Paraoxonase 1 and Chronic Obstructive Pulmonary Disease: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 2020, 8, 585–596. [Google Scholar] [CrossRef]
- Comandini, A.; Rogliani, P.; Nunziata, A.; Cazzola, M.; Curradi, G.; Saltini, C. Biomarkers of lung damage associated with tobacco smoke in induced sputum. Respir. Med. 2009, 103, 1592–1613. [Google Scholar] [CrossRef]
- Lewis, B.W.; Ford, M.L.; Rogers, L.K.; Britt, R.D., Jr. Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants 2021, 10, 1335. [Google Scholar] [CrossRef]
- Drost, E.M.; Skwarski, K.M.; Sauleda, J.; Soler, N.; Roca, J.; Agusti, A.; MacNee, W. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax 2005, 60, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.F.; Adcock, I.M. Multifaceted mechanisms in COPD: Inflammation, immunity, and tissue repair and destruction. Eur. Respir. J. 2008, 31, 1334–1356. [Google Scholar] [CrossRef]
- MacNee, W. Oxidants/antioxidants and COPD. Chest 2000, 117, 303S–317S. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Shapiro, S.D.; Pauwels, R.A. Chronic obstructive pulmonary disease: Molecular and cellular mechanisms. Eur. Respir. J. 2003, 22, 672–688. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, E.; Zinellu, A.; Fois, A.G.; Fois, S.S.; Piras, B.; Carru, C.; Pirina, P. Reliability and Usefulness of Different Biomarkers of Oxidative Stress in Chronic Obstructive Pulmonary Disease. Oxid. Med. Cell Longev. 2020, 2020, 4982324. [Google Scholar] [CrossRef]
- Soran, H.; Younis, N.N.; Charlton-Menys, V.; Durrington, P. Variation in paraoxonase-1 activity and atherosclerosis. Curr. Opin. Lipidol. 2009, 20, 265–274. [Google Scholar] [CrossRef]
- Mackness, M.I.; Arrol, S.; Durrington, P.N. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett. 1991, 286, 152–154. [Google Scholar] [CrossRef] [Green Version]
- Aviram, M.; Rosenblat, M.; Billecke, S.; Erogul, J.; Sorenson, R.; Bisgaier, C.L.; Newton, R.S.; La Du, B. Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic. Biol. Med. 1999, 26, 892–904. [Google Scholar] [CrossRef]
- Camps, J.; Marsillach, J.; Joven, J. The paraoxonases: Role in human diseases and methodological difficulties in measurement. Crit. Rev. Clin. Lab. Sci. 2009, 46, 83–106. [Google Scholar] [CrossRef] [PubMed]
- Stanojkovic, I.; Kotur-Stevuljevic, J.; Milenkovic, B.; Spasic, S.; Vujic, T.; Stefanovic, A.; Llic, A.; Ivanisevic, J. Pulmonary function, oxidative stress and inflammatory markers in severe COPD exacerbation. Respir. Med. 2011, 105, S31–S37. [Google Scholar] [CrossRef] [Green Version]
- Sarioglu, N.; Bilen, C.; Cevik, C.; Gencer, N. Paraoxonase Activity and Phenotype Distribution in Patients with Chronic Obstructive Pulmonary Disease. Eurasian J. Med. 2020, 52, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda-Loyola, W.; de Castro, L.A.; Matsumoto, A.K.; Camillo, C.A.; Barbosa, D.S.; Galvan, C.C.R.; Probst, V.S. NOVEL antioxidant and oxidant biomarkers related to sarcopenia in COPD. Heart Lung 2021, 50, 184–191. [Google Scholar] [CrossRef]
- rła-Kaján, J.; Jakubowski, H. Paraoxonase 1 and homocysteine metabolism. Amino Acids 2012, 43, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Gugliucci, A.; Kotani, K.; Kimura, S. Paraoxonase 1 in chronic kidney failure. J. Lipids. 2012, 2012, 726048. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of nonrandomized studies in meta-analyses. 2011. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 9 October 2021).
