miR-26a-Targeting SLC7A11 Regulates Erastin-Induced Granulosa Cell Ferroptosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Sequencing Samples and RNA Sequencing
2.2. RNA Sequencing
2.3. Cell Culture
2.4. Cell Viability Assay
2.5. Western Blot
2.6. RNA Extraction and Quantitative Reverse Transcription PCR (RT-qPCR)
2.7. EdU (5-Ethynyl-2′-Deoxyuridine) Staining, Mitotracker Immunofluorescence Staining and Ferr Orange Immunofluorescence Staining
2.8. Statistical Analysis
3. Results
3.1. Erastin Induces Ferroptosis in Follicular and Granulosa Cells
3.2. miR-26a Is Highly Expressed in Erastin-Induced Ferroptosis in Follicular and Granulosa Cells
3.3. miR-26a Suppresses Cell Proliferation, Facilitating Ferroptosis and Impairing Granulosa Cell Function
3.4. miR-26a Is Involved in Ferroptosis by Decreasing SLC7A11 Expression
3.5. SLC7A11 Negatively Regulates Granule Cell Function After Inducing Ferroptosis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, L.; Jan, S.Z.; Hamer, G.; Van Pelt, A.M.; Van Der Stelt, I.; Keijer, J.; Teerds, K.J. Preantral Follicular Atresia Occurs Mainly through Autophagy, While Antral Follicles Degenerate Mostly through Apoptosis. Biol. Reprod. 2018, 99, 853–863. [Google Scholar] [CrossRef]
- Hughes, F.M.; Gorospe, W.C. Biochemical Identification of Apoptosis (Programmed Cell Death) in Granulosa Cells: Evidence for a Potential Mechanism Underlying Follicular Atresia. Endocrinology 1991, 129, 2415–2422. [Google Scholar] [CrossRef]
- Hussein, M.R. Apoptosis in the Ovary: Molecular Mechanisms. Hum. Reprod. Update 2005, 11, 162–178. [Google Scholar] [CrossRef]
- Niu, C.; Jiang, D.; Guo, Y.; Wang, Z.; Sun, Q.; Wang, X.; Ling, W.; An, X.; Ji, C.; Li, S.; et al. Spermidine Suppresses Oxidative Stress and Ferroptosis by Nrf2/HO-1/GPX4 and Akt/FHC/ACSL4 Pathway to Alleviate Ovarian Damage. Life Sci. 2023, 332, 122109. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, B.; Jiang, Y.; Guo, H.; Li, Y. The Mechanisms Crosstalk and Therapeutic Opportunities between Ferroptosis and Ovary Diseases. Front. Endocrinol. 2023, 14, 1194089. [Google Scholar] [CrossRef]
- Liu, S.; Shi, J.; Wang, L.; Huang, Y.; Zhao, B.; Ding, H.; Liu, Y.; Wang, W.; Chen, Z.; Yang, J. Loss of EMP1 Promotes the Metastasis of Human Bladder Cancer Cells by Promoting Migration and Conferring Resistance to Ferroptosis through Activation of PPAR Gamma Signaling. Free Radic. Biol. Med. 2022, 189, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhu, M.; Zhang, Z.; Liu, Z.; Li, F.; Hu, R.; Geng, Y.; Song, Y.; Ma, W.; Dong, H.; et al. Integrating Network Pharmacology and Transcriptomics Reveals That Bushen Huoxue Recipe Ameliorates Ferroptosis and Apoptosis in Granulosa Cells by Regulating PI3K/Akt Signaling Pathway in Premature Ovarian Insufficiency Mice. J. Ethnopharmacol. 2025, 351, 120057. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xia, X.; Huang, P. XCT: A Critical Molecule That Links Cancer Metabolism to Redox Signaling. Mol. Ther. 2020, 28, 2358–2366. [Google Scholar] [CrossRef]
- Liu, X.; Zhuang, L.; Gan, B. Disulfidptosis: Disulfide Stress–Induced Cell Death. Trends Cell Biol. 2024, 34, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Zhuang, L.; Olszewski, K.; Gan, B. NADPH Debt Drives Redox Bankruptcy: SLC7A11/XCT-Mediated Cystine Uptake as a Double-Edged Sword in Cellular Redox Regulation. Genes. Dis. 2021, 8, 731–745. [Google Scholar] [CrossRef]
- Yagoda, N.; Von Rechenberg, M.; Zaganjor, E.; Bauer, A.J.; Yang, W.S.; Fridman, D.J.; Wolpaw, A.J.; Smukste, I.; Peltier, J.M.; Boniface, J.J.; et al. RAS–RAF–MEK-Dependent Oxidative Cell Death Involving Voltage-Dependent Anion Channels. Nature 2007, 447, 865–869. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Zhang, R.; Wang, F.; Wang, T.; Jiao, Y. The Role of Erastin in Ferroptosis and Its Prospects in Cancer Therapy. Onco Targets Ther. 2020, 13, 5429–5441. [Google Scholar] [CrossRef]
- Ye, Z.; Cheng, M.; Lian, W.; Leng, Y.; Qin, X.; Wang, Y.; Zhou, P.; Liu, X.; Peng, T.; Wang, R.; et al. GPX4 Deficiency-Induced Ferroptosis Drives Endometrial Epithelial Fibrosis in Polycystic Ovary Syndrome. Redox Biol. 2025, 83, 103615. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Ni, F.; Jin, J.; Wu, Y.; Huang, Y.; Ye, X.; Shen, X.; Ying, Y.; Chen, J.; et al. BNC1 Deficiency-Triggered Ferroptosis through the NF2-YAP Pathway Induces Primary Ovarian Insufficiency. Nat. Commun. 2022, 13, 5871. [Google Scholar] [CrossRef]
- Broderick, J.A.; Zamore, P.D. MicroRNA Therapeutics. Gene Ther. 2011, 18, 1104–1110. [Google Scholar] [CrossRef]
- Jiang, M.; Jike, Y.; Liu, K.; Gan, F.; Zhang, K.; Xie, M.; Zhang, J.; Chen, C.; Zou, X.; Jiang, X.; et al. Exosome-Mediated MiR-144-3p Promotes Ferroptosis to Inhibit Osteosarcoma Proliferation, Migration, and Invasion through Regulating ZEB1. Mol. Cancer 2023, 22, 113. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wu, L.; Zhang, K.; Wang, H.; Zhang, T.; Gutierrez, L.; O’Connell, D.; Zhang, P.; Li, Y.; Gao, T.; et al. MiR-137 Regulates Ferroptosis by Targeting Glutamine Transporter SLC1A5 in Melanoma. Cell Death Differ. 2018, 25, 1457–1472. [Google Scholar] [CrossRef]
- Tan, W.; Dai, F.; Yang, D.; Deng, Z.; Gu, R.; Zhao, X.; Cheng, Y. MiR-93-5p Promotes Granulosa Cell Apoptosis and Ferroptosis by the NF-KB Signaling Pathway in Polycystic Ovary Syndrome. Front. Immunol. 2022, 13, 967151. [Google Scholar] [CrossRef]
- Yadav, P.; Sharma, P.; Sundaram, S.; Venkatraman, G.; Bera, A.K.; Karunagaran, D. SLC7A11/ XCT Is a Target of MiR-5096 and Its Restoration Partially Rescues MiR-5096-Mediated Ferroptosis and Anti-Tumor Effects in Human Breast Cancer Cells. Cancer Lett. 2021, 522, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yang, H.; Huang, Y.; Lu, J.; Du, H.; Wang, B. Mesenchymal Stem Cell-Derived Exosomal MiR-26a Induces Ferroptosis, Suppresses Hepatic Stellate Cell Activation, and Ameliorates Liver Fibrosis by Modulating SLC7A11. Open Med. 2024, 19, 20240945. [Google Scholar] [CrossRef]
- Wang, N.; Tan, H.-Y.; Feng, Y.-G.; Zhang, C.; Chen, F.; Feng, Y. MicroRNA-23a in Human Cancer: Its Roles, Mechanisms and Therapeutic Relevance. Cancers 2018, 11, 7. [Google Scholar] [CrossRef]
- Wahida, A.; Conrad, M. Decoding Ferroptosis for Cancer Therapy. Nat. Rev. Cancer 2025, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Ku, S.-Y.; Kim, Y.Y.; Liu, H.C.; Chi, S.W.; Kim, S.H.; Choi, Y.M.; Kim, J.G.; Moon, S.Y. MicroRNAs Transfected into Granulosa Cells May Regulate Oocyte Meiotic Competence during In Vitro Maturation of Mouse Follicles. Human. Reprod. 2013, 28, 3050–3061. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Xie, S.; Wang, M.; Shen, J. PRDX1 Knockdown Promotes Erastin-Induced Ferroptosis and Impedes Diffuse Large B-Cell Lymphoma Development by Inhibiting the MAPK/ERK Pathway. BMC Cancer 2025, 25, 806. [Google Scholar] [CrossRef] [PubMed]
- Koppula, P.; Zhuang, L.; Gan, B. Cystine Transporter SLC7A11/XCT in Cancer: Ferroptosis, Nutrient Dependency, and Cancer Therapy. Protein Cell 2021, 12, 599–620. [Google Scholar] [CrossRef]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular Mechanisms and Health Implications. Cell Res. 2021, 31, 107–125. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, J.; Wang, B.; Xu, G.; Yang, X.; Zou, Z.; Yu, C. Ferritinophagy Is Involved in the Zinc Oxide Nanoparticles-Induced Ferroptosis of Vascular Endothelial Cells. Autophagy 2021, 17, 4266–4285. [Google Scholar] [CrossRef]
- Yan, Y.; Teng, H.; Hang, Q.; Kondiparthi, L.; Lei, G.; Horbath, A.; Liu, X.; Mao, C.; Wu, S.; Zhuang, L.; et al. SLC7A11 Expression Level Dictates Differential Responses to Oxidative Stress in Cancer Cells. Nat. Commun. 2023, 14, 3673. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Pan, Y.; Liang, S.; Lei, Y.; Wang, Y.; Chen, L.; Zhao, Y.; Gan, M.; Shen, L.; Yang, X.; et al. miR-26a-Targeting SLC7A11 Regulates Erastin-Induced Granulosa Cell Ferroptosis. Antioxidants 2025, 14, 1283. https://doi.org/10.3390/antiox14111283
Zhao X, Pan Y, Liang S, Lei Y, Wang Y, Chen L, Zhao Y, Gan M, Shen L, Yang X, et al. miR-26a-Targeting SLC7A11 Regulates Erastin-Induced Granulosa Cell Ferroptosis. Antioxidants. 2025; 14(11):1283. https://doi.org/10.3390/antiox14111283
Chicago/Turabian StyleZhao, Xue, Yuheng Pan, Shuang Liang, Yuhang Lei, Yan Wang, Lei Chen, Ye Zhao, Mailin Gan, Linyuan Shen, Xin Yang, and et al. 2025. "miR-26a-Targeting SLC7A11 Regulates Erastin-Induced Granulosa Cell Ferroptosis" Antioxidants 14, no. 11: 1283. https://doi.org/10.3390/antiox14111283
APA StyleZhao, X., Pan, Y., Liang, S., Lei, Y., Wang, Y., Chen, L., Zhao, Y., Gan, M., Shen, L., Yang, X., & Zhu, L. (2025). miR-26a-Targeting SLC7A11 Regulates Erastin-Induced Granulosa Cell Ferroptosis. Antioxidants, 14(11), 1283. https://doi.org/10.3390/antiox14111283

