The Redox–Adhesion–Exosome (RAX) Hub in Cancer: Lipid Peroxidation-Driven EMT Plasticity and Ferroptosis Defense with HNE/MDA Signaling and Lipidomic Perspectives
Abstract
1. Introduction
2. EMT–MET and Neural Crest Convergence
3. Neural Crest Stem Cells (NCSCs) and Developmental Plasticity
4. EMT/MET and Mesenchymal Traits in Cancer
5. Convergence Concept
6. The CDH2-Centered Redox–Adhesion–Exosome (RAX) Hub
7. Adhesion and Migration Axis
8. Redox-Buffering Axis
9. Exosome–miRNA Axis
10. Integration as a Closed Circuit
11. Functional Outcomes of the RAX Hub
12. Cancer Stemness and Plasticity
13. Metastatic Competence
14. Immune Evasion
15. Therapeutic Targeting of the RAX Hub
16. Adhesion/Signaling Inhibition
17. Redox Vulnerabilities
18. Exosome-Targeting Approaches
19. Multi-Node Targeting Strategy
20. Clinical Translation: Targeting Adhesion, Redox, and Exosomal Axes
21. Implications and Future Perspectives
22. Biomarkers: Exosomal CDH2/miR-200/miR-210 Panel
23. Patient Stratification: EMT-High/NCSC-High Tumors as “RAX-Vulnerable”
24. Future Direction: Toward Personalized Therapy by Disrupting the RAX Hub
25. Discussion
26. Positioning and Strengths
27. Limitations
28. Outstanding Questions and Cross-Disease Relevance
29. Translational Outlook and Validation Roadmap
30. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| protein kinase B | (AKT) |
| ALG-2 interacting protein X | (ALIX) |
| AXL receptor tyrosine kinase | (AXL) |
| cancer stem cell | (CSC) |
| cell-free DNA | (cfDNA) |
| circulating tumor cell | (CTC) |
| clustered regularly interspaced short palindromic repeats | (CRISPR) |
| cadherin 2, also known as N-cadherin | (CDH2) |
| epithelial–mesenchymal transition | (EMT) |
| epithelial/mesenchymal | (E/M) |
| extracellular vesicle | (EV) |
| extracellular matrix | (ECM) |
| focal adhesion kinase | (FAK) |
| ferroptosis suppressor protein 1 | (FSP1) |
| forkhead box D3 | (FoxD3) |
| glutamate–cysteine ligase catalytic subunit | (GCLC) |
| glutathione | (GSH) |
| glutathione peroxidase 4 | (GPX4) |
| heterogeneous nuclear ribonucleoprotein A2/B1 | (hnRNPA2B1) |
| heme oxygenase-1 | (HO-1) |
| HyPer hydrogen peroxide sensor probe | (HyPer) |
| kelch-like ECH-associated protein 1 | (KEAP1) |
| leucine-rich repeat-containing G-protein coupled receptor 5 positive | (LGR5+) |
| mitogen-activated protein kinase | (MAPK) |
| myeloperoxidase | (MPO) |
| Msh homeobox 1 | (MSX1) |
| NAD(P)H quinone dehydrogenase 1 | (NQO1) |
| neural crest stem cell | (NCSC) |
| nuclear factor erythroid 2–related factor 2 | (NRF2) |
| nuclear factor kappa-light-chain-enhancer of activated B cells | (NF-κB) |
| pancreatic ductal adenocarcinoma | (PDAC) |
| platelet-derived growth factor receptor beta | (PDGFRB) |
| programmed death-ligand 1 | (PD-L1) |
| proto-oncogene tyrosine-protein kinase Src | (Src) |
| reactive oxygen species | (ROS) |
| RNA in situ hybridization technology | (RNAscope) |
| SRY-box transcription factor 10 | (SOX10) |
| solute carrier family 7 member 11, also known as xCT | (SLC7A11, xCT) |
| small-cell lung cancer | (SCLC) |
| snail family transcriptional repressor 1 | (SNAI1, Snail protein) |
| twist family bHLH transcription factor 1 | (TWIST1, Twist protein) |
| transforming growth factor-β | (TGF-β) |
| Thioredoxin | (TRX) |
| triple-negative breast cancer | (TNBC) |
| Y-box binding protein 1 | (YBX1) |
| zinc finger E-box binding homeobox 1 | (ZEB1) |
References
- Moon, H.; Park, H.; Ro, S.W. c-Myc-driven Hepatocarcinogenesis. Anticancer Res. 2021, 41, 4937–4946. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G. Molecular Target and Action Mechanism of Anti-Cancer Agents. Int. J. Mol. Sci. 2023, 24, 8259. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Shim, H.S.; Kim, S.; Lee, I.H.; Kim, J.; Yoon, S.; Kim, H.D.; Park, I.; Jeong, J.H.; Yoo, C.; et al. Clinical practice recommendations for the use of next-generation sequencing in patients with solid cancer: A joint report from KSMO and KSP. J. Pathol. Transl. Med. 2024, 58, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-Z.; Ren, Y.-W.; Liu, Y.; Zhao, T.; Huang, Z.-P.; Lu, K. METTL3-mediated m6A modification of FoxP4 promotes HCC metastasis. Adv. Tradit. Med. 2025, 1–8. [Google Scholar] [CrossRef]
- BharathwajChetty, B.; Sajeev, A.; Vishwa, R.; Aswani, B.S.; Alqahtani, M.S.; Abbas, M.; Kunnumakkara, A.B. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev. 2024, 43, 321–362. [Google Scholar] [CrossRef]
- Kharkar, P.S. Cancer Stem Cell (CSC) Inhibitors in Oncology—A Promise for a Better Therapeutic Outcome: State of the Art and Future Perspectives. J. Med. Chem. 2020, 63, 15279–15307. [Google Scholar] [CrossRef]
- Shen, S.; Vagner, S.; Robert, C. Persistent cancer cells: The deadly survivors. Cell 2020, 183, 860–874. [Google Scholar] [CrossRef]
- Javali, A.; Lakshmanan, V.; Palakodeti, D.; Sambasivan, R. Modulation of β-catenin levels regulates cranial neural crest patterning and dispersal into first pharyngeal arch. Dev. Dyn. 2020, 249, 1347–1364. [Google Scholar] [CrossRef]
- Heppt, M.V.; Wang, J.X.; Hristova, D.M.; Wei, Z.; Li, L.; Evans, B.; Beqiri, M.; Zaman, S.; Zhang, J.; Irmler, M.; et al. MSX1-Induced Neural Crest-Like Reprogramming Promotes Melanoma Progression. J. Investig. Dermatol. 2018, 138, 141–149. [Google Scholar] [CrossRef]
- Zhou, Y.; Snead, M.L. Derivation of cranial neural crest-like cells from human embryonic stem cells. Biochem. Biophys. Res. Commun. 2008, 376, 542–547. [Google Scholar] [CrossRef]
- Li, L.; Fukunaga-Kalabis, M.; Yu, H.; Xu, X.; Kong, J.; Lee, J.T.; Herlyn, M. Human dermal stem cells differentiate into functional epidermal melanocytes. J. Cell Sci. 2010, 123 Pt 6, 853–860. [Google Scholar] [CrossRef]
- Lee, B.W.L.; Ghode, P.; Ong, D.S.T. Redox regulation of cell state and fate. Redox Biol. 2019, 25, 101056. [Google Scholar] [CrossRef]
- Rambow, F.; Marine, J.-C.; Goding, C.R. Melanoma plasticity and phenotypic diversity: Therapeutic barriers and opportunities. Genes Dev. 2019, 33, 1295–1318. [Google Scholar] [CrossRef] [PubMed]
- Kazantseva, J.; Sadam, H.; Neuman, T.; Palm, K. Targeted alternative splicing of TAF4: A new strategy for cell reprogramming. Sci. Rep. 2016, 6, 30852. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, S.; Lee, J.; Lee, C.; Kang, H.; Kang, J.; Lee, J.S.; Shin, E.; Youn, H.; Youn, B. Lipid metabolism in cancer stem cells: Reprogramming, mechanisms, crosstalk, and therapeutic approaches. Cell. Oncol. 2025, 48, 1181–1201. [Google Scholar] [CrossRef] [PubMed]
- Mortoglou, M.; Miralles, F.; Arisan, E.D.; Dart, A.; Jurcevic, S.; Lange, S.; Uysal-Onganer, P. microRNA-21 Regulates Stemness in Pancreatic Ductal Adenocarcinoma Cells. Int. J. Mol. Sci. 2022, 23, 1275. [Google Scholar] [CrossRef]
- Tesfaye, A.A.; Azmi, A.S.; Philip, P.A. miRNA and Gene Expression in Pancreatic Ductal Adenocarcinoma. Am. J. Pathol. 2019, 189, 58–70. [Google Scholar] [CrossRef]
- Tao, S.-C.; Guo, S.-C. Role of extracellular vesicles in tumour microenvironment. Cell Commun. Signal. 2020, 18, 163. [Google Scholar] [CrossRef]
- Canciello, A.; Cerveró-Varona, A.; Peserico, A.; Mauro, A.; Russo, V.; Morrione, A.; Giordano, A.; Barboni, B. “In medio stat virtus”: Insights into hybrid E/M phenotype attitudes. Front. Cell Dev. Biol. 2022, 10, 1038841. [Google Scholar] [CrossRef]
- Davies, A.; Zoubeidi, A.; Beltran, H.; Selth, L.A. The transcriptional and epigenetic landscape of cancer cell lineage plasticity. Cancer Discov. 2023, 13, 1771–1788. [Google Scholar] [CrossRef]
- Bocci, F.; Levine, H.; Onuchic, J.N.; Jolly, M.K. Deciphering the dynamics of epithelial-mesenchymal transition and cancer stem cells in tumor progression. Curr. Stem Cell Rep. 2019, 5, 11–21. [Google Scholar] [CrossRef]
- Mir, R.; Javid, J.; Ullah, M.F.; Alrdahe, S.; Altedlawi, I.A.; Mustafa, S.K.; Jalal, M.M.; Altayar, M.A.; Albalawi, A.D.; Abunab, M.K. Metabolic reprogramming and functional crosstalk within the tumor microenvironment (TME) and A Multi-omics anticancer approach. Med. Oncol. 2025, 42, 373. [Google Scholar] [CrossRef]
- Zheng, X.; Yu, C.; Xu, M. Linking Tumor Microenvironment to Plasticity of Cancer Stem Cells: Mechanisms and Application in Cancer Therapy. Front. Oncol. 2021, 11, 678333. [Google Scholar] [CrossRef] [PubMed]
- Fico, F.; Santamaria-Martínez, A. The Tumor Microenvironment as a Driving Force of Breast Cancer Stem Cell Plasticity. Cancers 2020, 12, 3863. [Google Scholar] [CrossRef] [PubMed]
- Hlavca, S.; Chan, W.H.; Engel, R.M.; Abud, H.E. Clusterin: A marker and mediator of chemoresistance in colorectal cancer. Cancer Metastasis Rev. 2024, 43, 379–391. [Google Scholar] [CrossRef]
- Lee, Y. Role of Vitamin C in Targeting Cancer Stem Cells and Cellular Plasticity. Cancers 2023, 15, 5657. [Google Scholar] [CrossRef]
- Verona, F.; Di Bella, S.; Schirano, R.; Manfredi, C.; Angeloro, F.; Bozzari, G.; Todaro, M.; Giannini, G.; Stassi, G.; Veschi, V. Cancer stem cells and tumor-associated macrophages as mates in tumor progression: Mechanisms of crosstalk and advanced bioinformatic tools to dissect their phenotypes and interaction. Front. Immunol. 2025, 16, 1529847. [Google Scholar] [CrossRef]
- Mestiri, S.; Sami, A.; Sah, N.; El-Ella, D.M.A.; Khatoon, S.; Shafique, K.; Raza, A.; Mathkor, D.M.; Haque, S. Cellular plasticity and non-small cell lung cancer: Role of T and NK cell immune evasion and acquisition of resistance to immunotherapies. Cancer Metastasis Rev. 2025, 44, 27. [Google Scholar] [CrossRef]
- Hossain, S.M.; Eccles, M.R. Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance. Int. J. Mol. Sci. 2023, 24, 1601. [Google Scholar] [CrossRef]
- Vandyck, H.H.; Hillen, L.M.; Bosisio, F.M.; van den Oord, J.; Zur Hausen, A.; Winnepenninckx, V. Rethinking the biology of metastatic melanoma: A holistic approach. Cancer Metastasis Rev. 2021, 40, 603–624. [Google Scholar] [CrossRef]
- Zheng, X.; Dai, F.; Feng, L.; Zou, H.; Feng, L.; Xu, M. Communication Between Epithelial-Mesenchymal Plasticity and Cancer Stem Cells: New Insights Into Cancer Progression. Front. Oncol. 2021, 11, 617597. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, J.; Li, Y.; Zhang, K.; Wang, T.; Bo, Z.; Lu, S.; Rodríguez, R.A.; Wei, R.; Zhu, M.; et al. EMT and cancer stem cells: Drivers of therapy resistance and promising therapeutic targets. Drug Resist. Updates 2025, 83, 101276. [Google Scholar] [CrossRef]
- Ji, Y.; Hao, H.; Reynolds, K.; McMahon, M.; Zhou, C.J. Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis. Cells 2019, 8, 1173. [Google Scholar] [CrossRef] [PubMed]
- Duband, J.L. Diversity in the molecular and cellular strategies of epithelium-to-mesenchyme transitions: Insights from the neural crest. Cell Adh. Migr. 2010, 4, 458–482. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, T.; Kawamura, N.; Watanabe, N.; Kitagawa, D.; Goshima, N.; Kunisada, T. Sox10 Functions as an Inducer of the Direct Conversion of Keratinocytes Into Neural Crest Cells. Stem Cells Dev. 2020, 29, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Monsoro-Burq, A.H. PAX transcription factors in neural crest development. Semin. Cell Dev. Biol. 2015, 44, 87–96. [Google Scholar] [CrossRef]
- Mayanil, C.S. Transcriptional and epigenetic regulation of neural crest induction during neurulation. Dev. Neurosci. 2013, 35, 361–372. [Google Scholar] [CrossRef]
- Aljouda, N.A.; Shrestha, D.; DeVaux, C.; Olsen, R.R.; Alleboina, S.; Walker, M.; Cheng, Y.; Freeman, K.W. Transcription factor 4 is a key mediator of oncogenesis in neuroblastoma by promoting MYC activity. Mol. Oncol. 2025, 19, 808–824. [Google Scholar] [CrossRef]
- Diener, J.; Sommer, L. Reemergence of neural crest stem cell-like states in melanoma during disease progression and treatment. Stem Cells Transl. Med. 2021, 10, 522–533. [Google Scholar] [CrossRef]
- Boda, E.; Lorenzati, M.; Parolisi, R.; Harding, B.; Pallavicini, G.; Bonfanti, L.; Moccia, A.; Bielas, S.; Di Cunto, F.; Buffo, A. Molecular and functional heterogeneity in dorsal and ventral oligodendrocyte progenitor cells of the mouse forebrain in response to DNA damage. Nat. Commun. 2022, 13, 2331. [Google Scholar] [CrossRef]
- Dela Cruz, M.C.P.; Medina, P.M.B. Epithelial-mesenchymal transition (EMT) and its role in acquired epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) chemoresistance in non-small cell lung cancer (NSCLC). Cancer Pathog. Ther. 2025, 3, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Thomson, S.; Petti, F.; Sujka-Kwok, I.; Mercado, P.; Bean, J.; Monaghan, M.; Seymour, S.L.; Argast, G.M.; Epstein, D.M.; Haley, J.D. A systems view of epithelial–mesenchymal transition signaling states. Clin. Exp. Metastasis 2011, 28, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Thomson, S.; Petti, F.; Sujka-Kwok, I.; Epstein, D.; Haley, J.D. Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. Clin. Exp. Metastasis 2008, 25, 843–854. [Google Scholar] [CrossRef]
- Shenoy, A.K.; Jin, Y.; Luo, H.; Tang, M.; Pampo, C.; Shao, R.; Siemann, D.W.; Wu, L.; Heldermon, C.D.; Law, B.K. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. J. Clin. Investig. 2016, 126, 4174–4186. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, H.; Pienta, K.J. Axl as a mediator of cellular growth and survival. Oncotarget 2014, 5, 8818. [Google Scholar] [CrossRef] [PubMed]
- Falcone, I.; Conciatori, F.; Bazzichetto, C.; Bria, E.; Carbognin, L.; Malaguti, P.; Ferretti, G.; Cognetti, F.; Milella, M.; Ciuffreda, L. AXL receptor in breast cancer: Molecular involvement and therapeutic limitations. Int. J. Mol. Sci. 2020, 21, 8419. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wei, Y.; Wei, X. AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Mol. Cancer 2019, 18, 153. [Google Scholar] [CrossRef]
- Zhang, A.; Aslam, H.; Sharma, N.; Warmflash, A.; Fakhouri, W.D. Conservation of epithelial-to-mesenchymal transition process in neural crest cells and metastatic cancer. Cells Tissues Organs 2021, 210, 151–172. [Google Scholar] [CrossRef]
- Zhao, R.; Moore, E.L.; Gogol, M.M.; Unruh, J.R.; Yu, Z.; Scott, A.R.; Wang, Y.; Rajendran, N.K.; Trainor, P.A. Identification and characterization of intermediate states in mammalian neural crest cell epithelial to mesenchymal transition and delamination. Elife 2024, 13, RP92844. [Google Scholar] [CrossRef]
- Tsubakihara, Y.; Moustakas, A. Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β. Int. J. Mol. Sci. 2018, 19, 3672. [Google Scholar] [CrossRef]
- Schuhwerk, H.; Brabletz, T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin. Cancer Biol. 2023, 97, 86–103. [Google Scholar] [CrossRef]
- László, Z.I.; Lele, Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front. Neurosci. 2022, 16, 972059. [Google Scholar] [CrossRef]
- Akhmetkaliyev, A.; Alibrahim, N.; Shafiee, D.; Tulchinsky, E. EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: The two sides of the same coin? Mol. Cancer 2023, 22, 90. [Google Scholar] [CrossRef] [PubMed]
- Naito, Y.; Yamamoto, Y.; Sakamoto, N.; Shimomura, I.; Kogure, A.; Kumazaki, M.; Yokoi, A.; Yashiro, M.; Kiyono, T.; Yanagihara, K.; et al. Cancer extracellular vesicles contribute to stromal heterogeneity by inducing chemokines in cancer-associated fibroblasts. Oncogene 2019, 38, 5566–5579. [Google Scholar] [CrossRef] [PubMed]
- Pfeiferová, L.; Španko, M.; Šáchová, J.; Hradilová, M.; Pienta, K.J.; Valach, J.; Machoň, V.; Výmolová, B.; Šedo, A.; Bušek, P. The HOX code of human adult fibroblasts reflects their ectomesenchymal or mesodermal origin. Histochem. Cell Biol. 2025, 163, 38. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.M.; Thadani, N.; Gallagher, E.E.; Azzaro, I.; Bodnar, C.M.; McCarty, C.P.; Romano, G.; Webster, M.R.; Capparelli, C. Plasticity and Functional Heterogeneity of Cancer-Associated Fibroblasts. Cancer Res. 2025, 85, 3378–3398. [Google Scholar] [CrossRef]
- Garg, M. Emerging roles of epithelial-mesenchymal plasticity in invasion-metastasis cascade and therapy resistance. Cancer Metastasis Rev. 2022, 41, 131–145. [Google Scholar] [CrossRef]
- Waryah, C.; Alves, E.; Mazzieri, R.; Dolcetti, R.; Thompson, E.W.; Redfern, A.; Blancafort, P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers 2023, 15, 3152. [Google Scholar] [CrossRef]
- Wang, X.; Xue, X.; Pang, M.; Yu, L.; Qian, J.; Li, X.; Tian, M.; Lyu, A.; Lu, C.; Liu, Y. Epithelial–mesenchymal plasticity in cancer: Signaling pathways and therapeutic targets. MedComm 2024, 5, e659. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Jiao, S.; Han, G.; Zhu, J.; Liu, T. Functional and clinical characteristics of focal adhesion kinases in cancer progression. Front. Cell Dev. Biol. 2022, 10, 1040311. [Google Scholar] [CrossRef]
- Wium, M.; Ajayi-Smith, A.F.; Paccez, J.D.; Zerbini, L.F. The role of the receptor tyrosine kinase Axl in carcinogenesis and development of therapeutic resistance: An overview of molecular mechanisms and future applications. Cancers 2021, 13, 1521. [Google Scholar] [CrossRef]
- Sang, Y.B.; Kim, J.-H.; Kim, C.-G.; Hong, M.H.; Kim, H.R.; Cho, B.C.; Lim, S.M. The development of AXL inhibitors in lung cancer: Recent progress and challenges. Front. Oncol. 2022, 12, 811247. [Google Scholar] [CrossRef]
- Goyette, M.-A.; Côté, J.-F. AXL receptor tyrosine kinase as a promising therapeutic target directing multiple aspects of cancer progression and metastasis. Cancers 2022, 14, 466. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Bo, Y.; Xue, D.; Qin, L. Ferroptosis-immune crosstalk in cervical cancer: Mechanisms and therapeutic implications. Front. Immunol. 2025, 16, 1657905. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhuang, H.; Yang, X.; Guo, Z.; Zhou, K.; Liu, N.; An, Y.; Chen, Y.; Zhang, Z.; Wang, M.; et al. Exploring the Mechanism of Ferroptosis Induction by Sappanone A in Cancer: Insights into the Mitochondrial Dysfunction Mediated by NRF2/xCT/GPX4 Axis. Int. J. Biol. Sci. 2024, 20, 5145–5161. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Li, Z.; Sun, K.; Liu, Y.; Fang, Z.; Sun, S.; Li, C.; Wang, Z. Mitochondrial Regulation of Ferroptosis in Cancer Cells. Int. J. Biol. Sci. 2025, 21, 2179–2200. [Google Scholar] [CrossRef]
- She, W.; Su, J.; Ma, W.; Ma, G.; Li, J.; Zhang, H.; Qiu, C.; Li, X. Natural products protect against spinal cord injury by inhibiting ferroptosis: A literature review. Front. Pharmacol. 2025, 16, 1557133. [Google Scholar] [CrossRef]
- Song, T.; Yu, Z.; Shen, Q.; Xu, Y.; Hu, H.; Liu, J.; Zeng, K.; Lei, J.; Yu, L. Pharmacodynamic and Toxicity Studies of 6-Isopropyldithio-2’-guanosine Analogs in Acute T-Lymphoblastic Leukemia. Cancers 2024, 16, 1614. [Google Scholar] [CrossRef]
- Chen, I.P.; Henning, S.; Bender, M.; Degenhardt, S.; Mhamdi Ghodbani, M.; Bergmann, A.K.; Volkmer, B.; Brockhoff, G.; Wege, A.K.; Greinert, R. Detection of Human Circulating and Extracellular Vesicle-Derived miRNAs in Serum of Humanized Mice Transplanted with Human Breast Cancer (HER2(+) and TNBC) Cells-A Proof of Principle Investigation. Int. J. Mol. Sci. 2025, 26, 3629. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, X.; Liu, C.; Zhao, Y. Extracellular vesicles in cancers: Mechanisms, biomarkers, and therapeutic strategies. MedComm 2024, 5, e70009. [Google Scholar] [CrossRef]
- Li, Z.; Gao, Y.; Cao, Y.; He, F.; Jiang, R.; Liu, H.; Cai, H.; Zan, T. Extracellular RNA in melanoma: Advances, challenges, and opportunities. Front. Cell Dev. Biol. 2023, 11, 1141543. [Google Scholar] [CrossRef]
- Rahimian, S.; Mirkazemi, K.; Kamalinejad, A.; Doroudian, M. Exosome-based advances in pancreatic cancer: The potential of mesenchymal stem cells. Crit. Rev. Oncol. Hematol. 2025, 207, 104594. [Google Scholar] [CrossRef] [PubMed]
- Balaraman, A.K.; Moglad, E.; Afzal, M.; Babu, M.A.; Goyal, K.; Roopashree, R.; Kaur, I.; Kumar, S.; Kumar, M.; Chauhan, A.S.; et al. Liquid biopsies and exosomal ncRNA: Transforming pancreatic cancer diagnostics and therapeutics. Clin. Chim. Acta 2025, 567, 120105. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhong, L.; Momeni, M.R. MicroRNA-155 and its exosomal form: Small pieces in the gastrointestinal cancers puzzle. Cell Biol. Toxicol. 2024, 40, 77. [Google Scholar] [CrossRef] [PubMed]
- El-Moaty, Z.A.; Wasef, M.W.; Elsayed, Y.A.; Shafiq, A.S.; Elnagar, M.A.; Mohamed, H.R.; Elesawyf, A.E.; Abdel Mageedg, S.S.; Mohammed, O.A.; Abdel-Reheim, M.A.; et al. Unraveling the therapeutic landscape of miRNAs in pancreatic cancer. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 14941–14959. [Google Scholar] [CrossRef]
- Pani, G.; Giannoni, E.; Galeotti, T.; Chiarugi, P. Redox-based escape mechanism from death: The cancer lesson. Antioxid. Redox Signal. 2009, 11, 2791–2806. [Google Scholar] [CrossRef]
- Chang, Y.; Li, G.; Zhai, Y.; Huang, L.; Feng, Y.; Wang, D.; Zhang, W.; Hu, H. Redox regulator GLRX is associated with tumor immunity in glioma. Front. Immunol. 2020, 11, 580934. [Google Scholar] [CrossRef]
- Kennel, K.B.; Greten, F.R. Immune cell-produced ROS and their impact on tumor growth and metastasis. Redox Biol. 2021, 42, 101891. [Google Scholar] [CrossRef]
- Li, Q.; He, G.; Yu, Y.; Li, X.; Peng, X.; Yang, L. Exosome crosstalk between cancer stem cells and tumor microenvironment: Cancer progression and therapeutic strategies. Stem Cell Res. Ther. 2024, 15, 449. [Google Scholar] [CrossRef]
- Pan, Y.; Yuan, C.; Zeng, C.; Sun, C.; Xia, L.; Wang, G.; Chen, X.; Zhang, B.; Liu, J.; Ding, Z.-y. Cancer stem cells and niches: Challenges in immunotherapy resistance. Mol. Cancer 2025, 24, 52. [Google Scholar] [CrossRef]
- Liu, H.; Liang, Z.; Wang, F.; Zhou, C.; Zheng, X.; Hu, T.; He, X.; Wu, X.; Lan, P. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight 2019, 4, e131273. [Google Scholar] [CrossRef]
- Hong, T.; Lei, G.; Chen, X.; Li, H.; Zhang, X.; Wu, N.; Zhao, Y.; Zhang, Y.; Wang, J. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 2021, 42, 101928. [Google Scholar] [CrossRef]
- Scheinberg, T.; Mak, B.; Butler, L.; Selth, L.; Horvath, L.G. Targeting lipid metabolism in metastatic prostate cancer. Ther. Adv. Med. Oncol. 2023, 15, 17588359231152839. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Mantovani, A.; Targher, G.; Baffy, G. Nonalcoholic fatty liver disease and chronic kidney disease: Epidemiology, pathogenesis, and clinical and research implications. Int. J. Mol. Sci. 2022, 23, 13320. [Google Scholar] [CrossRef] [PubMed]
- Michalopoulou, E.; Thymis, J.; Lampsas, S.; Pavlidis, G.; Katogiannis, K.; Vlachomitros, D.; Katsanaki, E.; Kostelli, G.; Pililis, S.; Pliouta, L. The triad of risk: Linking MASLD, cardiovascular disease and type 2 diabetes; from pathophysiology to treatment. J. Clin. Med. 2025, 14, 428. [Google Scholar] [CrossRef] [PubMed]
- Huo, K.-G.; D’Arcangelo, E.; Tsao, M.-S. Patient-derived cell line, xenograft and organoid models in lung cancer therapy. Transl. Lung Cancer Res. 2020, 9, 2214. [Google Scholar] [CrossRef]
- Hu, M.; Cui, Y.; Huang, Q.; Chu, K.; McKinzie, S.; Patrick, M.; Iyengar, S.; Abuduli, M.; Spatz, M.; Joshi, N. SPACE: Spatially resolved multiomic analysis for high-throughput CRISPR screening in 3D models. bioRxiv 2025. [Google Scholar] [CrossRef]
- Liu, L.; Chen, A.; Li, Y.; Mulder, J.; Heyn, H.; Xu, X. Spatiotemporal omics for biology and medicine. Cell 2024, 187, 4488–4519. [Google Scholar] [CrossRef]
- Hui, T.; Zhou, J.; Yao, M.; Xie, Y.; Zeng, H. Advances in Spatial Omics Technologies. Small Methods 2025, 9, 2401171. [Google Scholar] [CrossRef]
- Ge, Y.; Weng, H.; Sun, Y.; Wu, M. Integrated single-cell and spatial transcriptomic analysis reveals YBX1 drives immune regulation in GBM progression. Heliyon 2024, 10, e29451. [Google Scholar] [CrossRef]
- Ali, H.; Zhou, N.; Chen, L.; van Hijfte, L.; Karri, V.; Zhou, Y.; Habashy, K.; Arrieta, V.A.; Kim, K.-S.; Duffy, J.; et al. Targeting CHEK2-YBX1&YBX3 regulatory hub to potentiate immune checkpoint blockade response in gliomas. bioRxiv 2025. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Q.; Ni, K.; Zhang, P.; Liu, Y.; Xie, J.; Ji, W.; Cheng, C.; Zhou, Q. Combining single-cell sequencing and spatial transcriptome sequencing to identify exosome-related features of glioblastoma and constructing a prognostic model to identify BARD1 as a potential therapeutic target for GBM patients. Front. Immunol. 2023, 14, 1263329. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Xu, P.; Ye, Z.; Liu, W. STmiR: A Novel XGBoost-based framework for spatially resolved miRNA activity prediction in cancer transcriptomics. PLoS ONE 2025, 20, e0322082. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, H.; Wang, X.; Yang, Y.; Zhong, K.; Zhang, X.; Li, H. MSC-EVs and UCB-EVs promote skin wound healing and spatial transcriptome analysis. Sci. Rep. 2025, 15, 4006. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Wang, P.; Toh, A.; Thompson, E.W. New Insights Into the Role of Phenotypic Plasticity and EMT in Driving Cancer Progression. Front. Mol. Biosci. 2020, 7, 71. [Google Scholar] [CrossRef]
- Sinha, D.; Saha, P.; Samanta, A.; Bishayee, A. Emerging Concepts of Hybrid Epithelial-to-Mesenchymal Transition in Cancer Progression. Biomolecules 2020, 10, 1561. [Google Scholar] [CrossRef]
- Hu, K.; Chen, F. Identification of significant pathways in gastric cancer based on protein-protein interaction networks and cluster analysis. Genet. Mol. Biol. 2012, 35, 701–708. [Google Scholar] [CrossRef]
- Neuendorf, H.M.; Simmons, J.L.; Boyle, G.M. Therapeutic targeting of anoikis resistance in cutaneous melanoma metastasis. Front. Cell Dev. Biol. 2023, 11, 1183328. [Google Scholar] [CrossRef]
- Asiedu, M.K.; Beauchamp-Perez, F.D.; Ingle, J.N.; Behrens, M.D.; Radisky, D.C.; Knutson, K.L. AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene 2014, 33, 1316–1324. [Google Scholar] [CrossRef]
- Huang, S.; Qin, X.; Fu, S.; Hu, J.; Jiang, Z.; Hu, M.; Zhang, B.; Liu, J.; Chen, Y.; Wang, M.; et al. STAMBPL1/TRIM21 Balances AXL Stability Impacting Mesenchymal Phenotype and Immune Response in KIRC. Adv. Sci. 2025, 12, e2405083. [Google Scholar] [CrossRef]
- Hänze, J.; Kessel, F.; Di Fazio, P.; Hofmann, R.; Hegele, A. Effects of multi and selective targeted tyrosine kinase inhibitors on function and signaling of different bladder cancer cells. Biomed. Pharmacother. 2018, 106, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.S.; Kang, C.W.; Kang, S.; Jang, Y.; Chae, Y.C.; Kim, B.G.; Cho, N.H. ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts. Oncogene 2020, 39, 664–676. [Google Scholar] [CrossRef] [PubMed]
- Eswaran, S.; Bhat, S.; Upadhya, D.; Mascarenhas, R.; Kabekkodu, S.P. Biological functions of extracellular vesicle double C2-like domain beta in cervical cancer. Sci. Rep. 2025, 15, 477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, N.; Ding, C.; Zhang, H.; Liu, D.; Liu, S. Ferroptosis and EMT resistance in cancer: A comprehensive review of the interplay. Front. Oncol. 2024, 14, 1344290. [Google Scholar] [CrossRef]
- Xu, Y.; Lou, D.; Chen, P.; Li, G.; Usoskin, D.; Pan, J.; Li, F.; Huang, S.; Hess, C.; Tang, R.; et al. Single-cell MultiOmics and spatial transcriptomics demonstrate neuroblastoma developmental plasticity. Dev. Cell 2025, 60, 2248–2263.e11. [Google Scholar] [CrossRef]
- Toneff, M.; Sreekumar, A.; Tinnirello, A.; Hollander, P.D.; Habib, S.; Li, S.; Ellis, M.; Xin, L.; Mani, S.; Rosen, J. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016, 14, 47. [Google Scholar] [CrossRef]
- Tang, D.; Kang, R. NFE2L2 and ferroptosis resistance in cancer therapy. Cancer Drug Resist. 2024, 7, 41. [Google Scholar] [CrossRef]
- Hou, J.; Wang, B.; Li, J.; Liu, W. Ferroptosis and its role in gastric and colorectal cancers. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2024, 28, 183–196. [Google Scholar] [CrossRef]
- Veglia Tranchese, R.; Battista, S.; Cerchia, L.; Fedele, M. Ferroptosis in Cancer: Epigenetic Control and Therapeutic Opportunities. Biomolecules 2024, 14, 1443. [Google Scholar] [CrossRef]
- Pei, Y.; Qian, Y.; Wang, H.; Tan, L. Epigenetic Regulation of Ferroptosis-Associated Genes and Its Implication in Cancer Therapy. Front. Oncol. 2022, 12, 771870. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Ruan, S.; Yan, Q.; Chen, Y.; Cui, J.; Wang, X.; Huang, S.; Hou, B. Regulation of iron metabolism and ferroptosis in cancer stem cells. Front. Oncol. 2023, 13, 1251561. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Shi, K.; Yang, S.; Liu, J.; Zhou, Q.; Wang, G.; Song, J.; Li, Z.; Zhang, Z.; Yuan, W. Effect of exosomal miRNA on cancer biology and clinical applications. Mol. Cancer 2018, 17, 147. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Harris, S.L.; Levine, A.J. The regulation of exosome secretion: A novel function of the p53 protein. Cancer Res. 2006, 66, 4795–4801. [Google Scholar] [CrossRef]
- Jena, B.C.; Mandal, M. The emerging roles of exosomes in anti-cancer drug resistance and tumor progression: An insight towards tumor-microenvironment interaction. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188488. [Google Scholar] [CrossRef] [PubMed]
- Nishida-Aoki, N.; Ochiya, T. Interactions between cancer cells and normal cells via miRNAs in extracellular vesicles. Cell Mol. Life Sci. 2015, 72, 1849–1861. [Google Scholar] [CrossRef]
- Lattmann, E.; Levesque, M.P. The Role of Extracellular Vesicles in Melanoma Progression. Cancers 2022, 14, 3086. [Google Scholar] [CrossRef]
- Lin, W.; Fang, J.; Wei, S.; He, G.; Liu, J.; Li, X.; Peng, X.; Li, D.; Yang, S.; Li, X.; et al. Extracellular vesicle-cell adhesion molecules in tumours: Biofunctions and clinical applications. Cell Commun. Signal. 2023, 21, 246. [Google Scholar] [CrossRef]
- Thong, T.; Wang, Y.; Brooks, M.D.; Lee, C.T.; Scott, C.; Balzano, L.; Wicha, M.S.; Colacino, J.A. Hybrid Stem Cell States: Insights Into the Relationship Between Mammary Development and Breast Cancer Using Single-Cell Transcriptomics. Front. Cell Dev. Biol. 2020, 8, 288. [Google Scholar] [CrossRef]
- Zhang, H.-F.; Liu, H.-M.; Xiang, J.-Y.; Zhou, X.-C.; Wang, D.; Chen, R.-Y.; Tan, W.-L.; Liang, L.-Q.; Liu, L.-L.; Shi, M.-J. Alpha lipoamide inhibits diabetic kidney fibrosis via improving mitochondrial function and regulating RXRα expression and activation. Acta Pharmacol. Sin. 2023, 44, 1051–1065. [Google Scholar] [CrossRef]
- Fu, A.; Li, J.; Ding, Q.; Guo, R.; Pi, A.; Yang, W.; Chen, Y.; Dou, X.; Song, Z.; Li, S. Upregulation of 4-hydroxynonenal contributes to the negative effect of n-6 polyunsaturated fatty acid on alcohol-induced liver injury and hepatic steatosis. J. Agric. Food Chem. 2022, 70, 6418–6428. [Google Scholar] [CrossRef]
- Salehi, F.; Kavoosi, G.; Jacobs, P.; Bennett, N.C.; Ahmadian, S.; Bastani, B.; Gholami, M. The road to a long lifespan in the Persian squirrel, a natural model for extended longevity: Resisting free radical stress and healthy phospholipids. GeroScience 2025, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Saw, P.E.; Liu, Q.; Wong, P.P.; Song, E. Cancer stem cell mimicry for immune evasion and therapeutic resistance. Cell Stem Cell 2024, 31, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Paul, S. Exosome-based cancer stem cell communication: Implication for detecting and eliminating cancer stem cells. MedComm—Future Med. 2022, 1, e23. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Nag, S.; Mukherjee, S.; Kulkarni, M.; Chandane, P.; Mandal, D.; Mukerjee, N.; Mirgh, D.; Anand, K.; Adhikari, M.D.; et al. Role of Exosomes in Epithelial-Mesenchymal Transition. ACS Appl. Bio Mater. 2024, 7, 44–58. [Google Scholar] [CrossRef]
- Chen, P.; Hsu, W.H.; Han, J.; Xia, Y.; DePinho, R.A. Cancer Stemness Meets Immunity: From Mechanism to Therapy. Cell Rep. 2021, 34, 108597. [Google Scholar] [CrossRef]
- Hardy, K.; Wu, F.; Tu, W.; Zafar, A.; Boulding, T.; McCuaig, R.; Sutton, C.R.; Theodoratos, A.; Rao, S. Identification of chromatin accessibility domains in human breast cancer stem cells. Nucleus 2016, 7, 50–67. [Google Scholar] [CrossRef]
- Schick, B.; Pillong, L.; Wenzel, G.; Wemmert, S. Neural Crest Stem Cells in Juvenile Angiofibromas. Int. J. Mol. Sci. 2022, 23, 1932. [Google Scholar] [CrossRef]
- Tang, Y.; Durand, S.; Dalle, S.; Caramel, J. EMT-Inducing Transcription Factors, Drivers of Melanoma Phenotype Switching, and Resistance to Treatment. Cancers 2020, 12, 2154. [Google Scholar] [CrossRef]
- Tomei, S.; Ibnaof, O.; Ravindran, S.; Ferrone, S.; Maccalli, C. Cancer stem cells are possible key players in regulating anti-tumor immune responses: The role of immunomodulating molecules and microRNAs. Cancers 2021, 13, 1674. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, L.; Liu, H.; Luo, X. Cancer stem cell-targeted therapeutic approaches for overcoming trastuzumab resistance in HER2-positive breast cancer. Stem Cells 2021, 39, 1125–1136. [Google Scholar] [CrossRef]
- Ferreres, J.R.; Vinyals, A.; Campos-Martin, R.; Espín, R.; Podlipnik, S.; Ramos, R.; Bertran, E.; Carrera, C.; Marcoval, J.; Malvehy, J.; et al. PRRX1 silencing is required for metastatic outgrowth in melanoma and is an independent prognostic of reduced survival in patients. Mol. Oncol. 2024, 18, 2471–2494. [Google Scholar] [CrossRef] [PubMed]
- Hirao, H.; Honda, M.; Tomita, M.; Li, L.; Adawy, A.; Xue, W.; Hibi, T. Intravital Imaging of Immune Responses in the Cancer Microenvironment. Cancer Med. 2025, 14, e70899. [Google Scholar] [CrossRef] [PubMed]
- Greer, S.E.; Haller, S.J.; Lee, D.; Dudley, A.T. N-cadherin and β1 integrin coordinately regulate growth plate cartilage architecture. Mol. Biol. Cell 2024, 35, ar49. [Google Scholar] [CrossRef] [PubMed]
- Paolillo, M.; Schinelli, S. Integrins and Exosomes, a Dangerous Liaison in Cancer Progression. Cancers 2017, 9, 95. [Google Scholar] [CrossRef]
- Vakili-Ghartavol, Z.; Deli, H.; Shadboorestan, A.; Sahebnasagh, R.; Motevaseli, E.; Ghahremani, M.H. Exosomes and their distinct integrins transfer the characteristics of oxaliplatin- and 5-FU-resistant behaviors in colorectal cancer cells. Mol. Med. 2025, 31, 49. [Google Scholar] [CrossRef]
- Hasnat, M.A.; Ohmi, Y.; Yesmin, F.; Kaneko, K.; Kambe, M.; Kitaura, Y.; Ito, T.; Imao, Y.; Kano, K.; Mishiro-Sato, E.; et al. Action Mechanisms of Exosomes Derived from GD3/GD2-Positive Glioma Cells in the Regulation of Phenotypes and Intracellular Signaling: Roles of Integrins. Int. J. Mol. Sci. 2024, 25, 12752. [Google Scholar] [CrossRef]
- Miyazaki, T.; Ishikawa, E.; Sugii, N.; Matsuda, M. Therapeutic Strategies for Overcoming Immunotherapy Resistance Mediated by Immunosuppressive Factors of the Glioblastoma Microenvironment. Cancers 2020, 12, 1960. [Google Scholar] [CrossRef]
- Currenti, J.; Mishra, A.; Wallace, M.; George, J.; Sharma, A. Immunosuppressive mechanisms of oncofetal reprogramming in the tumor microenvironment: Implications in immunotherapy response. Biochem. Soc. Trans. 2023, 51, 597–612. [Google Scholar] [CrossRef]
- Wilczyński, M.; Wilczyński, J.; Nowak, M. MiRNAs as Regulators of Immune Cells in the Tumor Microenvironment of Ovarian Cancer. Cells 2024, 13, 1343. [Google Scholar] [CrossRef]
- Xing, Y.; Ruan, G.; Ni, H.; Qin, H.; Chen, S.; Gu, X.; Shang, J.; Zhou, Y.; Tao, X.; Zheng, L. Tumor Immune Microenvironment and Its Related miRNAs in Tumor Progression. Front. Immunol. 2021, 12, 624725. [Google Scholar] [CrossRef]
- Liu, P.; Sun, Z. Chemokines and their receptors in the esophageal carcinoma tumor microenvironment: Key factors for metastasis and progression. Front. Oncol. 2025, 15, 1523751. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, B.; Huang, B.; Zhang, K.; Guo, F.; Wang, Z.; Shang, D. A stumbling block in pancreatic cancer treatment: Drug resistance signaling networks. Front. Cell Dev. Biol. 2025, 12, 1462808. [Google Scholar] [CrossRef] [PubMed]
- Zare, E.; Yaghoubi, S.M.; Khoshnazar, M.; Jafari Dargahlou, S.; Machhar, J.S.; Zheng, Z.; Duijf, P.H.G.; Mansoori, B. MicroRNAs in Cancer Immunology: Master Regulators of the Tumor Microenvironment and Immune Evasion, with Therapeutic Potential. Cancers 2025, 17, 2172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, Z.; Tang, D. The value of exosome-derived noncoding RNAs in colorectal cancer proliferation, metastasis, and clinical applications. Clin. Transl. Oncol. 2022, 24, 2305–2318. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Sharma, A.; Patne, K.; Tabasum, S.; Suryavanshi, J.; Rawat, L.; Machaalani, M.; Eid, M.; Singh, R.P.; Choueiri, T.K.; et al. AXL signaling in cancer: From molecular insights to targeted therapies. Signal Transduct. Target. Ther. 2025, 10, 37. [Google Scholar] [CrossRef]
- Zuo, X.; Zhang, H.; Zhou, T.; Duan, Y.; Shou, H.; Yu, S.; Gao, C. Spheroids of Endothelial Cells and Vascular Smooth Muscle Cells Promote Cell Migration in Hyaluronic Acid and Fibrinogen Composite Hydrogels. Research 2020, 2020, 8970480. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Wang, Y.; Zhao, Y.; Li, Q. Protein tyrosine kinase inhibitor resistance in malignant tumors: Molecular mechanisms and future perspective. Signal Transduct. Target. Ther. 2022, 7, 329. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, S.; Fu, J.-L.; Deng, X.-X.; Guo, Y.; Guo, Z.-W.; Han, S.-Y. AXL promotes malignant phenotypes in tumor cells and might be a potential antitumor target of natural products. Adv. Chin. Med. 2024, 1, 179–189. [Google Scholar] [CrossRef]
- Koeberle, S.C.; Kipp, A.P.; Stuppner, H.; Koeberle, A. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling. Med. Res. Rev. 2023, 43, 614–682. [Google Scholar] [CrossRef]
- Lee, J.; Seo, Y.; Roh, J.-L. Emerging Therapeutic Strategies Targeting GPX4-Mediated Ferroptosis in Head and Neck Cancer. Int. J. Mol. Sci. 2025, 26, 6452. [Google Scholar] [CrossRef]
- Cheff, D.M.; Huang, C.; Scholzen, K.C.; Gencheva, R.; Ronzetti, M.H.; Cheng, Q.; Hall, M.D.; Arnér, E.S. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 2023, 62, 102703. [Google Scholar] [CrossRef]
- Chen, T.; Leng, J.; Tan, J.; Zhao, Y.; Xie, S.; Zhao, S.; Yan, X.; Zhu, L.; Luo, J.; Kong, L. Discovery of novel potent covalent glutathione peroxidase 4 inhibitors as highly selective ferroptosis inducers for the treatment of triple-negative breast cancer. J. Med. Chem. 2023, 66, 10036–10059. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Roh, J.L. SLC7A11 as a Gateway of Metabolic Perturbation and Ferroptosis Vulnerability in Cancer. Antioxidants 2022, 11, 2444. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, Z.; Chen, S.; Liang, Y.; Zhu, K.; Su, N.; Liu, T.; Zhao, B. Enhancing Ferroptosis-Mediated Radiosensitization via Synergistic Disulfidptosis Induction. ACS Nano 2025, 19, 1757–1770. [Google Scholar] [CrossRef] [PubMed]
- Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019, 23, 101107. [Google Scholar] [CrossRef]
- Shimada, K.; Skouta, R.; Kaplan, A.; Yang, W.S.; Hayano, M.; Dixon, S.J.; Brown, L.M.; Valenzuela, C.A.; Wolpaw, A.J.; Stockwell, B.R. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 2016, 12, 497–503. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, T.; Zhao, C.; Li, G. The Regulation of Exosome Generation and Function in Physiological and Pathological Processes. Int. J. Mol. Sci. 2023, 25, 255. [Google Scholar] [CrossRef]
- Luo, Y.W.; Liu, C.G.; Kirby, J.A.; Chu, C.; Zang, D.; Chen, J. The Emerging Role of Extracellular Vesicle-Derived lncRNAs and circRNAs in Tumor and Mesenchymal Stem Cells: The Biological Functions and Potential for Clinical Application. Cancers 2025, 17, 2186. [Google Scholar] [CrossRef]
- Chuang, Y.T.; Shiau, J.P.; Tang, J.Y.; Farooqi, A.A.; Chang, F.R.; Tsai, Y.H.; Yen, C.Y.; Chang, H.W. Connection of Cancer Exosomal LncRNAs, Sponging miRNAs, and Exosomal Processing and Their Potential Modulation by Natural Products. Cancers 2023, 15, 2215. [Google Scholar] [CrossRef]
- Pavić, J.N.; Živanović, M.N.; Virijević, K.D.; Tanasković, I.D.; Stanković, V.D.; Marić, N.T.; Cvetković, D.M.; Filipović, N.D. INFLUENCE OF CYTOSTATICS ON RELATIVE GENE EXPRESSION IN REDOX STATUS, APOPTOSIS AND MIGRATION COLORECTAL CARCINOMA MODEL SYSTEM. Kragujev. J. Sci. 2023, 45, 159–177. [Google Scholar] [CrossRef]
- Pavic, J.; Zivanovic, M.; Virijević, K.; Tanasković, I.; Stanković, V.; Maric, N.; Cvetkovic, D.; Filipovic, N. Influence of cytostatics on relative gene expression in redox status, apoptosis and migration colorectal carcinoma model system. Kragujev. J. Sci. 2023, 45, 159–177. [Google Scholar] [CrossRef]
- Li, C.; Xing, S.; Zhang, D.; Li, R.; Li, Q.; Luo, H.; Liu, F. Exosomal long non-coding RNAs in gastrointestinal cancer: Chemoresistance mediators and therapeutic targets. J. Transl. Med. 2025, 23, 889. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, M.; Zheng, X.; He, Y.; Ma, X.; Li, J.; Pu, K. Application of exosome engineering modification in targeted delivery of therapeutic drugs. Biochem. Pharmacol. 2023, 215, 115691. [Google Scholar] [CrossRef] [PubMed]
- Shirani, N.; Abdi, N.; Chehelgerdi, M.; Yaghoobi, H.; Chehelgerdi, M. Investigating the role of exosomal long non-coding RNAs in drug resistance within female reproductive system cancers. Front. Cell Dev. Biol. 2025, 13, 1485422. [Google Scholar] [CrossRef]
- Lucarini, V.; Angiolini, V.; Nardozi, D.; Benvenuto, M.; Focaccetti, C.; Mancini, P.; Splendiani, E.; Autilio, T.M.; Cortese, C.; Bei, R.; et al. In vitro synergistic effect of AXL, FAK and ErbB receptors inhibitors for head and neck cancer. Biol. Direct 2025, 20, 77. [Google Scholar] [CrossRef]
- Sun, S.; Shen, J.; Jiang, J.; Wang, F.; Min, J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct. Target. Ther. 2023, 8, 372. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, X.; Wang, Y.; Yuan, J.; Li, J.; Hang, W.; Meng, H. SLC7A11 inhibits ferroptosis and downregulates PD-L1 levels in lung adenocarcinoma. Front. Immunol. 2024, 15, 1372215. [Google Scholar] [CrossRef]
- Yang, Y.C.; Jiang, Q.; Yang, K.P.; Wang, L.; Sethi, G.; Ma, Z. Extracellular vesicle-mediated ferroptosis, pyroptosis, and necroptosis: Potential clinical applications in cancer therapy. Cell Death Discov. 2024, 10, 23. [Google Scholar] [CrossRef]
- Wang, L.; He, J.; Hu, H.; Tu, L.; Sun, Z.; Liu, Y.; Luo, F. Lung CSC-derived exosomal miR-210-3p contributes to a pro-metastatic phenotype in lung cancer by targeting FGFRL1. J. Cell Mol. Med. 2020, 24, 6324–6339. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, X. Association of Exosomal miR-210 with Signaling Pathways Implicated in Lung Cancer. Genes 2021, 12, 1248. [Google Scholar] [CrossRef]
- Golubovskaya, V.M. Targeting FAK in human cancer: From finding to first clinical trials. Front. Biosci. (Landmark Ed.) 2014, 19, 687. [Google Scholar] [CrossRef] [PubMed]
- Koenders, S.T.; Wijaya, L.S.; Erkelens, M.N.; Bakker, A.T.; van der Noord, V.E.; van Rooden, E.J.; Burggraaff, L.; Putter, P.C.; Botter, E.; Wals, K. Development of a retinal-based probe for the profiling of retinaldehyde dehydrogenases in cancer cells. ACS Cent. Sci. 2019, 5, 1965–1974. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sakamoto, S.; Saito, S.; Pae, S.; Yamada, Y.; Kanaoka, S.; Wei, J.; Goto, Y.; Sazuka, T.; Imamura, Y. The Regulation and Function of the Amino Acid Transporters LAT1, ASCT2, xCT in Urological Cancers. Receptors 2024, 3, 474–493. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Y.; Xu, W.; Zhang, X.; Jiang, J. Engineered exosome-mediated delivery of circDIDO1 inhibits gastric cancer progression via regulation of MiR-1307-3p/SOCS2 Axis. J. Transl. Med. 2022, 20, 326. [Google Scholar] [CrossRef] [PubMed]
- Filipescu, D.; Carcamo, S.; Agarwal, A.; Tung, N.; Humblin, É.; Goldberg, M.S.; Vyas, N.S.; Beaumont, K.G.; Demircioglu, D.; Sridhar, S. MacroH2A restricts inflammatory gene expression in melanoma cancer-associated fibroblasts by coordinating chromatin looping. Nat. Cell Biol. 2023, 25, 1332–1345. [Google Scholar] [CrossRef]
- Qin, Q.; Furong, W.; Baosheng, L. Multiple functions of hypoxia-regulated miR-210 in cancer. J. Exp. Clin. Cancer Res. 2014, 33, 50. [Google Scholar] [CrossRef]
- Lian, M.; Mortoglou, M.; Uysal-Onganer, P. Impact of Hypoxia-Induced miR-210 on Pancreatic Cancer. Curr. Issues Mol. Biol. 2023, 45, 9778–9792. [Google Scholar] [CrossRef]
- Wendling, D.; Verhoeven, F.; Chouk, M.; Prati, C. Le SARS-CoV-2 peut-il induire une arthrite réactionnelle? Rev. Rhum. Ed. Fr. 2021, 88, 326–328. [Google Scholar] [CrossRef]
- Schlangen, J.; Petko, C.; Hansen, J.H.; Michel, M.; Hart, C.; Uebing, A.; Fischer, G.; Becker, K.; Kramer, H.-H. Two-Dimensional Global Longitudinal Strain Rate Is a Preload Independent Index of Systemic Right Ventricular Contractility in Hypoplastic Left Heart Syndrome Patients After Fontan Operation. Circ. Cardiovasc. Imaging 2014, 7, 880–886. [Google Scholar] [CrossRef]
- Fernandes-Pontes, F.; Lobo, J.; Jeronimo, C.; Henrique, R. Identification of novel biomarkers in renal cell carcinoma. Expert Rev. Mol. Diagn. 2025, 25, 465–477. [Google Scholar] [CrossRef]
- Passaro, A.; Al Bakir, M.; Hamilton, E.G.; Diehn, M.; André, F.; Roy-Chowdhuri, S.; Mountzios, G.; Wistuba, I.I.; Swanton, C.; Peters, S. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment. Cell 2024, 187, 1617–1635. [Google Scholar] [CrossRef] [PubMed]
- Strobl, M.; Gallaher, J.; Robertson-Tessi, M.; West, J.; Anderson, A. Treatment of evolving cancers will require dynamic decision support. Ann. Oncol. 2023, 34, 867–884. [Google Scholar] [CrossRef] [PubMed]
- Sekar, S.; Srikanth, S.; Mukherjee, A.G.; Gopalakrishnan, A.V.; Wanjari, U.R.; Vellingiri, B.; Renu, K.; Madhyastha, H. Biogenesis and functional implications of extracellular vesicles in cancer metastasis. Clin. Transl. Oncol. 2025, 27, 2913–2935. [Google Scholar] [CrossRef]
- Chen, M.; Wu, C.; Fu, Z.; Liu, S. ICAM1 promotes bone metastasis via integrin-mediated TGF-β/EMT signaling in triple-negative breast cancer. Cancer Sci. 2022, 113, 3751–3765. [Google Scholar] [CrossRef] [PubMed]
- Zabeti Touchaei, A.; Norollahi, S.E.; Najafizadeh, A.; Babaei, K.; Bakhshalipour, E.; Vahidi, S.; Samadani, A.A. Therapeutic combinations of exosomes alongside cancer stem cells (CSCs) and of CSC-derived exosomes (CSCEXs) in cancer therapy. Cancer Cell Int. 2024, 24, 334. [Google Scholar] [CrossRef]
- Sheng, K.L.; Kang, L.; Pridham, K.J.; Dunkenberger, L.E.; Sheng, Z.; Varghese, R.T. An integrated approach to biomarker discovery reveals gene signatures highly predictive of cancer progression. Sci. Rep. 2020, 10, 21246. [Google Scholar] [CrossRef]
- Khan, S.; Alson, D.; Sun, L.; Maloney, C.; Sun, D. Leveraging Neural Crest-Derived Tumors to Identify NF1 Cancer Stem Cell Signatures. Cancers 2024, 16, 3639. [Google Scholar] [CrossRef]
- Liu, X.; Papukashvili, D.; Wang, Z.; Liu, Y.; Chen, X.; Li, J.; Li, Z.; Hu, L.; Li, Z.; Rcheulishvili, N.; et al. Potential utility of miRNAs for liquid biopsy in breast cancer. Front. Oncol. 2022, 12, 940314. [Google Scholar] [CrossRef]
- Ma, L.; Guo, H.; Zhao, Y.; Liu, Z.; Wang, C.; Bu, J.; Sun, T.; Wei, J. Liquid biopsy in cancer: Current status, challenges and future prospects. Signal Transduct. Target. Ther. 2024, 9, 336. [Google Scholar] [CrossRef]
- Lorenzo, G.; Ahmed, S.R.; Hormuth, D.A.; Vaughn, B.; Kalpathy-Cramer, J.; Solorio, L.; Yankeelov, T.E.; Gomez, H. Patient-specific, mechanistic models of tumor growth incorporating artificial intelligence and big data. Annu. Rev. Biomed. Eng. 2024, 26, 529–560. [Google Scholar] [CrossRef]
- Seo, H.A.; Moeng, S.; Sim, S.; Kuh, H.J.; Choi, S.Y.; Park, J.K. MicroRNA-based combinatorial cancer therapy: Effects of MicroRNAs on the efficacy of anti-cancer therapies. Cells 2019, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Abdel Halim, A.S.; Rudayni, H.A.; Chaudhary, A.A.; Ali, M.A. MicroRNAs: Small molecules with big impacts in liver injury. J. Cell. Physiol. 2023, 238, 32–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gambino, F., Jr.; Algenio, C.S.; Wu, C.; Gao, Y.; Bouchard, C.S.; Qiao, L.; Bu, P.; Zhao, S. Inflammation and oxidative stress induced by lipid peroxidation metabolite 4-hydroxynonenal in human corneal epithelial cells. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Čipak Gašparović, A.; Milković, L.; Dandachi, N.; Stanzer, S.; Pezdirc, I.; Vrančić, J.; Šitić, S.; Suppan, C.; Balic, M. Chronic oxidative stress promotes molecular changes associated with epithelial mesenchymal transition, NRF2, and breast cancer stem cell phenotype. Antioxidants 2019, 8, 633. [Google Scholar] [CrossRef]
- Zhong, T.; Li, Y.; Jin, M.; Liu, J.; Wu, Z.; Zhu, F.; Zhao, L.; Fan, Y.; Xu, L.; Ji, J. Downregulation of 4-HNE and FOXO4 collaboratively promotes NSCLC cell migration and tumor growth. Cell Death Dis. 2024, 15, 546. [Google Scholar] [CrossRef]
- Galam, L.; Failla, A.; Soundararajan, R.; Lockey, R.F.; Kolliputi, N. 4-hydroxynonenal regulates mitochondrial function in human small airway epithelial cells. Oncotarget 2015, 6, 41508. [Google Scholar] [CrossRef]
- Dupuy, J.; Cogo, E.; Fouché, E.; Guéraud, F.; Pierre, F.; Plaisancié, P. Epithelial-mesenchymal interaction protects normal colonocytes from 4-HNE-induced phenotypic transformation. PLoS ONE 2024, 19, e0302932. [Google Scholar] [CrossRef]
- Reyes-Jiménez, E.; Ramírez-Hernández, A.A.; Santos-Álvarez, J.C.; Velázquez-Enríquez, J.M.; Pina-Canseco, S.; Baltiérrez-Hoyos, R.; Vásquez-Garzón, V.R. Involvement of 4-hydroxy-2-nonenal in the pathogenesis of pulmonary fibrosis. Mol. Cell. Biochem. 2021, 476, 4405–4419. [Google Scholar] [CrossRef]
- Wang, F.; Min, J. DHODH tangoing with GPX4 on the ferroptotic stage. Signal Transduct. Target. Ther. 2021, 6, 244. [Google Scholar] [CrossRef]
- Wang, D.; Tang, L.; Zhang, Y.; Ge, G.; Jiang, X.; Mo, Y.; Wu, P.; Deng, X.; Li, L.; Zuo, S. Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis. 2022, 13, 544. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, Y.; Sun, Q.; Hong, Y.; Liang, S.; Jiang, H.; Zhang, X.; Zhang, S.; Chen, Q. Targeting ferroptosis opens new avenues in gliomas. Int. J. Biol. Sci. 2024, 20, 4674. [Google Scholar] [CrossRef]
- Ma, W.; Kantarjian, H.; Yeh, C.H.; Zhang, Z.J.; Cortes, J.; Albitar, M. BCR-ABL truncation due to premature translation termination as a mechanism of resistance to kinase inhibitors. Acta Haematol. 2009, 121, 27–31. [Google Scholar] [CrossRef]
- Vegliante, R.; Pastushenko, I.; Blanpain, C. Deciphering functional tumor states at single-cell resolution. Embo J. 2022, 41, e109221. [Google Scholar] [CrossRef] [PubMed]
- Hass, R.; von der Ohe, J.; Ungefroren, H. Impact of the Tumor Microenvironment on Tumor Heterogeneity and Consequences for Cancer Cell Plasticity and Stemness. Cancers 2020, 12, 3716. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, T.; Jin, Y.; Huang, B.; Zhang, Y. Progress and Clinical Application of Single-Cell Transcriptional Sequencing Technology in Cancer Research. Front. Oncol. 2020, 10, 593085. [Google Scholar] [CrossRef] [PubMed]
- Huertas-Castaño, C.; Martínez-López, L.; Cabrera-Roldán, P.; Pastor, N.; Mateos, J.C.; Mateos, S.; Pardal, R.; Domínguez, I.; Orta, M.L. Influence of stromal neural crest progenitor cells on neuroblastoma radioresistance. Int. J. Radiat. Biol. 2025, 101, 153–163. [Google Scholar] [CrossRef]
- Zhu, Z.; Hu, E.; Shen, H.; Tan, J.; Zeng, S. The functional and clinical roles of liquid biopsy in patient-derived models. J. Hematol. Oncol. 2023, 16, 36. [Google Scholar] [CrossRef]
- Yoshida, G.J. Applications of patient-derived tumor xenograft models and tumor organoids. J. Hematol. Oncol. 2020, 13, 4. [Google Scholar] [CrossRef]
- Huang, L.; Bockorny, B.; Paul, I.; Akshinthala, D.; Frappart, P.-O.; Gandarilla, O.; Bose, A.; Sanchez-Gonzalez, V.; Rouse, E.E.; Lehoux, S.D. PDX-derived organoids model in vivo drug response and secrete biomarkers. JCI Insight 2020, 5, e135544. [Google Scholar] [CrossRef]
- Lyu, P.; Gu, X.; Wang, F.; Sun, H.; Zhou, Q.; Yang, S.; Yuan, W. Advances in targeting cancer-associated fibroblasts through single-cell spatial transcriptomic sequencing. Biomark. Res. 2024, 12, 73. [Google Scholar] [CrossRef]
- Park, M.N.; Kim, M.; Lee, S.; Kang, S.; Ahn, C.-H.; Tallei, T.E.; Kim, W.; Kim, B. Targeting Redox Signaling Through Exosomal MicroRNA: Insights into Tumor Microenvironment and Precision Oncology. Antioxidants 2025, 14, 501. [Google Scholar] [CrossRef]
- Malagoli Tagliazucchi, G.; Wiecek, A.J.; Withnell, E.; Secrier, M. Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer. Nat. Commun. 2023, 14, 789. [Google Scholar] [CrossRef]
- Ma, L.; Singh, J.; Schekman, R. Two RNA-binding proteins mediate the sorting of miR223 from mitochondria into exosomes. Elife 2023, 12, e85878. [Google Scholar] [CrossRef]
- Bocci, F.; Zhou, P.; Nie, Q. Single-Cell RNA-Seq Analysis Reveals the Acquisition of Cancer Stem Cell Traits and Increase of Cell-Cell Signaling during EMT Progression. Cancers 2021, 13, 5726. [Google Scholar] [CrossRef] [PubMed]
- Hamraoui, A.; Jourdren, L.; Thomas-Chollier, M. AsaruSim: A single-cell and spatial RNA-Seq Nanopore long-reads simulation workflow. Bioinformatics 2025, 41, btaf087. [Google Scholar] [CrossRef] [PubMed]
- Malla, R.; Bhamidipati, P.; Samudrala, A.S.; Nuthalapati, Y.; Padmaraju, V.; Malhotra, A.; Rolig, A.S.; Malhotra, S.V. Exosome-Mediated Cellular Communication in the Tumor Microenvironment Imparts Drug Resistance in Breast Cancer. Cancers 2025, 17, 1167. [Google Scholar] [CrossRef] [PubMed]
- Schuhwerk, H.; Kleemann, J.; Gupta, P.; van Roey, R.; Armstark, I.; Kreileder, M.; Feldker, N.; Ramesh, V.; Hajjaj, Y.; Fuchs, K.; et al. The EMT transcription factor ZEB1 governs a fitness-promoting but vulnerable DNA replication stress response. Cell Rep. 2022, 41, 111819. [Google Scholar] [CrossRef]
- Bilan, D.S.; Pase, L.; Joosen, L.; Gorokhovatsky, A.Y.; Ermakova, Y.G.; Gadella, T.W.; Grabher, C.; Schultz, C.; Lukyanov, S.; Belousov, V.V. HyPer-3: A genetically encoded H2O2 probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem. Biol. 2013, 8, 535–542. [Google Scholar] [CrossRef]
- Belousov, V.V.; Fradkov, A.F.; Lukyanov, K.A.; Staroverov, D.B.; Shakhbazov, K.S.; Terskikh, A.V.; Lukyanov, S. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 2006, 3, 281–286. [Google Scholar] [CrossRef]
- Hao, W.; Chen, Z.; Tang, J.; Yang, R.; Gao, W.Q.; Xu, H. hnRNPA2B1 promotes the occurrence and progression of hepatocellular carcinoma by downregulating PCK1 mRNA via a m6A RNA methylation manner. J. Transl. Med. 2023, 21, 861. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, S.C.; Peng, W.X.; Zhou, N.; Pochampally, R.; Atfi, A.; Watabe, K.; Lu, Z.; Mo, Y.Y. Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis. 2016, 7, e2262. [Google Scholar] [CrossRef]
- Xu, S.; Cao, B.; Xuan, G.; Xu, S.; An, Z.; Zhu, C.; Li, L.; Tang, C. Function and regulation of Rab GTPases in cancers. Cell Biol. Toxicol. 2024, 40, 28. [Google Scholar] [CrossRef] [PubMed]
- Danac, J.M.C.; Uy, A.G.G.; Garcia, R.L. Exosomal microRNAs in colorectal cancer: Overcoming barriers of the metastatic cascade (Review). Int. J. Mol. Med. 2021, 47, 112. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, S.; Moeinafshar, A.; Rezaei, N. The multifaceted role of extracellular vesicles (EVs) in colorectal cancer: Metastasis, immune suppression, therapy resistance, and autophagy crosstalk. J. Transl. Med. 2024, 22, 452. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhong, X.; Hu, Z.; Zhao, S.; Wei, P.; Li, D. An insight into small extracellular vesicles: Their roles in colorectal cancer progression and potential clinical applications. Clin. Transl. Med. 2020, 10, e249. [Google Scholar] [CrossRef]
- Shakerian, N.; Darzi-Eslam, E.; Afsharnoori, F.; Bana, N.; Noorabad Ghahroodi, F.; Tarin, M.; Mard-Soltani, M.; Khalesi, B.; Hashemi, Z.S.; Khalili, S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med. Oncol. 2024, 41, 203. [Google Scholar] [CrossRef]
- Das, K.; Paul, S.; Ghosh, A.; Gupta, S.; Mukherjee, T.; Shankar, P.; Sharma, A.; Keshava, S.; Chauhan, S.C.; Kashyap, V.K.; et al. Extracellular Vesicles in Triple-Negative Breast Cancer: Immune Regulation, Biomarkers, and Immunotherapeutic Potential. Cancers 2023, 15, 4879. [Google Scholar] [CrossRef]
- Hassanpour, H.; Mojtahed, M.; Nasiri, L.; Vaez-Mahdavi, M.R.; Fallah, A.A. Association of sulfur mustard toxicity with oxidant/antioxidant system in veterans: A meta-analysis of case-control studies. Int. Immunopharmacol. 2025, 147, 114007. [Google Scholar] [CrossRef]
- Sahoo, S.; Nayak, S.P.; Hari, K.; Purkait, P.; Mandal, S.; Kishore, A.; Levine, H.; Jolly, M.K. Immunosuppressive Traits of the Hybrid Epithelial/Mesenchymal Phenotype. Front. Immunol. 2021, 12, 797261. [Google Scholar] [CrossRef]
- Teeuwssen, M.; Fodde, R. Cell Heterogeneity and Phenotypic Plasticity in Metastasis Formation: The Case of Colon Cancer. Cancers 2019, 11, 1368. [Google Scholar] [CrossRef]
- Engelsen, A.S.T.; Lotsberg, M.L.; Abou Khouzam, R.; Thiery, J.P.; Lorens, J.B.; Chouaib, S.; Terry, S. Dissecting the Role of AXL in Cancer Immune Escape and Resistance to Immune Checkpoint Inhibition. Front. Immunol. 2022, 13, 869676. [Google Scholar] [CrossRef]
- Li, X.; Si, W.; Zhang, Y.; Yang, P.; Ruan, L.; Ba, H.; Chen, Z. Alpha-Heredin targets CAMKII/DRP1-Mediated mitochondrial fission to trigger ferroptosis in pancreatic ductal adenocarcinoma. Phytomedicine 2025, 145, 157048. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.-L.; Khanal, P.; Kelly, T.; Hao, Y.; Yang, X. Kinome-Wide Screening Identifies FAK as a Novel Post-Translational Regulator of PD-L1 Stability and Immune Evasion in Triple Negative Breast Cancer. Int. J. Mol. Sci. 2025, 26, 10108. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, X.; Zhu, X.; Li, L.; Zeng, X.; Ren, J.; Wang, L.; Wu, J.; Zhang, Q.; Wang, S.; et al. CD248 induces PD-L1 expression on cancer-associated fibroblasts to promote NSCLC immune escape. Front. Cell Dev. Biol. 2025, 13, 1635915. [Google Scholar] [CrossRef] [PubMed]
- Zgeib, K. Molecular Characterization of Dedifferentiation-Induced Oncogenic Stemness in the Intestinal Epithelium. Ph.D. Thesis, Stevens Institute of Technology, Hoboken, NJ, USA, 2025. [Google Scholar]
- Tang, J.; Chen, Z.; Wang, Q.; Hao, W.; Gao, W.-Q.; Xu, H. hnRNPA2B1 promotes colon cancer progression via the MAPK pathway. Front. Genet. 2021, 12, 666451. [Google Scholar] [CrossRef]
- Gupta, A.; Yadav, S.; Pt, A.; Mishra, J.; Samaiya, A.; Panday, R.K.; Shukla, S. The HNRNPA2B1–MST1R–Akt axis contributes to epithelial-to-mesenchymal transition in head and neck cancer. Lab. Investig. 2020, 100, 1589–1601. [Google Scholar] [CrossRef]
- Yu, M.; Fei, B.; Chu, S. Targeting HNRNPA2B1 to overcome chemotherapy resistance in gastric cancer stem cells: Mechanisms and therapeutic potential. J. Biol. Chem. 2025, 301, 108234. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Li, H.; Hu, T.Y. Recent advances in the bench-to-bedside translation of cancer nanomedicines. Acta Pharm. Sin. B 2025, 15, 97–122. [Google Scholar] [CrossRef]
- Huang, S.; Soto, A.M.; Sonnenschein, C. The end of the genetic paradigm of cancer. PLoS Biol. 2025, 23, e3003052. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Shi, M.; Ding, Y.; Sun, H.; Yuan, F.; Zou, Z. Elevated expression of miR-210 predicts poor survival of cancer patients: A systematic review and meta-analysis. PLoS ONE 2014, 9, e89223. [Google Scholar] [CrossRef]
- Luo, S.; Lin, R.; Liao, X.; Li, D.; Qin, Y. Identification and verification of the molecular mechanisms and prognostic values of the cadherin gene family in gastric cancer. Sci. Rep. 2021, 11, 23674. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wu, W.; Liang, L.; Han, S.; Chen, T.; Pan, S.; Xue, M.; Li, S. Prognostic role of microRNA-210 in various carcinomas: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 15283–15289. [Google Scholar] [PubMed]
- Liao, T.T.; Cheng, W.C.; Yang, C.Y.; Chen, Y.Q.; Su, S.H.; Yeh, T.Y.; Lan, H.Y.; Lee, C.C.; Lin, H.H.; Lin, C.C.; et al. The microRNA-210-Stathmin1 Axis Decreases Cell Stiffness to Facilitate the Invasiveness of Colorectal Cancer Stem Cells. Cancers 2021, 13, 1833. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zhang, N.; Hu, X.; Wang, H. Tumor-associated exosomes promote lung cancer metastasis through multiple mechanisms. Mol. Cancer 2021, 20, 117. [Google Scholar] [CrossRef]
- Poggio, M.; Hu, T.; Pai, C.C.; Chu, B.; Belair, C.D.; Chang, A.; Montabana, E.; Lang, U.E.; Fu, Q.; Fong, L.; et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell 2019, 177, 414–427.e13. [Google Scholar] [CrossRef]
- Martínez-Vila, C.; González-Navarro, E.A.; Teixido, C.; Martin, R.; Aya, F.; Juan, M.; Arance, A. Lymphocyte T Subsets and Outcome of Immune Checkpoint Inhibitors in Melanoma Patients: An Oncologist’s Perspective on Current Knowledge. Int. J. Mol. Sci. 2024, 25, 9506. [Google Scholar] [CrossRef]
- van den Ende, T.; de Clercq, N.C.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; Geijsen, E.; Verhoeven, R.; Meijer, S.L.; Schokker, S.; Dings, M.; Bergman, J.J. Neoadjuvant chemoradiotherapy combined with atezolizumab for resectable esophageal adenocarcinoma: A single-arm phase II feasibility trial (PERFECT). Clin. Cancer Res. 2021, 27, 3351–3359. [Google Scholar] [CrossRef]
- Pantano, F.; Zalfa, F.; Iuliani, M.; Simonetti, S.; Manca, P.; Napolitano, A.; Tiberi, S.; Russano, M.; Citarella, F.; Foderaro, S.; et al. Large-Scale Profiling of Extracellular Vesicles Identified miR-625-5p as a Novel Biomarker of Immunotherapy Response in Advanced Non-Small-Cell Lung Cancer Patients. Cancers 2022, 14, 2435. [Google Scholar] [CrossRef]
- Cui, Q.; Li, W.; Wang, D.; Wang, S.; Yu, J. Prognostic significance of blood-based PD-L1 analysis in patients with non-small cell lung cancer undergoing immune checkpoint inhibitor therapy: A systematic review and meta-analysis. World J. Surg. Oncol. 2023, 21, 318. [Google Scholar] [CrossRef]
- Dou, X.; Hua, Y.; Chen, Z.; Chao, F.; Li, M. Extracellular vesicles containing PD-L1 contribute to CD8+ T-cell immune suppression and predict poor outcomes in small cell lung cancer. Clin. Exp. Immunol. 2022, 207, 307–317. [Google Scholar] [CrossRef]
- Genova, C.; Tasso, R.; Rosa, A.; Rossi, G.; Reverberi, D.; Fontana, V.; Marconi, S.; Croce, M.; Dal Bello, M.G.; Dellepiane, C. Prognostic role of soluble and extracellular vesicle-associated PD-L1, B7-H3 and B7-H4 in non-small cell lung cancer patients treated with immune checkpoint inhibitors. Cells 2023, 12, 832. [Google Scholar] [CrossRef] [PubMed]
- de Miguel-Perez, D.; Russo, A.; Arrieta, O.; Ak, M.; Barron, F.; Gunasekaran, M.; Mamindla, P.; Lara-Mejia, L.; Peterson, C.B.; Er, M.E.; et al. Extracellular vesicle PD-L1 dynamics predict durable response to immune-checkpoint inhibitors and survival in patients with non-small cell lung cancer. J. Exp. Clin. Cancer Res. 2022, 41, 186. [Google Scholar] [CrossRef] [PubMed]
- Signorelli, D.; Ghidotti, P.; Proto, C.; Brambilla, M.; De Toma, A.; Ferrara, R.; Galli, G.; Ganzinelli, M.; Lo Russo, G.; Prelaj, A.; et al. Circulating CD81-expressing extracellular vesicles as biomarkers of response for immune-checkpoint inhibitors in advanced NSCLC. Front. Immunol. 2022, 13, 987639. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.-L.; Sun, J.; Lu, Y.; Liu, Y.; Cao, H.; Zhang, H.; Calin, G.A. MiR-200 family and cancer: From a meta-analysis view. Mol. Asp. Med. 2019, 70, 57–71. [Google Scholar] [CrossRef]
- Ungewiss, C.; Rizvi, Z.H.; Roybal, J.D.; Peng, D.H.; Gold, K.A.; Shin, D.H.; Creighton, C.J.; Gibbons, D.L. The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL. Sci. Rep. 2016, 6, 18652. [Google Scholar] [CrossRef]
- Trifylli, E.M.; Kriebardis, A.G.; Koustas, E.; Papadopoulos, N.; Fortis, S.P.; Tzounakas, V.L.; Anastasiadi, A.T.; Sarantis, P.; Vasileiadi, S.; Tsagarakis, A. A current synopsis of the emerging role of extracellular vesicles and micro-RNAs in pancreatic cancer: A forward-looking plan for diagnosis and treatment. Int. J. Mol. Sci. 2024, 25, 3406. [Google Scholar] [CrossRef]
- Hussain, Z.; Nigri, J.; Tomasini, R. The cellular and biological impact of extracellular vesicles in pancreatic cancer. Cancers 2021, 13, 3040. [Google Scholar] [CrossRef]
- Zhang, Z.; Xue, B.; Chen, Y.; Shao, Y.; Wang, D. A systematic review and meta-analysis combined with bioinformatic analysis on the predictive value of E-cadherin in patients with renal cell carcinoma. Expert Rev. Mol. Diagn. 2024, 24, 859–871. [Google Scholar] [CrossRef]
- Albarrán, V.; Villamayor, M.L.; Chamorro, J.; Rosero, D.I.; Pozas, J.; San Román, M.; Calvo, J.C.; Pérez de Aguado, P.; Moreno, J.; Guerrero, P. Receptor tyrosine kinase inhibitors for the treatment of recurrent and unresectable bone sarcomas. Int. J. Mol. Sci. 2022, 23, 13784. [Google Scholar] [CrossRef]
- Grundy, M.; Narendran, A. The hepatocyte growth factor/mesenchymal epithelial transition factor axis in high-risk pediatric solid tumors and the anti-tumor activity of targeted therapeutic agents. Front. Pediatr. 2022, 10, 910268. [Google Scholar] [CrossRef]
- Saraon, P.; Pathmanathan, S.; Snider, J.; Lyakisheva, A.; Wong, V.; Stagljar, I. Receptor tyrosine kinases and cancer: Oncogenic mechanisms and therapeutic approaches. Oncogene 2021, 40, 4079–4093. [Google Scholar] [CrossRef] [PubMed]
- Ning, F.K. Analysis of Immune Cell Functions to Improve the Therapeutic Efficacy of a Novel Cell-based Therapy of Combined Autologous Monocytes and Dual-Interferons for Ovarian Cancer. Ph.D. Thesis, University of Maryland, Baltimore, MD, USA, 2023. [Google Scholar]
- Chen, T. Determinants of Treatment Outcome Heterogeneity for Antibody and Antibody Drug Conjugates in Solid Tumors. Ph.D. Thesis, State University of New York at Buffalo, New York, NY, USA, 2021. [Google Scholar]
- Shimada, Y.; Matsubayashi, J.; Kudo, Y.; Maehara, S.; Takeuchi, S.; Hagiwara, M.; Kakihana, M.; Ohira, T.; Nagao, T.; Ikeda, N. Serum-derived exosomal PD-L1 expression to predict anti-PD-1 response and in patients with non-small cell lung cancer. Sci. Rep. 2021, 11, 7830. [Google Scholar] [CrossRef] [PubMed]
- Sychowski, G.; Romanowicz, H.; Ciesielski, W.; Hogendorf, P.; Durczyński, A.; Smolarz, B. Diagnostic and Therapeutic Potential of Selected microRNAs in Colorectal Cancer: A Literature Review. Cancers 2025, 17, 2135. [Google Scholar] [CrossRef] [PubMed]
- Lan, F.; Yue, X.; Xia, T. Exosomal microRNA-210 is a potentially non-invasive biomarker for the diagnosis and prognosis of glioma. Oncol. Lett. 2020, 19, 1967–1974. [Google Scholar] [CrossRef]
- Mrozik, K.M.; Blaschuk, O.W.; Cheong, C.M.; Zannettino, A.C.W.; Vandyke, K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018, 18, 939. [Google Scholar] [CrossRef]
- Khaboushan, A.S.; Salimian, S.N.; Mehraban, S.; Bahramy, A.; Zafari, N.; Kajbafzadeh, A.-M.; Johnson, J.; Zolbin, M.M. Prognostic significance of non-coding RNAs related to the tumorigenic epithelial-mesenchymal transition (EMT) process among ovarian cancer patients: A systematic review and meta-analysis. Heliyon 2024, 10, e35202. [Google Scholar] [CrossRef]
- Chen, S.-l.; Hu, D.; Chen, T.-z.; Shen, S.-y.; Zhao, C.-f.; Wang, C.; Tong, S.-y.; Liu, Z.; Lin, S.-h.; Jin, L.-x. Pan-cancer screening and validation of CALU’s role in EMT regulation and tumor microenvironment in triple-negative breast cancer. J. Inflamm. Res. 2024, 17, 6743–6764. [Google Scholar] [CrossRef]
- Wang, H.; Yu, T.; Mao, L. Placental-cadherin, a biomarker for local immune status and poor prognosis among patients with tongue squamous cell carcinoma. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 3597–3609. [Google Scholar] [CrossRef]
- Su, Y.; Li, J.; Witkiewicz, A.K.; Brennan, D.; Neill, T.; Talarico, J.; Radice, G.L. N-cadherin haploinsufficiency increases survival in a mouse model of pancreatic cancer. Oncogene 2012, 31, 4484–4489. [Google Scholar] [CrossRef]



| Theme | Scope | Gap/Limitation | Contribution (RAX Model) | Evidence | Translation | Refs. |
|---|---|---|---|---|---|---|
| EMT plasticity and hybrid E/M state | EMT spectrum; invasion/metastasis; CSC emergence; EMT-TFs (TWIST, ZEB, SNAIL); epigenetic regulators | No ROS licensing; no CDH2 hub; weak EMT–EV/immune coupling | RAX closed-loop; CDH2-centered hub; EMT/NCSC transitions linked to EV–immune axis | Preclinical/conceptual (single-cell; lineage tracing; HyPer imaging potential) | EMT/NCSC-high tumors (TNBC, PDAC, neuroblastoma); EMT + CDH2 biomarker panels | [57,58,59] |
| CDH2/AXL–FAK adhesion axis | FAK as integrator of integrin/growth factor signals; EMT induction; angiogenesis; immunosuppressive TME; AXL as TAM RTK driving EMT, metastasis, drug resistance | Linear pathway perspective; no systems-level integration; weak linkage to ROS dynamics; limited exosomal cargo context | CDH2 as adhesion hub; feedback to redox buffering; EV cargo selection; FAK/AXL within closed RAX circuit; governs invasion, immune evasion, metabolic remodeling | Preclinical/clinical; multiple drug reports; AXL/FAK inhibitors in lung, breast, pancreatic cancers; early trials | Adhesion axis inhibition as one pillar of therapeutic triad (with ferroptosis induction + EV blockade); RAX-stratified tumors (CDH2–FAK/AXL-high) | [60,61,62,63] |
| Redox buffering (NRF2–SLC7A11/GPX4; FSP1–DHODH) | Redox/ferroptosis defense reviews; canonical system Xc−/GSH/GPX4; non-canonical FSP1/DHODH, TRX system; NRF2/xCT/GPX4 as core survival axes | Ferroptosis defenses treated in isolation; no linkage to EMT licensing, adhesion remodeling, or exosomal immune escape; weak systems perspective | Redox buffering as “R” arm; licenses CDH2–FAK adhesion remodeling; enables exosome-mediated immune reprogramming; reframes ferroptosis-resistance as driver of CSC plasticity and immune evasion | Omics, CRISPR, in vivo studies; NRF2–SLC7A11–GPX4 axis → ferroptosis- resistance + immune exclusion; FSP1/DHODH → mitochondria–CoQ–lipid buffering; TRX system → redox–ferroptosis crosstalk; ferroptosis–immune interactions in cervical and other cancers | Druggable ferroptosis nodes: GPX4, SLC7A11, FSP1, DHODH, TRX2; Biomarkers: GPX4, SLC7A11, NRF2 activity for patient stratification and treatment response | [64,65,66,67,68] |
| Exosome cargo selection and PD-L1/miRNA circuits | EV/immune checkpoint reviews; cargo selection via YBX1, hnRNPA2B1, ALIX; ESCRT machinery; exosomal PD-L1; immune-regulatory miRNAs (miR-21, miR-155, miR-200 family, miR-210) | Siloed analyses of EV biogenesis and immune suppression; weak integration with adhesion (CDH2/EMT spectrum) or ROS pulse licensing; limited link to systemic immune escape | Cargo selection bound to EMT/CDH2 states and ROS-driven licensing; exosomal PD-L1 and miR-200/210 as dynamic readouts of RAX loop (adhesion–ferroptosis–immune coupling) | Exosomal PD-L1 → CTL suppression and immunotherapy resistance; exosomal miRNAs (miR-155, miR-21, miR-200, miR-210) → invasion, angiogenesis, immune escape; liquid-biopsy detection of exosomal miRNAs (miR-29, miR-34, miR-203, miR-378) and PD-L1 feasible for treatment monitoring | EV biogenesis blockade = third therapeutic pillar (with ferroptosis induction + adhesion inhibition); liquid-biopsy panels (exosomal PD-L1 + ROS-responsive miRNAs) for patient stratification and monitoring | [69,70,71,72,73,74,75] |
| Immune evasion ↔ ferroptosis coupling | Immune–redox crosstalk reviews; ROS/redox regulators (NRF2, GLRX, TRX); ferroptosis defenses (NRF2–SLC7A11–GPX4, FSP1/DHODH); PD-L1/MHC regulation; cytokine signaling | Descriptive, pathway-specific coupling; no closed-loop model; ferroptosis defenses not mechanistically linked to checkpoint evasion, EMT plasticity, or EV suppression | NRF2-driven PD-L1 induction; MHC-I loss; EV cytokine/miRNA circuits mapped to ferroptosis defense; redox buffering enables immune evasion + CSC survival in closed RAX loop | ROS licensing of EMT/adhesion/checkpoints; GLRX and NRF2 correlate with PD-L1 and macrophage suppression in glioma; CSC plasticity + checkpoint resistance under redox stress/hypoxia; NSCLC and melanoma → PD-L1 upregulation with ferroptosis-resistance | Combination: anti-PD-1/PD-L1 + adhesion inhibition + ferroptosis induction + EV blockade; RAX-high tumors (EMT + CDH2 + NRF2 signatures; exosomal PD-L1/miRNA readouts) | [23,24,28,76,77,78,79,80] |
| Spatial and liquid-biopsy readouts | Translational biomarker reviews; spatial transcriptomics; single-cell omics; cfDNA; CTCs; exosomal profiling; candidate biomarkers for detection/ monitoring | Fragmented focus; no integrative multi-axis signature; absence of RAX-type closed- circuit frameworks | Minimal RAX panel: CDH2, EMT markers, GPX4/xCT, exosomal PD-L1/miR-200/210; integrated decision flow linking adhesion, redox, and EV axes for patient stratification | Clinical/translational; supported by single-cell/spatial omics; cfDNA; EV-based liquid biopsy; feasibility shown for early detection and dynamic monitoring | RAX-guided clinical trial stratification: EMT + CDH2 + redox + EV biomarker panels; real-time patient monitoring via cfDNA + exosomal PD-L1/miRNAs; decision tree framework | [81,82,83,84,85,86] |
| Therapeutic triad strategy | List combinations within single domains | Seldom justify triads via a systems closed-loop model | Justifies adhesion axis inhibition + ferroptosis induction + EV blockade as loop- disruptive triad | Preclinical/ conceptual | Designs synthetic lethality-style trials and pharmacodynamic readouts per pillar | |
| Validation roadmap (4-step) | Describe tools separately | No end-to-end plan linking imaging → cargo selectors → spatial multi-omics → clinical panel | Provides staged roadmap: HyPer–EMT–CDH2 imaging → cargo- selector (YBX1/hnRNPA2B1/ALIX) CRISPR → spatial multi-omics → liquid-biopsy | Preclinical→ translational (progressive) | De-risks clinical translation with measurable milestones and Go/No-Go criteria | [87,88,89,90,91,92,93,94] |
| Axis Combination | Example Agents (Class) | Primary PD Readouts (Pre-Specified) | Trial Design Considerations | Key Findings/Rationale |
|---|---|---|---|---|
| Adhesion + Redox | AXL inhibitor (TP-0903), FAK inhibitor (Y15), ± ErbB blockade (Afatinib) | p-FAK(Y397) ↓, E→N-cadherin switch, invasion ↓ | Biomarker-enriched cohorts (CDH2^high/AXL^high, GPX4/SLC7A11 signatures); dose-finding sequencing. | Low-dose AXL/FAK/ErbB triple blockade synergistically reduced survival, migration, and EMT markers in HNC models [165]. |
| Redox (ferroptosis) | GPX4 inhibitor (RSL3, ML162), SLC7A11 blockers (erastin) | Lipid ROS ↑ (BODIPY-C11), GPX4 activity ↓ | Patient stratification for ferroptosis sensitivity; ferroptosis rescue assays | GPX4 inhibition or SLC7A11 blockade sensitizes tumors to ferroptosis; SLC7A11 shown to upregulate PD-L1, linking ferroptosis defense to immune evasion [166,167]. |
| Redox + EV | GPX4/SLC7A11 inhibition + EV biogenesis/release inhibition or EV-PD-L1 neutralization | Lipid ROS ↑, EV-PD-L1 ↓, miR-210 ↓/miR-200 ↑ | On-treatment liquid-biopsy monitoring; assay standardization and predefined thresholds. | EVs modulate ferroptosis-linked death pathways; longitudinal EV-PD-L1 dynamics in NSCLC stratified ICI benefit and survival [168]. |
| EV cargo miRNAs | Exosomal miR-210 modulation | Hypoxia-driven adaptation, STAT3/PI3K/AKT pathways | Tumor-type-specific miRNA panels; integration with hypoxia and immune signatures. | Lung CSC-derived exosomal miR-210-3p promoted migration/invasion/EMT and metastasis via FGFRL1 targeting [169,170]. |
| Adhesion + EV | Anti-CDH2 antibody, AXL interference + EV suppression | EMT/NCSC score ↓, EV flux ↓, CD8+ T cell cytotoxicity ↑ | Combine AXL/FAK interference with EV suppression; consider ICI add-on in expansion cohorts contingent on PD readouts. | Conceptual support for combining adhesion blockade with EV pathway inhibition and immune modulation [165]. |
| Axis/Biomarker | Clinical Cohort Evidence | Key Findings/Rationale | Refs. |
|---|---|---|---|
| miR-210 (hypoxia-linked) | Clinical cohorts: TCGA colorectal cancer; breast cancer; lung cancer; PDAC datasets | High miR-210 expression correlates with poor overall survival; hypoxia-induced adaptation; associated with EMT and therapeutic resistance | [176,177] |
| CDH2 (N-cadherin) | Clinical datasets: TCGA pan-cancer; breast and lung cohorts | Elevated CDH2 expression predicts inferior OS and PFS; correlates with EMT-high tumors; supports RAX hub role in mesenchymal stabilization | [178,179] |
| Combined CDH2^high + miR-210^high | Clinical cohorts: TCGA colon, breast, and lung cancer datasets | Double-high group exhibits the worst prognosis compared to other combinations; mechanistically links adhesion remodeling and hypoxia-driven miRNA signaling | [180] |
| Key Findings | Relevance to RAX Hub Framework | Ref. |
|---|---|---|
| Highlights the central role of biomarkers in diagnosis, therapeutic decision-making, and disease monitoring in oncology | Supports the clinical feasibility of exosomal CDH2/miRNA panels as diagnostic and predictive biomarkers within the RAX hub. | [181] |
| Developed a biomarker discovery pipeline integrating TCGA expression and DepMap survival data, identifying robust progression gene signatures validated across multiple cohorts. | Demonstrates the power of integrating omics and survival datasets, reinforcing the rationale for exosomal CDH2/miR-210 as a prognostic progression signature. | [186] |
| Reviews translational pathways of nanomedicine, outlining challenges and success stories in clinical implementation. | Provides translational precedent for the RAX hub therapeutic triad (adhesion inhibition, ferroptosis induction, exosome blockade) as a bench-to-bedside strategy. | [239] |
| Argues for a shift beyond the genetic paradigm, emphasizing cell-state plasticity and tissue-level field effects in cancer progression. | Conceptually aligns with the RAX hub as a closed-loop model integrating redox licensing, adhesion switching, and exosomal field reprogramming. | [240] |
| Proposes dynamic, feedback-driven therapeutic approaches to address cancer evolution and resistance. | Resonates with the RAX hub therapeutic roadmap, emphasizing multi-node, adaptive interventions against EMT plasticity and ferroptosis defense. | [182] |
| Reviews mechanistic + AI-integrated models enabling patient-specific treatment prediction and optimization. | Reinforces the future applicability of RAX hub modeling to design biomarker-enriched, personalized therapeutic strategies. | [190] |
| Tumor Type | Biomarker (Tissue/EV) | N (Repr.) | Endpoint | Direction | Refs. |
|---|---|---|---|---|---|
| Melanoma | EV PD-L1 | Multiple independent cohorts | ICI response/OS | Predictive for EV PD-L1 ↑ → ICI benefit ↓, OS shorter; longitudinal EV PD-L1 dynamics stratify durable responders vs. non-responders | [246,247,248,263,264] |
| NSCLC | Serum exosomal PD-L1 | 120 (meta-analysis) | High baseline exoPD-L1 → poor PFS; post-treatment exoPD-L1 downregulation → superior OS/PFS | Predictive for anti-PD-1 response/survival | [265] |
| NSCLC (validation) | EV-miR-625-5p (linked with PD-L1 status) | 88 | EV-miR-625-5p levels stratify patients with PD-L1 ≥ 50%, predictive of ICI response and survival | Predictive for durable benefit on ICIs | [249,253] |
| Pan-cancer | miR-200 family (↓)/ZEB1 (↑) | TCGA-based meta-analysis | OS/DFS | adverse | [255,266] |
| Lung/PDAC | EV miR-210 | Clinical + Review evidence | Metastasis/OS | adverse | [249,250,257,258,267] |
| Pan-cancer | CDH2/N-cadherin (↑) | Meta/Review (multi-cohort, TCGA-based) | OS/metastasis | adverse | [268,269,270,271] |
| PDAC | CDH2/N-cadherin (↓) | Preclinical (KPC model) | OS | Prolonged survival | [252,272] |
| Multi-tumor (review) | AXL (±FAK) | Review/Trials | Therapy resistance, EMT induction, poor prognosis | adverse | [260,261,262] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.N.; Choi, J.; Ribeiro, R.I.M.d.A.; Delfino, D.V.; Ko, S.-G.; Kim, B. The Redox–Adhesion–Exosome (RAX) Hub in Cancer: Lipid Peroxidation-Driven EMT Plasticity and Ferroptosis Defense with HNE/MDA Signaling and Lipidomic Perspectives. Antioxidants 2025, 14, 1474. https://doi.org/10.3390/antiox14121474
Park MN, Choi J, Ribeiro RIMdA, Delfino DV, Ko S-G, Kim B. The Redox–Adhesion–Exosome (RAX) Hub in Cancer: Lipid Peroxidation-Driven EMT Plasticity and Ferroptosis Defense with HNE/MDA Signaling and Lipidomic Perspectives. Antioxidants. 2025; 14(12):1474. https://doi.org/10.3390/antiox14121474
Chicago/Turabian StylePark, Moon Nyeo, Jinwon Choi, Rosy Iara Maciel de Azambuja Ribeiro, Domenico V. Delfino, Seong-Gyu Ko, and Bonglee Kim. 2025. "The Redox–Adhesion–Exosome (RAX) Hub in Cancer: Lipid Peroxidation-Driven EMT Plasticity and Ferroptosis Defense with HNE/MDA Signaling and Lipidomic Perspectives" Antioxidants 14, no. 12: 1474. https://doi.org/10.3390/antiox14121474
APA StylePark, M. N., Choi, J., Ribeiro, R. I. M. d. A., Delfino, D. V., Ko, S.-G., & Kim, B. (2025). The Redox–Adhesion–Exosome (RAX) Hub in Cancer: Lipid Peroxidation-Driven EMT Plasticity and Ferroptosis Defense with HNE/MDA Signaling and Lipidomic Perspectives. Antioxidants, 14(12), 1474. https://doi.org/10.3390/antiox14121474

