Genetic Basis of the Antioxidant and Serum Enzyme Activities of the Large Yellow Croaker Larimichthys crocea Under Stress in an Experimental Simulation of Natural Winter Water Cooling
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Methods
2.2. Sample Analyses
2.2.1. Determination of Antioxidant Factors in the Muscle and Liver Tissues
2.2.2. Determination of Serum Biochemical Factors
2.2.3. Data Analysis
Split-Plot (SP) Analysis
AMMI Analysis
GGE Biplot Analysis
3. Results
3.1. SP Analysis of Variance
3.1.1. SP Analysis of Variance of Antioxidant Activities in the Liver Tissue Under Stress from Natural Water Cooling
3.1.2. SP Analysis of Variance of the Antioxidant Activity in the Muscle Tissue Under Stress from Natural Water Cooling
3.1.3. SP Analysis of Variance of the Serum Enzyme Activity in the Blood Under Stress from Natural Water Cooling
3.2. AMMI Analysis of Variance
3.2.1. AMMI Analysis of the Antioxidant Activity in the Liver Tissue Under Stress from Natural Water Cooling
3.2.2. AMMI Analysis of the Antioxidant Activity in the Muscle Tissue Under Stress from Natural Water Cooling
3.2.3. Results of the AMMI Analysis of the Serum Enzyme Activity in the Blood Under Stress from Natural Water Cooling
3.3. GGE Biplot Analysis
3.3.1. GGE Biplot Analysis of the Antioxidant Enzymes in the Liver Tissue Under Stress from Natural Water Cooling
3.3.2. GGE Biplot Analysis of the Antioxidant Enzymes in the Muscle Under Stress from Natural Water Cooling
3.3.3. GGE Biplot Analysis of the Serum Enzymes in the Blood Under Stress from Natural Water Cooling
4. Discussion
4.1. Genetic Influence on Antioxidant Enzyme Activity in Two Tissues of Larimichthys crocea
4.2. Genetic Influence on Serum Enzyme Activity in Larimichthys crocea
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, C.H.; Yang, F.F.; Liao, S.A.; Miao, Y.T.; Ye, C.X.; Wang, A.L.; Tan, J.W.; Chen, X.Y. High temperature induces apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells. J. Therm. Biol. 2015, 53, 2–179. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.Z.; Tan, X.H.; Liu, Q.Y.; Ye, H.Q.; Zou, C.Y.; Xu, M.L.; Zhang, Y.F.; Ye, C.X. Physiological, immune responses and liver lipid metabolism of orange-spotted grouper (Epinephelus coioides) under cold stress. Aquaculture 2019, 498, 45–555. [Google Scholar] [CrossRef]
- Liu, C.; Ding, J.; Shen, W.L.; Gao, X.M.; Zhu, J.Q. Effects of acute low temperature stress on the hormones and gene expression of glucocorticoid receptor of large yellow croaker Larimichthys crocea. J. Therm. Biol. 2021, 99, 103018. [Google Scholar] [CrossRef] [PubMed]
- An, M.I.; Choi, C.Y. Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: Effects on hemolymph and biochemical parameters. Comp. Biochem. Phys. B 2010, 155, 34–42. [Google Scholar] [CrossRef]
- Liang, H.L.; Xu, H.; Ge, X.P.; Zhu, J.; Ren, M.C.; Mi, H.F. Water temperature affects the protein requirements, growth performance, and nutritional metabolism of grass carp (Ctenopharyngodon idella) juveniles. Aquac. Rep. 2025, 25, 101267. [Google Scholar] [CrossRef]