- Higgins, J.P.T.; Thomas, J. Cochrane Handbook for Systematic Reviews of Interventions Version 6.2, 2021. Cochrane; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Torres-Ramos, Y.D.; Guzman-Grenfell, A.M.; Montoya-Estrada, A.; Ramirez-Venegas, A.; Martinez, R.S.; Flores-Trujillo, F.; Ochoa-Cautino, L.; Hicks, J.J. RBC membrane damage and decreased band 3 phospho-tyrosine phosphatase activity are markers of COPD progression. Front. Biosci. 2010, 2, 1385–1393. [Google Scholar]
- Cho, K.H.; Kim, Y.S.; Nam, C.M.; Kim, T.H.; Kim, S.J.; Han, K.T.; Park, E.C. Home oxygen therapy reduces risk of hospitalisation in patients with chronic obstructive pulmonary disease: A population-based retrospective cohort study, 2005–2012. BMJ Open 2015, 5, e009065. [Google Scholar] [CrossRef] [Green Version]
- Gürbüz, Ş.; Yıldız, M.; Kara, M.; Kargün, K.; Gürger, M.; Ateşçelik, M.; Alataş, Ö.D. Paraoxonase-1 gene in patients with chronic obstructive pulmonary disease investigation Q192R and L55M polymorphisms. World J. Emerg. Med. 2015, 6, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Erbay, Ü.T.; Ayada, C.; Simsek, H.; Arik, Ö. Can total thiol be a new parameter for the diagnosis of copd? Acta Physiol. 2017, 221, 66. [Google Scholar]
- Sotgiu, E.; Ena, S.; Assaretti, S.; Arru, D.; Baralla, A.; Zinellu, E.; Fois, A.G.; Pirina, P.; Zinellu, A.; Carru, C. Oxidative stress and arginines plasma levels in not severe COPD. Clin. Chem. Lab. Med. 2017, 55, S771. [Google Scholar]
- Grdić Rajković, M.; Popović-Grle, S.; Vukić Dugac, A.; Rogić, D.; Rako, I.; Radić Antolić, M.; Beriša, M.; Rumora, L. PON1 gene polymorphisms in patients with chronic obstructive pulmonary disease. J. Clin. Pathol. 2018, 71, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Sun, D.; Chen, L. Identification of Prognostic Value of Rs3735590 Polymorphism in 3’-Untranslated Region (3’-UTR) of Paraoxonase 1 (PON-1) in Chronic Obstructive Pulmonary Disease Patients who Received Coronary Artery Bypass Grafting (CABG). Cell Physiol. Biochem. 2018, 47, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda Loyola, W.A.; Vilaça Cavallari Machado, F.; Araújo de Castro, L.; Hissnauer Leal Baltus, T.; Rampazzo Morelli, N.; Landucci Bonifácio, K.; Morita, A.A.; Michelin, A.P.; Sabbatini Barbosa, D.; Probst, V.S. Is oxidative stress associated with disease severity, pulmonary function and metabolic syndrome in chronic obstructive pulmonary disease? Rev. Clin. Esp. 2019, 219, 477–484. [Google Scholar] [CrossRef]
- Isik, B.; Isik, R.S.; Ceylan, A.; Calik, O. Trace elements and oxidative stress in chronic obstructive pulmonary disease. Saudi. Med. J. 2005, 26, 1882–1885. [Google Scholar]
- Tekes, S.; Isik, B.; Yildiz, T.; Simsek, S.; Isik, M.R.; Budak, T. Chronic Obstructive Pulmonary Disease and Paraoxonase-1 192 and 55 Gene Polymorphisms. Biotechnol. Biotechnol. Equip. 2010, 24, 1644–1647. [Google Scholar] [CrossRef] [Green Version]
- Teke, T.; Maden, E.; Kiyici, A.; Bekci, T.T.; Erdem, S.S.; Tosun, M.; Uzun, K. Paraoxonase activity in patients with COPD. Eur. Respir. J. 2011, 38, 3897. [Google Scholar]
- Acay, A.; Erdenen, F.; Altunoglu, E.; Erman, H.; Muderrisoglu, C.; Korkmaz, G.G.; Gelisgen, R.; Tabak, O.; Uzun, H. Evaluation of serum paraoxonase and arylesterase activities in subjects with asthma and chronic obstructive lung disease. Clin. Lab. 2013, 59, 1331–1337. [Google Scholar] [CrossRef]
- Okur, H.K.; Pelin, Z.; Yuksel, M.; Yosunkaya, S. Lipid peroxidation and paraoxonase activity in nocturnal cyclic and sustained intermittent hypoxia. Sleep Breath. 2013, 17, 365–371. [Google Scholar] [CrossRef]
- