Antioxidant, Antibacterial, and Bioaccessibility Properties of Ultrasound-Extracted Chilean Propolis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Sample Preparation
2.2. Botanical Analysis of Propolis
2.3. Ethanolic Extraction of Propolis
2.4. Phytochemical Screening
2.5. Determination of TPC and TFC
2.6. Antioxidant Capacity Assay
2.7. HPLC–MS/MS
2.8. Antibacterial Assay
2.9. In Vitro Digestion and Relative Bioaccessibility
2.10. Statistical Analysis
3. Results and Discussion
3.1. Botanical Origin of Propolis
3.2. Optimized Parameters for UAE Extraction Method
3.3. Phytochemical Screening
3.4. Total Polyphenols, Flavonoid Content, and HPLC–MS/MS
3.5. Antioxidant Capacity
3.6. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rebaza, R.; Amaya, L.; Gutiérrez, A.; Haro, R.; Tumbajulca, M.; Valera, F.; Vargas, Y.; Barraza-Jauregui, G.; León Vargas, J.M.; Sánchez-González, J.A. Aplicación del propóleo en envasado activo. Agroindustrial Sci. 2016, 6, 239–252. [Google Scholar] [CrossRef]
- Zulhendri, F.; Chandrasekaran, K.; Kowacz, M.; Ravalia, M.; Kripal, K.; Fearnley, J.; Perera, C.O. Antiviral, antibacterial, antifungal, and antiparasitic properties of propolis: A review. Foods 2021, 10, 1360. [Google Scholar] [CrossRef]
- Al-Waili, N.; Al-Ghamdi, A.; Ansari, M.J.; Al-Attal, Y.; Salom, K. Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures. Int. J. Med. Sci. 2012, 9, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A complex natural product with a plethora of biological activities that can be explored for drug development. Evid.-Based Complement. Altern. Med. 2015, 2015, 206439. [Google Scholar] [CrossRef]
- Sethi, S.; Rathod, V.K. Recent advancements in ultrasound-assisted biomolecule extraction from prokaryotic and eukaryotic cells: A review. Prep. Biochem. Biotechnol. 2024; 1–27, online ahead of print. [Google Scholar] [CrossRef]
- Contieri, L.S.; Mesquita, L.M.d.S.; Sanches, V.L.; Chaves, J.; Pizani, R.S.; da Silva, L.C.; Viganó, J.; Ventura, S.P.; Rostagno, M.A. Recent progress on the recovery of bioactive compounds obtained from propolis as a natural resource: Processes, and applications. Sep. Purif. Technol. 2022, 298, 121640. [Google Scholar] [CrossRef]
- Reis, J.H.d.O.; Barreto, G.d.A.; Cerqueira, J.C.; dos Anjos, J.P.; Andrade, L.N.; Padilha, F.F.; Druzian, J.I.; Machado, B.A.S. Evaluation of the antioxidant profile and cytotoxic activity of red propolis extracts from different regions of northeastern Brazil obtained by conventional and ultrasound-assisted extraction. PLoS ONE 2019, 14, e0219063. [Google Scholar] [CrossRef]
- Barrientos, L.; Herrera, C.L.; Montenegro, G.; Ortega, X.; Veloz, J.; Alvear, M.; Cuevas, A.; Saavedra, N.; Salazar, L.A. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Braz. J. Microbiol. 2013, 44, 577–585. [Google Scholar] [CrossRef]
- Alvear, M.; Santos, E.; Cabezas, F.; Pérez-Sanmartín, A.; Lespinasse, M.; Veloz, J. Geographic area of collection determines the chemical composition and antimicrobial potential of three extracts of chilean propolis. Plants 2021, 10, 1543. [Google Scholar] [CrossRef] [PubMed]