- Liang, M.; Feng, W.R.; Xue, C.; Tang, Y.K.; Li, J.L.; Li, W.J. Effects of different temperatures on growth and intestinal microbial composition of juvenile Eriocheir sinensis. Front. Physiol. 2023, 14, 1163055. [Google Scholar] [CrossRef]
- Wyban, J.; Walsh, W.A.; Godin, D.M. Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture 1995, 138, 267–279. [Google Scholar] [CrossRef]
- Le Moullac, G.; Haffner, P. Environmental factors affecting immune responses in Crustacea. Aquaculture 2000, 191, 121–131. [Google Scholar] [CrossRef]
- Martı́nez-Palacios, C.A.; Barriga Tovar, E.; Taylor, J.F.; Duran, G.R.; Ross, L.G. Effect of temperature on growth and survival of Chirostoma estor estor, Jordan 1879, monitored using a simple video technique for remote measurement of length and mass of larval and juvenile fishes. Aquaculture 2002, 209, 369–377. [Google Scholar] [CrossRef]
- Partridge, G.J.; Jenkins, G.I. The effect of salinity on growth and survival of juvenile black bream (Acanthopagrus butcheri). Aquaculture 2002, 210, 219–230. [Google Scholar] [CrossRef]
- Li, W.L.; Liang, X.M.; Liang, M.Q.; Zhang, T.S.; Sun, D.Q. Effects of Temperature on Growth and Enzyme Activity Related to Immunity in Juvenile Turbot Scophthalmus maximus. Fish Sci. 2017, 36, 311–316. [Google Scholar]
- Li, W.Y.; Xu, Z.J.; Yin, X.L.; Chen, S.; Ma, X.B.; Zhang, X.; Qiu, H.J.; Zhang, X.L.; Jiang, X.M. Effects of temperature on growth, immune factor activity and related gene expression of juvenile centropristis striata. Oceanol. E Limnol. Sin. 2021, 52, 708–717. [Google Scholar]
- Huang, C.Z.; Lv, H.R.; Huang, X.M.; Yin, X.L.; Chu, Z.J.; Park, J.Y.; Hur, J.; Gao, Y.; Li, W.Y. Interactions between starvation, cold stress and water velocities on immunological and metabolic responses of large yellow croaker. Aquac. Rep. 2025, 42, 102746. [Google Scholar] [CrossRef]
- Xue, B.; He, Y.N.; Mei, G.M.; Li, T.J.; Zhu, J.; Guo, Y.M. Research on ecological culture system of Larimichthys crocea. Mod. Agric. Sci. Technol. 2014, 16, 244–246, 249. [Google Scholar]
- Li, W.Y.; Luo, H.Z.; Yin, X.L.; Zhang, C.; Liu, M.H.; Zhang, X.; Qiu, H.J.; Mao, Z.Z.; You, J.J.; Xu, Z.J. Effects of low temperature stress on expression of MT, AQP1, and TCP1 genes in low temperature-resistant and non-low temperature-resistant strains of large yellow croaker Larimichthys crocea. J. Dalian Fish. Univ. 2021, 36, 38–43. [Google Scholar]
- Zhang, X.L.; Hu, Y.Z.; Li, M.Y.; Miao, L.; Chen, J.; Shi, Y.H.; Lu, X.J. Changes in antioxidant level and serum enzyme activity of farmed large yellow croaker during natural water cooling in winter. Mar. Sci. 2013, 37, 27–34. [Google Scholar]
- Wang, X.A.; Ma, A.J.; Huang, Z.H.; Sun, Z.B.; Liu, Z.F. Genetic Mechanism for Antioxidant Activity of Endogenous Enzymes under Salinity and Temperature Stress in Turbot (Scophthalmus maximus). Antioxidants 2022, 11, 2062. [Google Scholar] [CrossRef]
- Rosa, M.; Martínez, A.; Amalia, E. Antioxidant defenses in fish: Biotic and abiotic factors. Rev. Fish. Biol. Fisher. 2005, 15, 75–88. [Google Scholar]
