; Mir, S.S.; Yousuf, O. Current scenario and global perspectives of citrus fruit waste as a valuable resource for the development of food packaging film. Trends Food Sci. Technol. 2023, 141, 104190. [Google Scholar] [CrossRef]
- Kaur, S.; Panesar, P.S.; Chopra, H.K. Citrus processing by-products: An overlooked repository of bioactive compounds. Crit. Rev. Food Sci. Nutr. 2023, 63, 67–86. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Sinha, M.; Cho, M.H. Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. J. Funct. Foods 2018, 40, 307–316. [Google Scholar] [CrossRef]
- Tocmo, R.; Pena-Fronteras, J.; Calumba, K.F.; Mendoza, M.; Johnson, J.J. Valorization of pomelo (Citrus grandis Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1969–2012. [Google Scholar] [CrossRef]
- Gomez-Mejia, E.; Rosales-Conrado, N.; Leon-Gonzalez, M.E.; Madrid, Y. Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chem. 2019, 295, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Aboagye, D.; Banadda, N.; Kiggundu, N.; Kabenge, I. Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis. Renew. Sustain. Energy Rev. 2017, 70, 814–821. [Google Scholar] [CrossRef]
- Saini, A.; Panesar, P.S.; Bera, M.B. Valuation of Citrus reticulata (kinnow) peel for the extraction of lutein using ultrasonication technique. Biomass Convers. Biorefinery 2020, 11, 2157–2165. [Google Scholar] [CrossRef]
- Costanzo, G.; Iesce, M.R.; Naviglio, D.; Ciaravolo, M.; Vitale, E.; Arena, C. Comparative Studies on Different Citrus Cultivars: A Revaluation of Waste Mandarin Components. Antioxidants 2020, 9, 517. [Google Scholar] [CrossRef] [PubMed]
- Murador, D.C.; Salafia, F.; Zoccali, M.; Martins, P.L.G.; Ferreira, A.G.; Dugo, P.; Mondello, L.; de Rosso, V.V.; Giuffrida, D. Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel. Antioxidants 2019, 8, 613. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Yadav, M.P. Insights into the chemical composition and bioactivities of citrus peel essential oils. Food Res. Int. 2021, 143, 110231. [Google Scholar] [CrossRef]
- Long, X.; Zeng, X.; Yan, H.; Xu, M.; Zeng, Q.; Xu, C.; Xu, Q.; Liang, Y.; Zhang, J. Flavonoids composition and antioxidant potential assessment of extracts from Gannanzao Navel Orange (Citrus sinensis Osbeck Cv. Gannanzao) peel. Nat. Prod. Res. 2021, 35, 702–706. [Google Scholar] [CrossRef]
- El-Kersh, D.M.; Ezzat, S.M.; Salama, M.M.; Mahrous, E.A.; Attia, Y.M.; Ahmed, M.S.; Elmazar, M.M. Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer. Sci. Rep. 2021, 11, 7121. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, H.; Hao, S.; Pan, D.; Wang, G.; Yu, W. Evaluation of phenolic composition and antioxidant properties of different varieties of Chinese citrus. Food Chem. 2021, 364, 130413. [Google Scholar] [CrossRef]
- Nuzzo, D.; Picone, P.; Giardina, C.; Scordino, M.; Mudo, G.; Pagliaro, M.; Scurria, A.; Meneguzzo, F.; Ilharco, L.M.; Fidalgo, A.; et al. New Neuroprotective Effect of Lemon IntegroPectin on Neuronal Cellular Model. Antioxidants 2021, 10, 669. [Google Scholar] [CrossRef] [PubMed]
- Colodel, C.; Vriesmann, L.C.; Teofilo, R.F.; de Oliveira Petkowicz, C.L. Extraction of pectin from ponkan (Citrus reticulata Blanco cv. Ponkan) peel: Optimization and structural characterization. Int. J. Biol. Macromol. 2018, 117, 385–391. [Google Scholar] [CrossRef]
- Liu, N.; Li, X.; Zhao, P.; Zhang, X.; Qiao, O.; Huang, L.; Guo, L.; Gao, W. A review of chemical constituents and health-promoting effects of citrus peels. Food Chem. 2021, 365, 130585. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, M.; Hati Boruah, J.L.; Bora, P.K.; Das, D.J.; Famhawite, V.; Biswas, A.; Puro, N.; Kalita, J.; Haldar, S.; Baishya, R. Citrus macroptera induces apoptosis via death receptor and mitochondrial mediated pathway as prooxidant in human non-small cell lung cancer cells. Food Biosci. 2021, 43, 101293. [Google Scholar] [CrossRef]
- Abdelghffar, E.A.; El-Nashar, H.A.S.; Al-Mohammadi, A.G.A.; Eldahshan, O.A. Orange fruit (Citrus sinensis) peel extract attenuates chemotherapy-induced toxicity in male rats. Food Funct. 2021, 12, 9443–9455. [Google Scholar] [CrossRef]
- Gao, Z.; Gao, W.; Zeng, S.-L.; Li, P.; Liu, E.H. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. J. Funct. Foods 2018, 40, 498–509. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Koteswararao, R.; Sinha, M.; Baral, E.; Cho, M.H. Citrus essential oils: Extraction, authentication and application in food preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 611–625. [Google Scholar] [CrossRef]
- Rossi, R.C.; da Rosa, S.R.; Weimer, P.; Lisbôa Moura, J.G.; de Oliveira, V.R.; de Castilhos, J. Assessment of compounds and cytotoxicity of Citrus deliciosa Tenore essential oils: From an underexploited by-product to a rich source of high-value bioactive compounds. Food Biosci. 2020, 38, 100779. [Google Scholar] [CrossRef]
- Multari, S.; Licciardello, C.; Caruso, M.; Martens, S. Monitoring the changes in phenolic compounds and carotenoids occurring during fruit development in the tissues of four citrus fruits. Food Res. Int. 2020, 134, 109228. [Google Scholar] [CrossRef]
- Luan, Y.; Wang, S.; Wang, R.; Xu, C. Accumulation of red apocarotenoid beta-citraurin in peel of a spontaneous mutant of huyou (Citrus changshanensis) and the effects of storage temperature and ethylene application. Food Chem. 2020, 309, 125705. [Google Scholar] [CrossRef]
- Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 2015, 76, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Gansukh, E.; Nile, A.; Sivanesan, I.; Rengasamy, K.R.R.; Kim, D.H.; Keum, Y.S.; Saini, R.K. Chemopreventive Effect of beta-Cryptoxanthin on Human Cervical Carcinoma (HeLa) Cells Is Modulated through Oxidative Stress-Induced Apoptosis. Antioxidants 2019, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.; Geraldi, M.V.; do Nascimento, R.P.; Moya, A.; Vezza, T.; Diez-Echave, P.; Galvez, J.J.; Cazarin, C.B.B.; Marostica Junior, M.R. Polyphenols from food by-products: An alternative or complementary therapy to IBD conventional treatments. Food Res. Int. 2021, 140, 110018. [Google Scholar] [CrossRef] [PubMed]
- Zayed, A.; Badawy, M.T.; Farag, M.A. Valorization and extraction optimization of Citrus seeds for food and functional food applications. Food Chem. 2021, 355, 129609. [Google Scholar] [CrossRef]
- Cecchi, L.; Khatib, M.; Bellumori, M.; Civa, V.; Domizio, P.; Innocenti, M.; Balli, D.; Mulinacci, N. Industrial drying for agrifood by-products re-use: Cases studies on pomegranate peel (Punica granatum L.) and stoned olive pomace (pate, Olea europaea L.). Food Chem. 2023, 403, 134338. [Google Scholar] [CrossRef]
- Ramírez-Pulido, B.; Bas-Bellver, C.; Betoret, N.; Barrera, C.; Seguí, L. Valorization of Vegetable Fresh-Processing Residues as Functional Powdered Ingredients. A Review on the Potential Impact of Pretreatments and Drying Methods on Bioactive Compounds and Their Bioaccessibility. Front. Sustain. Food Syst. 2021, 5, 654313. [Google Scholar] [CrossRef]
- Rifna, E.J.; Misra, N.N.; Dwivedi, M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 719–752. [Google Scholar] [CrossRef]
- Gullon, B.; Gullon, P.; Eibes, G.; Cara, C.; De Torres, A.; Lopez-Linares, J.C.; Ruiz, E.; Castro, E. Valorisation of olive agro-industrial by-products as a source of bioactive compounds. Sci. Total Environ. 2018, 645, 533–542. [Google Scholar] [CrossRef]
- Gullón, B.; Eibes, G.; Moreira, M.T.; Herrera, R.; Labidi, J.; Gullón, P. Yerba mate waste: A sustainable resource of antioxidant compounds. Ind. Crop. Prod. 2018, 113, 398–405. [Google Scholar] [CrossRef]
- Páramos, P.R.S.; Granjo, J.F.O.; Corazza, M.L.; Matos, H.A. Extraction of high value products from avocado waste biomass. J. Supercrit. Fluids 2020, 165, 104988. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Pinela, J.; Pereira, C.; Calhelha, R.C.; Oliveira, I.; Heleno, S.; Oliveira, M.B.P.P.; Barros, L. Optimization and comparison of heat- and ultrasound-assisted extraction methods for anthocyanin recovery from Sicana odorifera fruit epicarp. Biomass Convers. Biorefinery 2025, 15, 1027–1040. [Google Scholar] [CrossRef]
- Sui, W.; Xiao, Y.; Liu, R.; Wu, T.; Zhang, M. Steam explosion modification on tea waste to enhance bioactive compounds’ extractability and antioxidant capacity of extracts. J. Food Eng. 2019, 261, 51–59. [Google Scholar] [CrossRef]
- Voros, V.; Drioli, E.; Fonte, C.; Szekely, G. Process Intensification via Continuous and Simultaneous Isolation of Antioxidants: An Upcycling Approach for Olive Leaf Waste. ACS Sustain. Chem. Eng. 2019, 7, 18444–18452. [Google Scholar] [CrossRef]
- Romeo, R.; De Bruno, A.; Imeneo, V.; Piscopo, A.; Poiana, M. Evaluation of enrichment with antioxidants from olive oil mill wastes in hydrophilic model system. J. Food Process. Preserv. 2019, 43, e14211. [Google Scholar] [CrossRef]
- Garcia, P.; Fredes, C.; Cea, I.; Lozano-Sanchez, J.; Leyva-Jimenez, F.J.; Robert, P.; Vergara, C.; Jimenez, P. Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) Peel Using Pressurized Liquid Extraction. Foods 2021, 10, 203. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo-Llamosas, A.; Rodriguez-Martinez, B.; Del Rio, P.G.; Eibes, G.; Garrote, G.; Gullon, B. Hydrothermal treatment of avocado peel waste for the simultaneous recovery of oligosaccharides and antioxidant phenolics. Bioresour. Technol. 2021, 342, 125981. [Google Scholar] [CrossRef]
- Talekar, S.; Patti, A.F.; Singh, R.; Vijayraghavan, R.; Arora, A. From waste to wealth: High recovery of nutraceuticals from pomegranate seed waste using a green extraction process. Ind. Crop. Prod. 2018, 112, 790–802. [Google Scholar] [CrossRef]
- Saad, N.; Louvet, F.; Tarrade, S.; Meudec, E.; Grenier, K.; Landolt, C.; Ouk, T.S.; Bressollier, P. Enzyme-Assisted Extraction of Bioactive Compounds from Raspberry (Rubus idaeus L.) Pomace. J. Food Sci. 2019, 84, 1371–1381. [Google Scholar] [CrossRef]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Tapia-Quiros, P.; Montenegro-Landivar, M.F.; Reig, M.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M. Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery. Antioxidants 2020, 9, 1074. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Biosci. 2019, 28, 66–73. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Maximising recovery of phenolic compounds and antioxidant properties from banana peel using microwave assisted extraction and water. J. Food Sci. Technol. 2019, 56, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.J.; Kim, H.J.; Ko, M.J.; Chung, M.S. Recovery of hesperidin and narirutin from waste Citrus unshiu peel using subcritical water extraction aided by pulsed electric field treatment. Food Sci. Biotechnol. 2021, 30, 217–226. [Google Scholar] [CrossRef]
- Kim, D.S.; Lim, S.B. Semi-Continuous Subcritical Water Extraction of Flavonoids from Citrus unshiu Peel: Their Antioxidant and Enzyme Inhibitory Activities. Antioxidants 2020, 9, 360. [Google Scholar] [CrossRef]
- Benito-Roman, O.; Blanco, B.; Sanz, M.T.; Beltran, S. Subcritical Water Extraction of Phenolic Compounds from Onion Skin Wastes (Allium cepa cv. Horcal): Effect of Temperature and Solvent Properties. Antioxidants 2020, 9, 1233. [Google Scholar] [CrossRef]
- Zhu, J.; Kou, X.; Wu, C.; Fan, G.; Li, T.; Dou, J.; Shen, D. Enhanced extraction of bioactive natural products using ultrasound-assisted aqueous two-phase system: Application to flavonoids extraction from jujube peels. Food Chem. 2022, 395, 133530. [Google Scholar] [CrossRef]
- Goncalves, E.; Lozano-Sanchez, J.; Gomes, S.; Ferreira, M.S.L.; Cameron, L.C.; Segura-Carretero, A. Byproduct Generated During the Elaboration Process of Isotonic Beverage as a Natural Source of Bioactive Compounds. J. Food Sci. 2018, 83, 2478–2488. [Google Scholar] [CrossRef] [PubMed]
- Victor, M.M.; David, J.M.; Cortez, M.V.M.; Leite, J.L.; da Silva, G.S.B. A High-Yield Process for Extraction of Hesperidin from Orange (Citrus sinensis L. osbeck) Peels Waste, and Its Transformation to Diosmetin, A Valuable and Bioactive Flavonoid. Waste Biomass Valorization 2020, 12, 313–320. [Google Scholar] [CrossRef]
- Meini, M.R.; Cabezudo, I.; Boschetti, C.E.; Romanini, D. Recovery of phenolic antioxidants from Syrah grape pomace through the optimization of an enzymatic extraction process. Food Chem. 2019, 283, 257–264. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, G.; Marina, M.L.; Plaza, M. Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Food Chem. 2021, 339, 128086. [Google Scholar] [CrossRef]
- Santana, Á.L.; Queirós, L.D.; Martínez, J.; Macedo, G.A. Pressurized liquid- and supercritical fluid extraction of crude and waste seeds of guarana (Paullinia cupana): Obtaining of bioactive compounds and mathematical modeling. Food Bioprod. Process. 2019, 117, 194–202. [Google Scholar] [CrossRef]
- Zuin, V.G.; Segatto, M.L.; Zanotti, K. Towards a green and sustainable fruit waste valorisation model in Brazil: Optimisation of homogenizer-assisted extraction of bioactive compounds from mango waste using a response surface methodology. Pure Appl. Chem. 2020, 92, 617–629. [Google Scholar] [CrossRef]
- Carboni Martins, C.; Rodrigues, R.C.; Domeneghini Mercali, G.; Rodrigues, E. New insights into non-extractable phenolic compounds analysis. Food Res. Int. 2022, 157, 111487. [Google Scholar] [CrossRef] [PubMed]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Serwah Boateng, N.A.; Ma, H. Latest developments in polyphenol recovery and purification from plant by-products: A review. Trends Food Sci. Technol. 2020, 99, 375–388. [Google Scholar] [CrossRef]
- Cassani, L.; Marcovich, N.E.; Gomez-Zavaglia, A. Valorization of fruit and vegetables agro-wastes for the sustainable production of carotenoid-based colorants with enhanced bioavailability. Food Res. Int. 2022, 152, 110924. [Google Scholar] [CrossRef]
- Andreou, V.; Dimopoulos, G.; Dermesonlouoglou, E.; Taoukis, P. Application of pulsed electric fields to improve product yield and waste valorization in industrial tomato processing. J. Food Eng. 2020, 270, 109778. [Google Scholar] [CrossRef]
- Szabo, K.; Diaconeasa, Z.; Catoi, A.F.; Vodnar, D.C. Screening of Ten Tomato Varieties Processing Waste for Bioactive Components and Their Related Antioxidant and Antimicrobial Activities. Antioxidants 2019, 8, 292. [Google Scholar] [CrossRef]
- de Andrade Lima, M.; Kestekoglou, I.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Fluid Extraction of Carotenoids from Vegetable Waste Matrices. Molecules 2019, 24, 466. [Google Scholar] [CrossRef] [PubMed]
- Vinas-Ospino, A.; Lopez-Malo, D.; Esteve, M.J.; Frigola, A.; Blesa, J. Green Solvents: Emerging Alternatives for Carotenoid Extraction from Fruit and Vegetable By-Products. Foods 2023, 12, 863. [Google Scholar] [CrossRef]
- Sportiello, L.; Favati, F.; Condelli, N.; Di Cairano, M.; Caruso, M.C.; Simonato, B.; Tolve, R.; Galgano, F. Hydrophobic deep eutectic solvents in the food sector: Focus on their use for the extraction of bioactive compounds. Food Chem. 2023, 405, 134703. [Google Scholar] [CrossRef]
- Rodriguez Garcia, S.L.; Raghavan, V. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds—A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6446–6466. [Google Scholar] [CrossRef] [PubMed]
- Jablonsky, M.; Skulcova, A.; Malvis, A.; Sima, J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 2018, 282, 46–66. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.L.A.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem. 2018, 239, 671–678. [Google Scholar] [CrossRef]
- Fu, X.; Belwal, T.; He, Y.; Xu, Y.; Li, L.; Luo, Z. UPLC-Triple-TOF/MS characterization of phenolic constituents and the influence of natural deep eutectic solvents on extraction of Carya cathayensis Sarg. peels: Composition, extraction mechanism and in vitro biological activities. Food Chem. 2022, 370, 131042. [Google Scholar] [CrossRef]
- Yoo, D.E.; Jeong, K.M.; Han, S.Y.; Kim, E.M.; Jin, Y.; Lee, J. Deep eutectic solvent-based valorization of spent coffee grounds. Food Chem. 2018, 255, 357–364. [Google Scholar] [CrossRef]
- Ozturk, B.; Winterburn, J.; Gonzalez-Miquel, M. Orange peel waste valorisation through limonene extraction using bio-based solvents. Biochem. Eng. J. 2019, 151, 107298. [Google Scholar] [CrossRef]
- Li, Y.; Bundeesomchok, K.; Rakotomanomana, N.; Fabiano-Tixier, A.S.; Bott, R.; Wang, Y.; Chemat, F. Towards a Zero-Waste Biorefinery Using Edible Oils as Solvents for the Green Extraction of Volatile and Non-Volatile Bioactive Compounds from Rosemary. Antioxidants 2019, 8, 140. [Google Scholar] [CrossRef]
- Valadez-Carmona, L.; Ortiz-Moreno, A.; Ceballos-Reyes, G.; Mendiola, J.A.; Ibáñez, E. Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. J. Supercrit. Fluids 2018, 131, 99–105. [Google Scholar] [CrossRef]
- Arias, A.; Feijoo, G.; Moreira, M.T. Agri-food waste to phenolic compounds: Life cycle and eco-efficiency assessments. J. Environ. Manag. 2025, 380, 124935. [Google Scholar] [CrossRef]
- Ortiz-Sanchez, M.; Omarini, A.B.; González-Aguirre, J.-A.; Baglioni, M.; Zygadlo, J.A.; Breccia, J.; D’Souza, R.; Lemesoff, L.; Bodeain, M.; Cardona-Alzate, C.A.; et al. Valorization routes of citrus waste in the orange value chain through the biorefinery concept: The Argentina case study. Chem. Eng. Process. Process. Intensif. 2023, 189, 109407. [Google Scholar] [CrossRef]
- Olba-Zięty, E.; Stolarski, M.J.; Krzyżaniak, M.; Rój, E.; Tyśkiewicz, K.; Łuczyński, M.K. Supercritical production of extract from poplar containing bioactive substances—An economic analysis. Ind. Crop Prod. 2022, 184, 115094. [Google Scholar] [CrossRef]
- Razi Parjikolaei, B.; Errico, M.; Bahij El-Houri, R.; Mantell, C.; Fretté, X.C.; Christensen, K.V. Process design and economic evaluation of green extraction methods for recovery of astaxanthin from shrimp waste. Chem. Eng. Res. Des. 2017, 117, 73–82. [Google Scholar] [CrossRef]
- Kazemi, M.; Khodaiyan, F.; Hosseini, S.S. Utilization of food processing wastes of eggplant as a high potential pectin source and characterization of extracted pectin. Food Chem. 2019, 294, 339–346. [Google Scholar] [CrossRef]
- Liew, S.Q.; Teoh, W.H.; Yusoff, R.; Ngoh, G.C. Comparisons of process intensifying methods in the extraction of pectin from pomelo peel. Chem. Eng. Process. Process Intensif. 2019, 143, 107586. [Google Scholar] [CrossRef]
- Leite, P.; Silva, C.; Salgado, J.M.; Belo, I. Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Ind. Crop. Prod. 2019, 137, 315–322. [Google Scholar] [CrossRef]
- Akbarbaglu, Z.; Peighambardoust, S.H.; Sarabandi, K.; Jafari, S.M. Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chem. 2021, 359, 129965. [Google Scholar] [CrossRef]
- Comunian, T.A.; Silva, M.P.; Souza, C.J.F. The use of food by-products as a novel for functional foods: Their use as ingredients and for the encapsulation process. Trends Food Sci. Technol. 2021, 108, 269–280. [Google Scholar] [CrossRef]
- Marcillo-Parra, V.; Tupuna-Yerovi, D.S.; González, Z.; Ruales, J. Encapsulation of bioactive compounds from fruit and vegetable by-products for food application—A review. Trends Food Sci. Technol. 2021, 116, 11–23. [Google Scholar] [CrossRef]
- Tsali, A.; Goula, A.M. Valorization of grape pomace: Encapsulation and storage stability of its phenolic extract. Powder Technol. 2018, 340, 194–207. [Google Scholar] [CrossRef]
- Andrade, R.A.M.d.S.; da Silva, D.C.; Souza, M.M.B.d.; de Oliveira, R.L.; Maciel, M.I.S.; Porto, A.L.F.; Melo, E.d.A.; Arruda, L.L.d.A.L.; Porto, T.S. Microencapsulation of phenolic compounds from cashew apple (Anacardium occidentale L.) agro-food waste: Physicochemical characterization, antioxidant activity, biodisponibility and stability. Food Chem. Adv. 2023, 3, 100364. [Google Scholar] [CrossRef]
- Seregelj, V.; Tumbas Saponjac, V.; Levic, S.; Kalusevic, A.; Cetkovic, G.; Canadanovic-Brunet, J.; Nedovic, V.; Stajcic, S.; Vulic, J.; Vidakovic, A. Application of encapsulated natural bioactive compounds from red pepper waste in yogurt. J. Microencapsul. 2019, 36, 704–714. [Google Scholar] [CrossRef]
- Chuyen, H.V.; Roach, P.D.; Golding, J.B.; Parks, S.E.; Nguyen, M.H. Encapsulation of carotenoid-rich oil from Gac peel: Optimisation of the encapsulating process using a spray drier and the storage stability of encapsulated powder. Powder Technol. 2019, 344, 373–379. [Google Scholar] [CrossRef]
- Šeregelj, V.; Pezo, L.; Šovljanski, O.; Lević, S.; Nedović, V.; Markov, S.; Tomić, A.; Čanadanović-Brunet, J.; Vulić, J.; Šaponjac, V.T.; et al. New concept of fortified yogurt formulation with encapsulated carrot waste extract. LWT 2021, 138, 110732. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, N.; Upadhyay, A.; Pratibha; Anurag, R.K. Edible Packaging from Fruit Processing Waste: A Comprehensive Review. Food Rev. Int. 2021, 39, 2075–2106. [Google Scholar] [CrossRef]
- Zainal Arifin, M.A.; Mohd Adzahan, N.; Zainal Abedin, N.H.; Lasik-Kurdys, M. Utilization of Food Waste and By-Products in the Fabrication of Active and Intelligent Packaging for Seafood and Meat Products. Foods 2023, 12, 456. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.; Laveriano, E.; San Sebastián, L.; Perez, M.; Jiménez, A.; Lamuela-Raventos, R.M.; Garrigós, M.C.; Vallverdú-Queralt, A. Rice straw as a valuable source of cellulose and polyphenols: Applications in the food industry. Trends Food Sci. Technol. 2023, 131, 14–27. [Google Scholar] [CrossRef]
- Redondo, D.; Venturini, M.E.; Luengo, E.; Raso, J.; Arias, E. Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innov. Food Sci. Emerg. Technol. 2018, 45, 335–343. [Google Scholar] [CrossRef]
- Espinosa, E.; Rincón, E.; Morcillo-Martín, R.; Rabasco-Vílchez, L.; Rodríguez, A. Orange peel waste biorefinery in multi-component cascade approach: Polyphenolic compounds and nanocellulose for food packaging. Ind. Crop. Prod. 2022, 187, 115413. [Google Scholar] [CrossRef]
- Gao, H.; Duan, B.; Lu, A.; Deng, H.; Du, Y.; Shi, X.; Zhang, L. Fabrication of cellulose nanofibers from waste brown algae and their potential application as milk thickeners. Food Hydrocoll. 2018, 79, 473–481. [Google Scholar] [CrossRef]
- Kasiri, N.; Fathi, M. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int. J. Biol. Macromol. 2018, 106, 1023–1031. [Google Scholar] [CrossRef]
- Rico, X.; Gullon, B.; Alonso, J.L.; Parajo, J.C.; Yanez, R. Valorization of peanut shells: Manufacture of bioactive oligosaccharides. Carbohydr. Polym. 2018, 183, 21–28. [Google Scholar] [CrossRef]
- Rehan, M.; Abdel-Wahed, N.A.M.; Farouk, A.; El-Zawahry, M.M. Extraction of Valuable Compounds from Orange Peel Waste for Advanced Functionalization of Cellulosic Surfaces. ACS Sustain. Chem. Eng. 2018, 6, 5911–5928. [Google Scholar] [CrossRef]
- Weligama Thuppahige, V.T.; Moghaddam, L.; Welsh, Z.G.; Wang, T.; Karim, A. Investigation of critical properties of Cassava (Manihot esculenta) peel and bagasse as starch-rich fibrous agro-industrial wastes for biodegradable food packaging. Food Chem. 2023, 422, 136200. [Google Scholar] [CrossRef]
- Pérez-Bassart, Z.; Reyes, A.; Martínez-Abad, A.; López-Rubio, A.; Fabra, M.J. Feasibility of Agaricus bisporus waste biomass to develop biodegradable food packaging materials. Food Hydrocoll. 2023, 142, 108861. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S.; Daglia, M.; Rengasamy, K.R. Dietary carotenoids in cancer chemoprevention and chemotherapy: A review of emerging evidence. Pharmacol. Res. 2020, 157, 104830. [Google Scholar] [CrossRef]
- Saini, R.K.; Rengasamy, K.R.R.; Mahomoodally, F.M.; Keum, Y.S. Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives. Pharmacol. Res. 2020, 155, 104730. [Google Scholar] [CrossRef]
- Gao, Q.; Zhong, C.; Zhou, X.; Chen, R.; Xiong, T.; Hong, M.; Li, Q.; Kong, M.; Han, W.; Sun, G.; et al. The association between intake of dietary lycopene and other carotenoids and gestational diabetes mellitus risk during mid-trimester: A cross-sectional study. Br. J. Nutr. 2019, 121, 1405–1412. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Yang, X.W.; Wu, B.F.; Shang, J.H.; Liu, Y.P.; Dai, Z.; Luo, X.D. Anti-inflammatory Effect of Pomelo Peel and Its Bioactive Coumarins. J. Agric. Food Chem. 2019, 67, 8810–8818. [Google Scholar] [CrossRef]
- Millan-Linares, M.C.; Bermudez, B.; Martin, M.E.; Munoz, E.; Abia, R.; Millan, F.; Muriana, F.J.G.; Montserrat-de la Paz, S. Unsaponifiable fraction isolated from grape (Vitis vinifera L.) seed oil attenuates oxidative and inflammatory responses in human primary monocytes. Food Funct. 2018, 9, 2517–2523. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Campos, D.; Oliveira, A.; Nunes, J.; Vicente, A.A.; Pintado, M. Study of olive pomace antioxidant dietary fibre powder throughout gastrointestinal tract as multisource of phenolics, fatty acids and dietary fibre. Food Res. Int. 2021, 142, 110032. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef]
- Bas-Bellver, C.; Andres, C.; Segui, L.; Barrera, C.; Jimenez-Hernandez, N.; Artacho, A.; Betoret, N.; Gosalbes, M.J. Valorization of Persimmon and Blueberry Byproducts to Obtain Functional Powders: In Vitro Digestion and Fermentation by Gut Microbiota. J. Agric. Food Chem. 2020, 68, 8080–8090. [Google Scholar] [CrossRef]
- Rashid, R.; Masoodi, F.A.; Wani, S.M.; Manzoor, S.; Gull, A. Ultrasound assisted extraction of bioactive compounds from pomegranate peel, their nanoencapsulation and application for improvement in shelf life extension of edible oils. Food Chem. 2022, 385, 132608. [Google Scholar] [CrossRef]
- Drinic, Z.; Mudric, J.; Zdunic, G.; Bigovic, D.; Menkovic, N.; Savikin, K. Effect of pomegranate peel extract on the oxidative stability of pomegranate seed oil. Food Chem. 2020, 333, 127501. [Google Scholar] [CrossRef]
- Karimi Sani, I.; Masoudpour-Behabadi, M.; Alizadeh Sani, M.; Motalebinejad, H.; Juma, A.S.M.; Asdagh, A.; Eghbaljoo, H.; Khodaei, S.M.; Rhim, J.W.; Mohammadi, F. Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem. 2023, 405, 134964. [Google Scholar] [CrossRef]
- Yun, D.; Liu, J. Recent advances on the development of food packaging films based on citrus processing wastes: A review. J. Agric. Food Res. 2022, 9, 100316. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [Google Scholar] [CrossRef]
- Silveira Hornung, P.; Ávila, S.; Apea-Bah, F.B.; Liu, J.; Lopes Teixeira, G.; Hoffmann Ribani, R.; Beta, T. Sustainable Use of Ilex paraguariensis Waste in Improving Biodegradable Corn Starch Films’ Mechanical, Thermal and Bioactive Properties. J. Polym. Environ. 2020, 28, 1696–1709. [Google Scholar] [CrossRef]
- Hanani, Z.A.N.; Yee, F.C.; Nor-Khaizura, M.A.R. Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocoll. 2019, 89, 253–259. [Google Scholar] [CrossRef]
- Tibolla, H.; Pelissari, F.M.; Martins, J.T.; Vicente, A.A.; Menegalli, F.C. Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocoll. 2018, 75, 192–201. [Google Scholar] [CrossRef]
- Umaraw, P.; Munekata, P.E.S.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Saini, R.K.; Khan, M.I.; Shang, X.; Kumar, V.; Kumari, V.; Kesarwani, A.; Ko, E.Y. Dietary Sources, Stabilization, Health Benefits, and Industrial Application of Anthocyanins—A Review. Foods 2024, 13, 1227. [Google Scholar] [CrossRef]
- Kumar, N.; Daniloski, D.; Pratibha; Neeraj; D’Cunha, N.M.; Naumovski, N.; Petkoska, A.T. Pomegranate peel extract—A natural bioactive addition to novel active edible packaging. Food Res. Int. 2022, 156, 111378. [Google Scholar] [CrossRef]
- Gomez, M.; Martinez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2119–2135. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Jiang, W. Development of antioxidant chitosan film with banana peels extract and its application as coating in maintaining the storage quality of apple. Int. J. Biol. Macromol. 2020, 154, 1205–1214. [Google Scholar] [CrossRef]
- Wu, H.; Lei, Y.; Zhu, R.; Zhao, M.; Lu, J.; Xiao, D.; Jiao, C.; Zhang, Z.; Shen, G.; Li, S. Preparation and characterization of bioactive edible packaging films based on pomelo peel flours incorporating tea polyphenol. Food Hydrocoll. 2019, 90, 41–49. [Google Scholar] [CrossRef]
- Cooney, R.; de Sousa, D.B.; Fernández-Ríos, A.; Mellett, S.; Rowan, N.; Morse, A.P.; Hayes, M.; Laso, J.; Regueiro, L.; Wan, A.H.L.; et al. A circular economy framework for seafood waste valorisation to meet challenges and opportunities for intensive production and sustainability. J. Clean. Prod. 2023, 392, 136283. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Kim, S.H.; Wong, J.W.C. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef]
- Patsalou, M.; Samanides, C.G.; Protopapa, E.; Stavrinou, S.; Vyrides, I.; Koutinas, M. A Citrus Peel Waste Biorefinery for Ethanol and Methane Production. Molecules 2019, 24, 2451. [Google Scholar] [CrossRef]
- Ben Mabrouk, A.; Putaux, J.-L.; Boufi, S. Valorization of olive leaf waste as a new source of fractions containing cellulose nanomaterials. Ind. Crop. Prod. 2023, 202, 116996. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; Ronza, P.; Garcia-Oliveira, P.; Pereira, A.G.; Losada, A.P.; Prieto, M.A.; Quiroga, M.I.; Simal-Gandara, J. Aquaculture as a circular bio-economy model with Galicia as a study case: How to transform waste into revalorized by-products. Trends Food Sci. Technol. 2022, 119, 23–35. [Google Scholar] [CrossRef]
- McElroy, C.R.; Kopanitsa, L.; Helmes, R.; Fan, J.; Attard, T.M.; Simister, R.; van den Burg, S.; Ladds, G.; Bailey, D.S.; Gomez, L.D. Integrated biorefinery approach to valorise Saccharina latissima biomass: Combined sustainable processing to produce biologically active fucoxanthin, mannitol, fucoidans and alginates. Environ. Technol. Innov. 2023, 29, 103014. [Google Scholar] [CrossRef]
- Coman, V.; Teleky, B.E.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.F.; Vodnar, D.C. Bioactive potential of fruit and vegetable wastes. Adv. Food Nutr. Res. 2020, 91, 157–225. [Google Scholar] [CrossRef]
- Rather, J.A.; Yousuf, S.; Ashraf, Q.S.; Mir, S.A.; Makroo, H.A.; Majid, D.; Barba, F.J.; Dar, B.N. Nutritional and bioactive composition, nutraceutical potential, food and packaging applications of Cydonia oblonga and its byproducts: A review. J. Food Compos. Anal. 2023, 115, 105000. [Google Scholar] [CrossRef]
- Denaro, M.; Smeriglio, A.; Trombetta, D. Antioxidant and Anti-Inflammatory Activity of Citrus Flavanones Mix and Its Stability after In Vitro Simulated Digestion. Antioxidants 2021, 10, 140. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef]
- Linhares Sabino, N.; Maziero Fogarin, H.; Lucia Murillo-Franco, S.; Oliviera Bérgamo, M.; Vicente Moreno, L.; Danielle Virginio da Silva, D.; Soleo Funari, C.; Johana Dussán, K. Investigating the influence of solvents and extraction methods on the efficacy of phenolic compound recovery from spent coffee grounds. Sep. Purif. Technol. 2025, 362, 131793. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Rosello, C.; Belanger, R.; Ratti, C. Fate of Residual Pesticides in Fruit and Vegetable Waste (FVW) Processing. Foods 2020, 9, 1468. [Google Scholar] [CrossRef]
- Zayats, M.F.; Leschev, S.M.; Petrashkevich, N.V.; Zayats, M.A.; Kadenczki, L.; Szitas, R.; Szeman Dobrik, H.; Kereszteny, N. Distribution of pesticides in n-hexane/water and n-hexane/acetonitrile systems and estimation of possibilities of their extraction isolation and preconcentration from various matrices. Anal. Chim. Acta 2013, 774, 33–43. [Google Scholar] [CrossRef]
- de Oliveira, M.C.; de Oliveira, J.K.; Silva, J.B.; Mendes, L.G.; da Silva, F.S.; Alencar, M.d.S.; Nobre, C.d.A.; Costa, M.G.M.; Lima, M.d.A.; Milhome, M.A.L. Effect of thermal processing on the degradation of pesticides in a banana jam partially formulated with banana peel flour. Appl. Food Res. 2024, 4, 100445. [Google Scholar] [CrossRef]
- Hasan, M.M.; Islam, M.R.; Haque, A.R.; Kabir, M.R.; Khushe, K.J.; Hasan, S.M.K. Trends and challenges of fruit by-products utilization: Insights into safety, sensory, and benefits of the use for the development of innovative healthy food: A review. Bioresour. Bioprocess. 2024, 11, 10. [Google Scholar] [CrossRef]
- Rasheed, U.; Ain, Q.U.; Yaseen, M.; Fan, X.; Yao, X.; Tong, Z.; Liu, B. Modification of bentonite with orange peels extract and its application as mycotoxins’ binder in buffered solutions and simulated gastrointestinal fluids. J. Clean. Prod. 2020, 267, 122105. [Google Scholar] [CrossRef]
Agro-Food Industry | By-Product/Waste | Bioactive Compounds | Reference |
---|---|---|---|
Shrimp processing | Head and carapace residues (38.1–45.4%) | LC-n3-PUFAs including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and astaxanthin (31–84 µg/g FW), α-tocopherol (32.0–35.3 µg/g FW), and sterols. | [6,25] |
Sardine (Sardina pilchardus) canning | Viscera, spines, and heads | LC-n3-PUFAs, including EPA and DHA, and amino acids | [26] |
Olive processing | Olive pomace | α-Tocopherol (2.63 mg/100 g), oleic acid (75% of total fatty acids), hydroxytyrosol (83.6 mg/100 g), comselogoside, and triterpenic acids (maslinic acid) | [27,28] |
Olive processing | Leaves (10% of the weight of the olives delivered to the mill) | Triterpenes, including oleuropein, α-amyrin, oleanolic acid, and maslinic acid | [29] |
Potato processing | Peel (6–10%) | Polyphenols (15.8–32.2% DW) and starch (52.1% DW) | [30] |
Tomato processing | Pomace, seed, and skin | Tocopherols, polyphenols (mainly ellagic and chlorogenic acids, rutin, and myricetin), terpenes, minerals, and sterols; the peel mainly contains high amounts of lycopene | [10,31,32,33] |
Pineapple processing | Crown, core, peels, and fruit trimmings (55–70%) | Bromelain enzyme, caffeic acid-O-hexoside, and apigenin 6,8-C-diglucoside | [34,35] |
Broad beans (Vicia faba) processing | Green pods (after seed removal) | Dietary fiber (57.46% DW), carbohydrate (18.93% DW), protein (13.81% DW), linoleic acid (39.74% of total fatty acids), carotenoids (7.3 µg/g FW), minerals (mainly K), and polyphenols | [36] |
Avocado (Persea americana Mill.) processing | Peel and kernel (30%) | Polyphenols (mainly epicatechin), chlorogenic acid derivatives, and oligosaccharides | [37] |
Chestnut peeling/processing | Chestnut shells and inner chestnut shells | Gallic acid, protocatechuic acid, and condensed tannins | [38] |
Ginkgo biloba fruit processing | Seed exocarp | Polysaccharides, flavonoids, terpene trilactones, and ginkgolic acids | [39] |
Pomegranate (Punica granatum L.) juice production | Peel (30–40%) | Tannins (pomegranatins A–C, gemin D, casuariin, punicacortein D, punicacortein C, pedunculagin and granatin A), phenolic acids (caffeic, chlorogenic, syringic, ferulic, and gallic acid), and flavonoids (anthocyanins, catechin, quercetin, and epicatechin) | [40,41] |
Citrus juice processing | Pomace (seeds, peel, and pulp; 50–60% of fruits) | Polyunsaturated fatty acids, pectin, organic acid, dietary fiber, limonoids, carotenoids, vitamins, and polyphenols, including apigenin-7-O-glucoside, quercetagetin, hesperetin-7-O-rutinoside, peonidin, cyanidin, quercetin, naringenin, and cyanidin-3,5-di-O-glucoside | [42] |
Buriti (Mauritia flexuosa L. f.) fruit oil | Peels, endocarp, and pulp bran | Dietary fiber (88.91 g/100 g DW), non-extractable phenolics (proanthocyanidins; 5008.1 mg/100 g DW), and carotenoids (1186.7 mg/100 g DW) in unbalanced peel flour | [43] |
Walnut (Juglans regia L.) processing | Walnut fructus (the dry wooden diaphragm inside walnuts) | Total dietary polyphenols of 2878.1–6183.5 µg/g, consisting mainly gallic acid (89.8–216.5 µg/g), protocatehuic acid (44.3–154.1 µg/g), (+)-catechin (251.7–693.3 µg/g), (−)-epicatechin gallate (22.3–194.8 µg/g), taxifolin (34.0–153.3 µg/g), ellagic acid (518.3–1733.7 µg/g), isoquercitrin (32.3–116.7 µg/g), taxifolin-3-O-arabinofuranoside (519.6–2181.9 µg/g), and quercitrin (145.4–983.6 µg/g) | [44] |
Winemaking industry | Grape skin (50%), seeds (25%), and pomace | (+)-catechin, (−)-epicatechin), epigallocatechin, anthocyanins, procyanidins dimers, kaempferol, quercetin, vanillic, syringic, gallic, protocatechuic, ellagic acids, and stilbenes (resveratrol) | [45,46] |
Winemaking industry | Wine lees (primarily dead yeast cells) | Caftaric acid (cis and trans) coutaric acids, caffeic acid, p-coumaric acids, hydroxybenzoic acids (gallic and 2,5 dihydroxybenzoic acids), astilbin (flavanone glycoside), and catechin (flavanol) | [47] |
Cocoa (Theobroma cacao L.) | Cocoa pod husk (70–75% dry weight of whole fruit) | Organic acids, fatty acids, procyanidins, amino acids, alkaloids, pectin, minerals (mainly potassium, 2.8–3.8% w/w), fiber (including cellulose, hemicellulose, pectin, and lignin), and polyphenols | [48,49] |
Cocoa/ chocolate industry | Cocoa shells (byproduct of roasting the beans) | Flavanols (catechin and epicatechin), methylxanthines (theobromine and caffeine), fatty acids (964 mg/g extract), and fibres | [50] |
Mushroom production | Spent mycelium substrate | Polysaccharides (α-D-glucans, β-D-glucans), chitin, proteins, polyphenols, fatty acids, vitamins, and minerals | [51] |
Red pitaya (Hylocereus costaricensis) processing | Peel | Oxalic acid (1.68 g/100 g DW), malic acid (1.7 g/100 g DW), betacyanin (betanin, isobetanin, phyllocactin, phyllocactin, and isophyllocactin), and γ-tocopherol | [52] |
Acerola (Malpighia emarginata DC.) | Seeds and pomace (20%) | Quercetin (quercetin O-rhamnoside; quercetin pentosyl-O-hexoside), kaempferol (kaempferol O-rhamnoside), and ascorbic acid | [53] |
Mango processing | Peels (15–20%) and stone (20–45%) | β-carotene, chlorophylls, 13-cis -β-carotene, xanthophylls, lupeol, α-amyrin, tocopherols, dehydroascorbic acid, luteolin-7-O-glucoside, rutin, mangiferin, quercetin 3-O-galactoside, and pectin | [54,55] |
Onion (Allium cepa L.) processing | Peel | Quercetin, myricetin, kaempferol, quercetin 4′-O-glucoside, cyanidin 3-(6″-malonylglucoside), and cyanidin 3-O-glucoside | [56,57] |
Kiwifruit farming and processing | Peel, pomace, and undersized fruits | Epicatechin (2.295 mg/g DW), quercetin (0.023 mg/g DW), (+)-catechin, protocatechuic acid, p-coumaric acid, caffeic acid, and chlorogenic acid | [58] |
Jackfruit (Artocarpus heterophyllus Lam.) processing | Peel (55–62%) | Ascorbic acid, quinic acid, shikimic acid, catechin, gallic acid, and chlorogenic acid | [59,60] |
Papaya (Carica papaya L.) processing | Seeds (15–20%) and peel | Pectin and phenolic acids including 3,4 dihydroxybenzoic acid, 4-hydroxymethylbenzoic acid, ferulic acid, chlorogenic acid, gallic acid, methoxyphenylacetic acid, salicylic acid, vanillic acid, myricetin, and resveratrol | [61,62] |
Passion fruit (Passiflora edulis sp.) processing | Rind (60% of the total fruit mass) | Flavonoids, including C-glycosyl isoorentin, isovitexin vitexin, and vicenin | [63] |
Capsicum annuum bell pepper farming | Undersized and damaged bell peppers | Carotenoids, including violaxanthin, lutein, β-carotene, and zeaxanthin; and phenolic acids, including feruloyl-hexoside, sinapic acid-O-hexoside, and galloyl-1,4-galactarolactone | [64] |
Guava (Psidium guajaya) fruit processing | Peels, seeds, residual pulp, and decanter | Lycopene, pectin, phenolic acids (vanillin and vanillic acid), and fatty acids (linoleic acid, palmitic acid, and oleic acid) | [65,66] |
Marigold (Tagetes spp. L.) flowers; ceremonial, decorative, or recreational activities | Flower petals | Carotenoids (25.62–2723.11 µg/g FW; predominantly lutein-diesters), α-tocopherol (167.91–338.50 µg/g FW), phytosterols ( β-sitosterol; 127.08–191.99 µg/g FW), and fatty acids | [67] |
Bioactive | Bioactive Properties | Source | Applications | Reference |
---|---|---|---|---|
Astaxanthin | Antioxidant Natural coloration | Crustacean processing waste | Animal feed Food Dietary supplements Pharmaceuticals Cosmetics | [6] |
Protein | Nutritional (sources of several essential amino acids) Gelling Emulsifying and foaming | Whey from dairy processing, collagen and gelatin from meat and seafood processing, zein from corn processing, and rice bran from rice mill | Revalued Food Bioplastics Edible films and coating Water purification (functional superabsorbent) Renewable energy | [20] |
Bromelain enzyme | Immunomodulatory Protease activity | Pineapple waste | Nutraceutical Cosmetics Meat tenderization Anti-browning agent in fruit processing Baking industry (enhance dough relaxation and permits the dough to rise evenly) Protease in detergents, textile manufacturing, and leather processing | [34] |
Carotenoids | Antioxidant Natural colorant | Yogurt fortification | [156] | |
Starch | Hydrocolloid film forming | Edible Packaging film and coating | [157] | |
Anthocyanins | pH-sensitive Antioxidant | Fabrication of intelligent packaging film Food fortification Food preservation | [158] | |
Polyphenols | Antioxidant Antimicrobial | Rice straw, thinned fruits | Fabrication of active packaging film Antioxidants for functional foods Food preservatives and stabilizers | [158,159,160] |
Polyphenolic extract and cellulose nanofiber | Antioxidant UV-light blocking | Orange peel | Active packaging film | [161] |
Cellulose nanofibers | No cytotoxicity to COS-7 cells Absorb casein micelles within hydrogen bonds to form a gel-like structure | Brown algae | Milk thickeners | [162] |
Cellulose and cellulose nanocrystals | Film forming | Rice straw, pistachio shells, peanut shells, orange peel | Sustainable bioplastic Edible film and coating Stabilizer for pickering emulsion | [159,163,164,165] |
Starch, calcium (Ca), and silicon (Si) | Film forming and nanocrystalline | Cassava (Manihot esculenta) peel and bagasse | Biodegradable food packaging | [166] |
Chitin | Antimicrobial Moisture barrier | Mushroom waste | Biodegradable food packaging film | [167] |
Challenges | Possible Solution | Reference |
---|---|---|
AIBPs are highly sensitive to microbial spoilage due to their high moisture content. | Dehydration of AIBPs can help significantly reduce the activity of enzymes and microbes. Moreover, it facilitates ease of handling and distribution of the by-product due to the substantial reduction in the weight and volume of biomass. | [98] |
The use of organic solvents for the extraction creates new environmental issues and also poses the risk of solvent residues in the extract. | Green-solvent-assisted extraction utilizing supercritical CO2, terpenes (e.g., limonene), and deep eutectic solvents (DESs) can help to minimize the risk of solvent residues in the extract. | [132,133,135] |
The isolated bioactive compounds and extract are sensitive to light, oxygen, moisture, pH, temperature, and metal-ions-mediated degradation. | The encapsulation of isolated bioactive compounds and extracts can significantly improve storage stability. In addition, it can help improve bioaccessibility and bioavailability. | [149,151] |
Extraction and purification of individual compounds are usually associated with high costs (low concentrations in a complex matrix); thus, the economic aspects are still critical. |
| [197,198] |
The extraction of small amounts of bioactive material does not eliminate the bulk mass of food waste by-products. | A biorefinery and a circular bioeconomy approach can be used, including sequential extraction of primary and secondary metabolites, followed by using remaining solid residues for biofuel production. | [65,143,190,191] |
The extraction yields are not optimum. |
| [199,200] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saini, R.K.; Khan, M.I.; Kumar, V.; Shang, X.; Lee, J.-H.; Ko, E.-Y. Bioactive Compounds of Agro-Industrial By-Products: Current Trends, Recovery, and Possible Utilization. Antioxidants 2025, 14, 650. https://doi.org/10.3390/antiox14060650
Saini RK, Khan MI, Kumar V, Shang X, Lee J-H, Ko E-Y. Bioactive Compounds of Agro-Industrial By-Products: Current Trends, Recovery, and Possible Utilization. Antioxidants. 2025; 14(6):650. https://doi.org/10.3390/antiox14060650
Chicago/Turabian StyleSaini, Ramesh Kumar, Mohammad Imtiyaj Khan, Vikas Kumar, Xiaomin Shang, Ji-Ho Lee, and Eun-Young Ko. 2025. "Bioactive Compounds of Agro-Industrial By-Products: Current Trends, Recovery, and Possible Utilization" Antioxidants 14, no. 6: 650. https://doi.org/10.3390/antiox14060650
APA StyleSaini, R. K., Khan, M. I., Kumar, V., Shang, X., Lee, J.-H., & Ko, E.-Y. (2025). Bioactive Compounds of Agro-Industrial By-Products: Current Trends, Recovery, and Possible Utilization. Antioxidants, 14(6), 650. https://doi.org/10.3390/antiox14060650