- Veloz, J.; Cabezas, F.; Fernández, C.; Lespinasse, M. The structural diversity of flavonoid present in chilean propolis determines their biological activity. Ann. Chem. Sci. Res. 2023, 4, 1–2. [Google Scholar] [CrossRef]
- Wagh, V.D. Propolis: A wonder bees product and its pharmacological potentials. Adv. Pharmacol. Sci. 2013, 2013, 308249. [Google Scholar] [CrossRef]
- Herrera, C.L.; Alvear, M.; Barrientos, L.; Montenegro, G.; Salazar, L.A. The antifungal effect of six commercial extracts of Chilean propolis on Candida spp. Cienc. Investig. Agrar. 2010, 37, 75–84. [Google Scholar] [CrossRef]
- Zullkiflee, N.; Taha, H.; Usman, A. Propolis: Its role and efficacy in human health and diseases. Molecules 2022, 27, 6120. [Google Scholar] [CrossRef]
- El-Sakhawy, M.; Salama, A.; Mohamed, S.A.A. Propolis applications in food industries and packaging. Biomass Convers. Biorefinery 2024, 14, 13731–13746. [Google Scholar] [CrossRef]
- Flores, F.P.; Kong, F. In vitro release kinetics of microencapsulated materials and the effect of the food matrix. Annu. Rev. Food Sci. Technol. 2017, 8, 237–259. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists—AOAC. Official Method of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Shaikh, J.R.; Patil, M. Qualitative tests for preliminary phytochemical screening: An overview. Int. J. Chem. Stud. 2020, 8, 603–608. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Fuentes, Y.; Giovagnoli-Vicuña, C.; Faúndez, M.; Giordano, A. Microencapsulation of chilean papaya waste extract and its impact on physicochemical and bioactive properties. Antioxidants 2023, 12, 1900. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Van den Berg, R.; Haenen, G.R.M.M.; van den Berg, H.; Bast, A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- M02-A11; Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard—Eleventh Edition. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. Available online: www.clsi.org (accessed on 1 October 2024).
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Giovagnoli-Vicuña, C.; Briones-Labarca, V.; Romero, M.S.; Giordano, A.; Pizarro, S. Effect of extraction methods and in vitro bio-accessibility of microencapsulated lemon extract. Molecules 2022, 27, 4166. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Ramírez, A.; Mascayano-Collado, C.; Barriga, A.; Echeverría, J.; Urzúa, A. Inhibition of soybean 15-lipoxygenase and human 5-lipoxygenase by extracts of leaves, stem bark, phenols and catechols isolated from Lithraea caustica (Anacardiaceae). Front. Pharmacol. 2020, 11, 594257. [Google Scholar] [CrossRef]
- Dezmirean, D.S.; Paşca, C.; Moise, A.R.; Bobiş, O. Plant sources responsible for the chemical composition and main bioactive properties of poplar-type propolis. Plants 2020, 10, 22. [Google Scholar] [CrossRef]
- Hossain, R.; Quispe, C.; Khan, R.A.; Saikat, A.S.M.; Ray, P.; Ongalbek, D.; Yeskaliyeva, B.; Jain, D.; Smeriglio, A.; Trombetta, D.; et al. Propolis: An update on its chemistry and pharmacological applications. Chin. Med. 2022, 17, 100. [Google Scholar] [CrossRef] [PubMed]
- Avula, B.; Sagi, S.; Masoodi, M.H.; Bae, J.-Y.; Wali, A.F.; Khan, I.A. Quantification and characterization of phenolic compounds from northern indian propolis extracts and dietary supplements. J. AOAC Int. 2020, 103, 1378–1393. [Google Scholar] [CrossRef]
- Torres-Vega, J.; Gómez-Alonso, S.; Pastene-Navarrete, E.; Pérez-Navarro, J. Green extraction of alkaloids and polyphenols from Peumus boldus leaves with natural deep eutectic solvents and profiling by HPLC-PDA-IT-MS/MS and HPLC-QTOF-MS/MS. Plants 2020, 9, 242. [Google Scholar] [CrossRef]
- Shao, J.; Yin, Z.; Wang, Y.; Yang, Y.; Tang, Q.; Zhang, M.; Jiao, J.; Liu, C.; Yang, M.; Zhen, L.; et al. Effects of different doses of Eucalyptus oil from Eucalyptus globulus labill on respiratory tract immunity and immune function in healthy rats. Front. Pharmacol. 2020, 11, 1287. [Google Scholar] [CrossRef]
- El Shiekh, R.A.; Atwa, A.M.; Elgindy, A.M.; Mustafa, A.M.; Senna, M.M.; Alkabbani, M.A.; Ibrahim, K.M. Therapeutic Applications of Eucalyptus Essential Oils. Inflammopharmacology 2024, 33, 163–182. [Google Scholar] [CrossRef]
- Singh, S.; Syukri, D.M.; Ushir, Y.V.; Mishra, A.; Ontong, J.C.; Nwabor, O.F.; Darekar, S.M.; Samee, W.; Chidrawar, V.R.; Chittasupho, C. Post-operative wound healing efficacy of eucalyptus camaldulensis phenolic-rich extracts incorporated hydrogel with enhanced antioxidant, antibacterial, and anti-inflammatory activities. J. Polym. Environ. 2024, 33, 814–839. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.-Y.; Xia, Y.; Guo, H.; He, X.-Q.; Li, H.; Wu, D.-T.; Geng, F.; Lin, F.-J.; Li, H.-B.; et al. Screening and process optimization of ultrasound-assisted extraction of main antioxidants from sweet tea (Lithocarpus litseifolius [Hance] Chun). Food Biosci. 2021, 43, 101277. [Google Scholar] [CrossRef]
- Canale, A.; Cosci, F.; Canovai, R.; Giannotti, P.; Benelli, G. Foreign matter contaminating ethanolic extract of propolis: A filth-test survey comparing products from small beekeeping farms and industrial producers. Food Addit. Contam. Part A 2014, 31, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Yusof, N.; Munaim, M.S.A.; Kutty, R.V. The effects of different ethanol concentration on total phenolic and total flavonoid content in Malaysian propolis. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012033. [Google Scholar] [CrossRef]
- Oroian, M.; Ursachi, F.; Dranca, F. Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrason. Sonochem. 2020, 64, 105021. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Z.; Wang, Z.; Zhang, H. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid.-Based Complement. Altern. Med. 2015, 2015, 595393. [Google Scholar] [CrossRef]
- Bakkaloglu, Z.; Arici, M.; Karasu, S. Optimization of ultrasound-assisted extraction of turkish propolis and characterization of phenolic profile, antioxidant and antimicrobial activity. Food Sci. Technol. 2021, 41, 687–695. [Google Scholar] [CrossRef]
- Trusheva, B.; Trunkova, D.; Bankova, V. Different extraction methods of biologically active components from propolis: A preliminary study. Chem. Cent. J. 2007, 1, 13. [Google Scholar] [CrossRef]
- Chavda, V.P.; Vuppu, S.; Balar, P.C.; Mishra, T.; Bezbaruah, R.; Teli, D.; Sharma, N.; Alom, S. Propolis in the management of cardiovascular disease. Int. J. Biol. Macromol. 2024, 266, 131219. [Google Scholar] [CrossRef]
- Salazar-Rojas, A.; Castro-Huerta, R.; Altieri, M. The main agroecological structure, a methodology for the collective analysis of the Mediterranean agroecological landscape of San Clemente, Region del Maule, Chile. Front. Sustain. Food Syst. 2023, 7, 1241648. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Lu, P.; Barrow, C.; Dunshea, F.R.; Suleria, H.A.R. Bioaccessibility and bioactivities of phenolic compounds from roasted coffee beans during in vitro digestion and colonic fermentation. Food Chem. 2022, 386, 132794. [Google Scholar] [CrossRef] [PubMed]
- Laib, I.; Laib, D.E.; Semouma, D.; Cheriet, N.; Aouzal, B.; Barkat, M.; Zaidi, N.; Benredouane, Z.M.; Bennaga, I.; Bendjama, K.; et al. Optimization of extraction and study of the in vitro static simulation of INFOGEST gastrointestinal digestion and in vitro colonic fermentation on the phenolic compounds of dandelion and their antioxidant activities. J. Food Meas. Charact. 2023, 17, 5660–5682. [Google Scholar] [CrossRef]
- Sousa, R.; Portmann, R.; Dubois, S.; Recio, I.; Egger, L. Protein digestion of different protein sources using the INFOGEST static digestion model. Food Res. Int. 2020, 130, 108996. [Google Scholar] [CrossRef]
- Kautzmann, C.; Castanha, E.; Aloísio Johann Dammann, C.; Andersen Pereira de Jesus, B.; Felippe da Silva, G.; de Lourdes Borba Magalhães, M.; Turnes Pasini Deolindo, C.; Pinto Kempka, A. Roasted yerba mate (Ilex paraguariensis) infusions in bovine milk model before and after in vitro digestion: Bioaccessibility of phenolic compounds, antioxidant activity, protein–polyphenol interactions and bioactive peptides. Food Res. Int. 2024, 183, 114206. [Google Scholar] [CrossRef]
- Thumann, T.A.; Pferschy-Wenzig, E.-M.; Aziz-Kalbhenn, H.; Ammar, R.M.; Rabini, S.; Moissl-Eichinger, C.; Bauer, R. Application of an in vitro digestion model to study the metabolic profile changes of an herbal extract combination by UHPLC–HRMS. Phytomedicine 2020, 71, 153221. [Google Scholar] [CrossRef] [PubMed]
- Šturm, L.; Ulrih, N.P. Advances in the propolis chemical composition between 2013 and 2018: A review. eFood 2020, 1, 24–37. [Google Scholar] [CrossRef]
- Khacha-Ananda, S.; Tragoolpua, K.; Chantawannakul, P.; Tragoolpua, Y. Antioxidant and anti-cancer cell proliferation activity of propolis extracts from two extraction methods. Asian Pac. J. Cancer Prev. 2013, 14, 6991–6995. [Google Scholar] [CrossRef]
- Yusof, N.; Munaim, M.S.A.; Kutty, R.V. Optimization of total phenolic compounds extracted from propolis by ultrasound- assisted extraction. Chem. Eng. Commun. 2020, 208, 564–572. [Google Scholar] [CrossRef]
- Rodríguez, Ó.; Bona, S.; Stäbler, A.; Rodríguez-Turienzo, L. Ultrasound-assisted extraction of polyphenols from olive pomace: Scale up from laboratory to pilot scenario. Processes 2022, 10, 2481. [Google Scholar] [CrossRef]
- Pinto, D.; López-Yerena, A.; Lamuela-Raventós, R.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Predicting the effects of in-vitro digestion in the bioactivity and bioaccessibility of antioxidant compounds extracted from chestnut shells by supercritical fluid extraction—A metabolomic approach. Food Chem. 2024, 435, 137581. [Google Scholar] [CrossRef]
- Jakobek, L.; Ištuk, J.; Barron, A.R.; Matić, P. Bioactive phenolic compounds from apples during simulated in vitro gastrointestinal digestion: Kinetics of their release. Appl. Sci. 2023, 13, 8434. [Google Scholar] [CrossRef]
- Cavia, M.M.; Arlanzón, N.; Busto, N.; Carrillo, C.; Alonso-Torre, S.R. The impact of in vitro digestion on the polyphenol content and antioxidant activity of spanish ciders. Foods 2023, 12, 1861. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Zhu, M.; Li, S.; Ma, X.; Hu, F. Ultrasound-assisted extraction of polyphenols from Chinese propolis. Front. Sustain. Food Syst. 2023, 7, 1131959. [Google Scholar] [CrossRef]
- Mergen Duymaz, G.; Duz, G.; Ozkan, K.; Karadag, A.; Yilmaz, O.; Karakus, A.; Cengiz, O.; Akyildiz, I.E.; Basdogan, G.; Damarlı, E.; et al. The evaluation of L-arginine solution as a solvent for propolis extraction: The phenolic profile, antioxidant, antibacterial activity, and in vitro bioaccessibility. Food Sci. Nutr. 2024, 12, 2724–2735. [Google Scholar] [CrossRef]
- González-Montiel, L.; Figueira, A.C.; Medina-Pérez, G.; Fernández-Luqueño, F.; Aguirre-Álvarez, G.; Pérez-Soto, E.; Pérez-Ríos, S.; Campos-Montiel, R.G. Bioactive compounds, antioxidant and antimicrobial activity of propolis extracts during in vitro digestion. Appl. Sci. 2022, 12, 7892. [Google Scholar] [CrossRef]
- Wanyo, P.; Chamsai, T.; Toontom, N.; Nghiep, L.K.; Tudpor, K. Differential effects of in vitro simulated digestion on antioxidant activity and bioaccessibility of phenolic compounds in purple rice bran extracts. Molecules 2024, 29, 2994. [Google Scholar] [CrossRef]
- Bouchelaghem, S. Propolis characterization and antimicrobial activities against Staphylococcus aureus and Candida albicans: A review. Saudi J. Biol. Sci. 2022, 29, 1936–1946. [Google Scholar] [CrossRef]
- Bouzahouane, H.; Ayari, A.; Guehria, I.; Riah, O. Propolis: Antimicrobial Activity and Chemical Composition Analysis. J. Microbiol. Biotechnol. Food Sci. 2021, 10, e3211. [Google Scholar] [CrossRef]
- Ramata-Stunda, A.; Petriņa, Z.; Valkovska, V.; Borodušķis, M.; Gibnere, L.; Gurkovska, E.; Nikolajeva, V. Synergistic Effect of Polyphenol-Rich Complex of Plant and Green Propolis Extracts with Antibiotics against Respiratory Infections Causing Bacteria. Antibiotics 2022, 11, 160. [Google Scholar] [CrossRef]
- Petruzzi, L.; Corbo, M.R.; Campaniello, D.; Speranza, B.; Sinigaglia, M.; Bevilacqua, A. Antifungal and antibacterial effects of propolis: A comparative study on food-borne Pseudomonas, Enterobacteriaceae, and fungi. Foods 2020, 9, 559. [Google Scholar] [CrossRef]
- Makarewicz, M.; Drożdż, I.; Tarko, T.; Duda-Chodak, A. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants 2021, 10, 188. [Google Scholar] [CrossRef] [PubMed]
Phytochemical | Test | Positive Result |
---|---|---|
Tannins a | 500 μL extract + 500 μL H2O + 1–2 drops of FeCl3 (10%) | Blue-Green color precipitate |
Flavonoids b | 1 mL extract + 2 mL of 2% NaOH solution+ drops diluted HCl | Colorless |
Coumarins c | 1 mL extract + 10% NaOH + Chloroform | Yellow color |
Alkaloids d | 2 mL extract + drops of Dragendorff’s reagents | Reddish-brown precipitate |
Phenols e | Extract + drops of K2Cr2O7 | Dark color |
Proteins f | 2 mL extract + 1 drop of CuSO4 (2%) + 1 mL of Ethanol (95%) + 1 pellet KOH | Pink color |
Sugars g | 1 mL extract + 1 mL Fehling’s solution A+ 1 mL Fehling’s solution B + boiled in water bath | Red precipitate |
Saponins h | 1 mL extract + 2 mL water (vigorously shaken) | Foam for ten minutes |
Botanical Attributes | Plant Source | Contribution (%) | |
---|---|---|---|
Pollen | Cryptocarya alba | 7.8 | |
Peumus boldus | 8.7 | ||
Escallonia pulverulenta | 18.4 | ||
Melilotus indicus | 4.9 | ||
Quillaja saponaria | 2.9 | ||
Populus nigra | 13.6 | ||
Schinus latifolius | 7.8 | ||
Eucalyptus sp. | 7.8 | ||
Lithraea caustica | 28.2 | ||
Plant structures | Trichomes | Lithraea caustica | 28.0 |
Retanilla trinervia | 12.0 | ||
Vessels | Populus nigra | 16.0 | |
Eucalyptus camaldulensis | 18.0 | ||
Nothofagus obliqua | 20.0 | ||
Epidermis | Carduus picnocephalus | 6.0 |
Phytochemical | Negative Control | Positive Control | Before Digestion | After Digestion | ||
---|---|---|---|---|---|---|
Conventional Extract | Optimized Extract | Conventional Extract | Optimized Extract | |||
Tannins | - | + | + | + | - | - |
Flavonoids | - | + | +++ | +++ | ++ | ++ |
Phenols | - | + | +++ | +++ | ++ | ++ |
Coumarins | - | + | ++ | ++ | + | + |
Alkaloids | - | + | + | + | + | + |
Proteins | - | + | + | + | + | + |
Sugars | - | + | ++ | ++ | + | + |
Saponins | - | + | - | - | - | - |
Analysis | Before Digestion | After Digestion | Bioaccessibility (%) | ||||
---|---|---|---|---|---|---|---|
CE | OE | CE | OE | CE | OE | ||
Phenolic compounds | TPC (mg GAE/mL) | 18.7 ± 0.1 b | 24.4 ± 0.4 a | 3.8 ± 0.1 d | 4.9 ± 0.0 c | 20.3 | 20.1 |
TFC (mg QE/mL) | 8.6 ± 0.4 b | 15.7 ± 0.7 a | 0.6 ± 0.0 d | 1.2 ± 0.1 c | 7.0 | 7.6 | |
Antioxidant Capacity (mg TE/mL) | DPPH | 60.1 ± 0.3 b | 62.9 ± 0.3 a | 34.0 ± 0.7 d | 43.7 ± 0.4 c | 56.6 | 69.5 |
ABTS | 21.6 ± 0.6 b | 35.7 ± 1.0 a | 13.5 ± 0.3 c | 21.6 ± 1.4 b | 62.5 | 60.5 | |
FRAP | 36.2 ± 1.2 b | 51.2 ± 0.1 a | 23.4 ± 3.3 c | 31.7 ± 0.5 b | 64.6 | 61.9 | |
HPLC–MS/MS (ppb) | Cinnamic acid | 1900 ± 100 b | 3500 ± 100 a | nd | 500 ± 10 c | - | 14.3 |
Ferulic acid | 4835 ± 400 b | 8350 ± 600 a | 695 ± 40 c | 790 ± 60 c | 14.4 | 9.5 | |
Chlorogenic acid | 78.0 ± 3.5 b | 168.5 ± 0.5 a | - | - | - | - | |
Caffeic acid | 73.0 ± 2.0 b | 88.0± 1.5 a | - | - | - | - | |
Coumaric acid | 51.0 ± 0.5 d | 77.5 ± 1.5 c | 94.5 ± 1.5 b | 123.0 ± 1.5 a | 185.3 | 158.7 | |
Rutin | 86.5 ± 2.5 b | 212.0 ± 4.5 a | 3.0 ± 0.5 c | 4.5 ± 1.1 c | 3.5 | 2.1 |
Assay | Bacteria | Before Digestion | After Digestion | Streptomycin | Ethanol | ||
---|---|---|---|---|---|---|---|
Conventional Extract | Optimized Extract | Conventional Extract | Optimized Extract | ||||
Inhibition diameter (mm) | S. enterica ser. Infantis | 7.7 ± 0.5 | 7.0 ± 0.0 ns | - | - | 23.0 ± 0.5 | 7.0 ± 0.0 |
S. enterica ser. Enteritidis | 8.0 ± 0.8 | 9.0 ± 0.0 ns | - | - | 24.0 ± 0.5 | 7.7 ± 0.5 | |
S. enterica ser. Typhimurium | 8.3 ± 0.5 | 9.0 ± 0.0 ns | - | - | 27.0 ± 0.9 | 7.0 ± 0.0 | |
L. monocytogenes ser. 1/2a | 15.3 ± 0.5 | 15.3 ± 0.5 ns | - | - | 27.0 ± 0.8 | 8.7 ± 0.5 | |
L. monocytogenes ser. 1/2 b | 14.0 ± 0.0 | 16.5 ± 0.4 * | - | - | 29.0 ± 0.0 | 8.7 ± 0.5 | |
L. monocytogenes ser. 4b | 14.0 ± 1.6 | 16.0 ± 0.0 ns | - | - | 28.0 ± 0.5 | 9.0 ± 0.0 | |
S. aureus | 24.7 ± 1.9 | 23.0 ± 2.2 ns | - | - | 28.0 ± 0.0 | 7.0 ± 0.0 | |
MBC (mg/mL) | S. enterica ser. Infantis | 50.0 ± 0.0 | 50.0 ± 0.0 ns | - | - | 1.0 ± 0.0 | 20.0 ± 0.0 a |
S. enterica ser. Enteritidis | 50.0 ± 0.0 | 50.0 ± 0.0 ns | - | - | 0.3 ± 0.0 | 20.0 ± 0.0 a | |
S. enterica ser. Typhimurium | 50.0 ± 0.0 | 50.0 ± 0.0 ns | - | - | 0.5 ± 0.0 | 20.0 ± 0.0 a | |
L. monocytogenes ser. 1/2a | 6.3 ± 0.0 | 3.1 ± 0.0 *** | - | - | 0.03 ± 0.0 | 20.0 ± 0.0 a | |
L. monocytogenes ser. 1/2 b | 6.3 ± 0.0 | 3.1 ± 0.0 *** | - | - | 0.02 ± 0.0 | 20.0 ± 0.0 a | |
L. monocytogenes ser. 4b | 6.3 ± 0.0 | 3.1 ± 0.0 *** | - | - | 0.03 ± 0.0 | 20.0 ± 0.0 a | |
S. aureus | 6.3 ± 0.0 | 3.1 ± 0.0 *** | - | - | 0.03 ± 0.0 | 20.0 ± 0.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejía, J.; Giovagnoli-Vicuña, C.; Jacob, C.; Montenegro, G.; Moreno-Switt, A.I.; Giordano, A. Antioxidant, Antibacterial, and Bioaccessibility Properties of Ultrasound-Extracted Chilean Propolis. Antioxidants 2025, 14, 651. https://doi.org/10.3390/antiox14060651
Mejía J, Giovagnoli-Vicuña C, Jacob C, Montenegro G, Moreno-Switt AI, Giordano A. Antioxidant, Antibacterial, and Bioaccessibility Properties of Ultrasound-Extracted Chilean Propolis. Antioxidants. 2025; 14(6):651. https://doi.org/10.3390/antiox14060651
Chicago/Turabian StyleMejía, Jessica, Claudia Giovagnoli-Vicuña, Cristian Jacob, Gloria Montenegro, Andrea I. Moreno-Switt, and Ady Giordano. 2025. "Antioxidant, Antibacterial, and Bioaccessibility Properties of Ultrasound-Extracted Chilean Propolis" Antioxidants 14, no. 6: 651. https://doi.org/10.3390/antiox14060651
APA StyleMejía, J., Giovagnoli-Vicuña, C., Jacob, C., Montenegro, G., Moreno-Switt, A. I., & Giordano, A. (2025). Antioxidant, Antibacterial, and Bioaccessibility Properties of Ultrasound-Extracted Chilean Propolis. Antioxidants, 14(6), 651. https://doi.org/10.3390/antiox14060651