- Jankoski, P.E.; Wallace, Z.M.; DiMartino, L.R.; Shrestha, J.; Davis, A.M.; Owolabi, I.; Flynt, A.S.; Clemons, T.D. CombatingReactiveOxygenSpecies(ROS)withAntioxidant SupramolecularPolymers. ACS Appl. Mater. Interfaces 2025, 17, 35275–35287. [Google Scholar] [CrossRef]
- Dong, S.L.; Wang, Z.B.; Lei, X.Q.; Deng, W.; Wen, F.Y. Influence of heat stress on biochemical indexes in blood of animal. Ecol. Domest. Anim. 2004, 25, 54–56. [Google Scholar]
- Ji, D.W.; Li, M.Y.; Wang, T.Z.; Zhang, C.; Xu, Z.; Xu, W.T. Effects of low temperature stress periods on serum biochemical indexes in large yellow croaker Pseudosciaena crocea. Fish. Sci. 2009, 28, 1–4. [Google Scholar]
- Selye, H. Stress and the general adaptation syndrome. Br. Med. J. 1950, 17, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.A.; Ma, A.J. Dissection of genotype × temperature interactions for antioxidant enzymes in Takifugu rubripes. Aquaculture 2022, 552, 737978. [Google Scholar] [CrossRef]
- Wang, X.A.; Meng, Z.; Ma, A.J. Genotype by Temperature Interaction for Plasma Physiological Indexes in Turbot (Scophthalmus maximus) under Acute Heat Stress_Exploring a Method for Screening Physiological Biomarkers of Nontoxic Stress in Aquatic Environments. Environ. Sci. Technol. 2023, 57, 2813–2825. [Google Scholar] [CrossRef]
- Yan, W.K. Singular value partitioning for biplot analysis of multi-environment trial data. Agron. J. 2002, 94, 990–996. [Google Scholar]
- Gollob, H.F. A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika 1968, 33, 73–115. [Google Scholar] [CrossRef]
- Yan, W.K. Methodology of Cultivar Evaluation Based on Yield Trial Data-with Special Reference to Winter Wheat in Ontario; University of Guelph: Guelph, ON, Canada, 1999. [Google Scholar]
- Yan, W.K.; Holland, J.B. A heritability-adjusted GGE Biplot for test environment evaluation. Euphytica 2010, 171, 355–369. [Google Scholar] [CrossRef]
- Yan, W.K. GGEbiplot—A windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agron. J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef]
- Tang, Q.Y. DPS Data Processing System; Science Press: Beijing, China, 2007. [Google Scholar]
- McCord, P.; Fridovich, L. The role of oxygen free radicals in biological process. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef]
- Speakman, J.R.; Selman, C. The free-radical damage theory: Accumulating evidence against a simple link of oxidative stress to ageing and lifespan. BioEssays News Rev. Mol. Cell Dev. Biol. 2011, 33, 255–259. [Google Scholar] [CrossRef]
- Gori, P.; Singh, S.; Pratixa, P. Oxidative stress and free radicals in disease pathogenesis: A review. Discov. Med. 2025, 2, 104. [Google Scholar] [CrossRef]
- Fatima, K. Astaxanthin in Aquaculture: Enhancing abalone health through oxidative stress management. Fish Shellfish Immun. 2025, 165, 110502. [Google Scholar]
- Ji, Q.; Zeng, L.; Xiong, Y.F.; Wang, Y.H.; Song, W. Mechanistic studies on the effect of low-salinity acclimation on energy metabolism and mitophagy of Larimichthys crocea under acute low-salinity stress. J. Fish. Sci. China 2024, 31, 1141–1150. [Google Scholar]
- Wan, L.; Wu, Y.X.; Zhang, Y.; Zhang, W.H. Toxicity, biodegradation of moxifloxacin and gatifloxacin on Chlamydomonas reinhardtii and their metabolic fate. Ecotox. Environ. Saf. 2022, 240, 113711. [Google Scholar] [CrossRef]
- Sun, Y.L.; Zong, W.Z.; Wang, J.T.; He, J.L.; Zhang, J.K.; Han, T. Astaxanthin enhances antioxidant capacity to alleviate thermal stress-induced liver inflammation in largemouth bass (Micropterus salmoides): A multi-omics insight into glutathione metabolism remodeling. Front. Mar. Sci. 2025, 12, 1595039. [Google Scholar] [CrossRef]
- Lalsangpuii, F.; Rokhum, S.L.; Nghakliana, F.; Fakawmi, L.; Ruatpuia, J.V.L.; Laltlanmawii, E.; Lalfakzuala, R.; Siama, Z. Green Synthesis of Silver Nanoparticles Using Spilanthes acmella Leaf Extract and its Antioxidant-Mediated Ameliorative Activity against Doxorubicin-Induced Toxicity in Dalton’s Lymphoma Ascites (DLA)-BearingMice. ACS Omega 2022, 7, 44346–44359. [Google Scholar] [CrossRef]
- Bai, J.H.; Li, C.Y.; Tang, Z.T.; Wu, C.; Wei, Z.H. Comparative study of carbohydrate levels on growth, oxidative stress and glucolipid metabolism of hybrid fish between Megalobrama amblycephala (♀) × Culter alburnus (♂) and Culter alburnus. Reprod. Breed. 2023, 3, 131–142. [Google Scholar] [CrossRef]
- Zhao, L.J.; Guo, L.X.; Lu, X.K.; Malik, W.A.; Zhang, Y.X.; Wang, J.; Chen, X.G.; Wang, S.; Wang, J.J.; Wang, D.L.; et al. Structure and character analysis of cotton response regulator genes family reveals that GhRR7 responses to draught stress. Biol. Res. 2022, 55, 27. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wang, Y.B.; Qiao, G.D.; Wang, Q.; Han, D.C.; Peng, S.M. Comparison of antioxidant capacity in tissues, muscle ultrastructure and related gene expression of Larimichthys crocea with different anti-flowing abilities. Mar. Fish. 2025, 47, 20–28. [Google Scholar]
- Chen, Y.; Zhang, R.W.; Zhang, Y.T.; Guo, J.D.; Guo, J.X.; Han, Y.Z.; Wang, F.Q.; Zhao, X.R.; Ren, T.J. Integrated Microbiome, Transcriptome, and Physiology Analyses Reveal the Response Of Kuruma Shrimp (Penaeus japonicus) to Oxygen Nanobubble Exposure. Mar. Biotechnol. 2025, 27, 92. [Google Scholar] [CrossRef]
- Huang, X.M.; Huang, H.; Qin, X.M.; Fan, X.P. Comparison of Survival of Hybrid Grouper (♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus) under Pure Oxygen and Modified Atmosphere during Waterless Live Transportation and Elucidation of the Underlying Mechanism. Shipin Kexue/Food Sci. 2022, 43, 257–264. [Google Scholar]
- Fan, Z.; Wu, D.; Li, J.N.; Zhang, Y.Y.; Cui, Z.Y.; Li, T.B.; Zheng, X.H.; Liu, H.B.; Wang, L.S.; Li, H.Q. Assessment of Fish Protein Hydrolysates in Juvenile Largemouth Bass (Micropterus salmoides) Diets: Effect on Growth, Intestinal Antioxidant Status, Immunity, and Microflora. Front. Nutr. 2022, 9, 816341. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.J.; Li, H.Y.; Luo, Y.S.; Shi, J.Z.; Kong, L.; Teng, W.C. Exogenous silicon alleviates aluminum stress in Eucalyptus species by enhancing the antioxidant capacity and improving plant growth and tolerance quality. BMC Plant Biol. 2024, 24, 997. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, K.J.; Wu, Z.; Xiong, L.; Sheng, X.M.; Tang, H.F.; Liu, T. Effect of Beta-cypermethrin on Glutamic-pyruvic Transaminase and Glutamic-oxaloacetic Transaminase Activities in Crucian Carp. Fish. Sci. 2005, 24, 8–10. [Google Scholar]
- Zhang, J.P.; Lin, J.C.; Xie, J.J.; Chen, Q.X. Purification and Some Characterization of Alkaline Phosphatase from Grass Carps (Ctenopharyngodonidellus). J. Xiamen Univ. (Nat. Sci.) 2005, 44, 684–687. [Google Scholar]
- El-Sayed, O.S.; Alnajjar, A.Z.; Arafa, A.; Mohammed, H.E.; Elettreby, A.M.; Ibraheem, S.; Tawfik, D.E.; Abdullah, M.A.A.; Tolba, M.A. Association between risk of ischemic stroke and liver enzymes levels: A systematic review and meta-analysis. BMC Neurol. 2025, 25, 18. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wang, B.L.; Li, X.Y. Irisin prevents liver injury during exhausting physical activity by suppressing ferroptosis via Nrf2/GPX4 signaling. BMC Gastroenterol. 2025, 25, 516. [Google Scholar] [CrossRef]
- Xu, B.; Yang, L.H.; Jiang, R.Q.; Tao, G.J.; Zhi, S.M.; Sun, L.; Wu, Y.R.; Shi, Y.S. Discovery of a novel quinoline RIP1 inhibitor and its treatment of acute liver injury in mice. Bioorg. Chem. 2025, 159, 108365. [Google Scholar] [CrossRef]
- Takikawa, T.M.; Kume, K.M.; Tanaka, Y.M.; Kikuta, K.M.; Ogata, Y.M.; Hatta, W.M.; Hamada, S.M.; Miura, S.M.; Matsumoto, R.M.; Sano, T.M. Risk Factors and a Prediction Model for Pain Recurrence After Pancreatic Stent Removal in Painful Chronic Pancreatitis. Pancreas 2025, 54, e30–e38. [Google Scholar] [CrossRef]
- Fan, Y.S.; Shao, P.; Jia, X.Y.; Gao, J.W.; Dou, Y.; Shi, X.Y.; Zhou, W.L. Effects of Temperature Stress on the Partial Antioxidative and Non-Specific Immunity Indices of Paramisgurnus dabryanus. Prog. Fish. Sci. 2019, 40, 58–64. [Google Scholar]
Source of Variation | Sum of Square | Degrees of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Blocks (replicates) | 106.2773 | 5 | 21.2555 | ||
Temperature | 215.4319 | 4 | 53.858 | 1.567 | 0.2217 |
Main-plot error | 687.4302 | 20 | 34.3715 | ||
Antioxidant factor | 64,644.578 | 3 | 21,548.193 | 690.332 ** | <0.001 |
Temperature × antioxidant factor | 717.6689 | 12 | 59.8057 | 1.916 * | 0.0456 |
Split-plot error | 2341.067 | 75 | 31.2142 | ||
Total | 68,712.453 | 119 |
Source of Variation | Sum of Square | Degrees of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Blocks (replicates) | 3.31 | 5 | 0.662 | ||
Temperature | 76.8437 | 4 | 19.2109 | 65.546 ** | <0.001 |
Main-plot error | 5.8618 | 20 | 0.2931 | ||
Antioxidant factor | 1580.4493 | 3 | 526.8164 | 1259.117 ** | <0.001 |
Temperature × antioxidant factor | 156.9203 | 12 | 13.0767 | 31.254 ** | <0.001 |
Split-plot error | 31.3801 | 75 | 0.4184 | ||
Total | 1854.7651 | 119 |
Source of Variation | Sum of Square | Degrees of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Blocks (replicates) | 65.5821 | 5 | 13.1164 | ||
Temperature | 2258.2031 | 4 | 564.5508 | 47.63 ** | <0.001 |
Main-plot error | 237.0588 | 20 | 11.8529 | ||
Serum enzyme | 100,879.87 | 5 | 20,175.974 | 1170.82 ** | <0.001 |
Temperature × serum enzyme | 7044.8701 | 20 | 352.2435 | 20.441 ** | <0.001 |
Split-plot error | 2154.0429 | 125 | 17.2323 | ||
Total | 112,639.63 | 179 |
Source of Variation | df | SS | MS | F | Prob. | % of Total SS |
---|---|---|---|---|---|---|
Total | 119 | 68,712.453 | 577.4156 | |||
Treatment | 19 | 65,577.679 | 3451.4568 | 110.1022 ** | 0 | |
Gene | 3 | 64,644.578 | 21,548.193 | 687.3921 ** | 0 | 94.0799 |
Temperature | 4 | 215.4319 | 53.858 | 1.7181 | 0.1519 | 0.3135 |
Interaction | 12 | 717.6689 | 59.8057 | 1.9078 * | 0.0420 | 1.0445 |
IPCA1 | 6 | 713.59043 | 118.93174 | 3.79395 ** | 0.0019 | 99.4317 |
IPCA2 | 4 | 2.89303 | 0.72326 | 0.02307 | 0.9989 | 0.4031 |
Residual | 2 | 1.18546 | 0.59273 | |||
Error | 100 | 3134.7745 | 31.34774 |
Source of Variation | df | SS | MS | F | Prob. | % of Total SS |
---|---|---|---|---|---|---|
Total | 119 | 1854.7651 | 15.5863 | |||
Treatment | 19 | 1814.2133 | 95.4849 | 235.4638 ** | 0 | |
Gene | 3 | 1580.4493 | 526.8164 | 1299.1182 ** | 0 | 85.2102 |
Temperature | 4 | 76.8437 | 19.2109 | 47.3737 ** | 0 | 4.1430 |
Interaction | 12 | 156.9203 | 13.0767 | 32.2468 ** | 0 | 8.4604 |
IPCA1 | 6 | 156.70159 | 26.11693 | 64.4038 ** | 0 | 99.8606 |
IPCA2 | 4 | 0.17806 | 0.04451 | 0.1098 | 0.9788 | 0.1135 |
Residual | 2 | 0.04063 | 0.02031 | |||
Error | 100 | 40.55185 | 0.40552 |
Source of Variation | df | SS | MS | F | Prob. | % of Total SS |
---|---|---|---|---|---|---|
Total | 179 | 112,639.63 | 629.2717 | |||
Treatment | 29 | 110,182.94 | 3799.4118 | 231.9842 ** | 0 | |
Gene | 5 | 100,879.87 | 20,175.974 | 1231.903 ** | 0 | 89.5598 |
Temperature | 4 | 2258.2031 | 564.5508 | 34.4703 ** | 0 | 2.0048 |
Interaction | 20 | 7044.8701 | 352.2435 | 21.5073 ** | 0 | 6.2543 |
IPCA1 | 8 | 6894.0632 | 861.75791 | 52.6171 ** | 0 | 97.8593 |
IPCA2 | 6 | 113.46768 | 18.91128 | 1.15468 ** | 0.3338 | 1.6106 |
Residual | 6 | 37.33918 | 6.2232 | |||
Error | 150 | 2456.6838 | 16.37789 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yin, X.; Ma, A.; Li, W.; Zhang, X. Genetic Basis of the Antioxidant and Serum Enzyme Activities of the Large Yellow Croaker Larimichthys crocea Under Stress in an Experimental Simulation of Natural Winter Water Cooling. Antioxidants 2025, 14, 1260. https://doi.org/10.3390/antiox14101260
Wang X, Yin X, Ma A, Li W, Zhang X. Genetic Basis of the Antioxidant and Serum Enzyme Activities of the Large Yellow Croaker Larimichthys crocea Under Stress in an Experimental Simulation of Natural Winter Water Cooling. Antioxidants. 2025; 14(10):1260. https://doi.org/10.3390/antiox14101260
Chicago/Turabian StyleWang, Xinan, Xiaolong Yin, Aijun Ma, Weiye Li, and Xiaolin Zhang. 2025. "Genetic Basis of the Antioxidant and Serum Enzyme Activities of the Large Yellow Croaker Larimichthys crocea Under Stress in an Experimental Simulation of Natural Winter Water Cooling" Antioxidants 14, no. 10: 1260. https://doi.org/10.3390/antiox14101260
APA StyleWang, X., Yin, X., Ma, A., Li, W., & Zhang, X. (2025). Genetic Basis of the Antioxidant and Serum Enzyme Activities of the Large Yellow Croaker Larimichthys crocea Under Stress in an Experimental Simulation of Natural Winter Water Cooling. Antioxidants, 14(10), 1260. https://doi.org/10.3390/antiox14101260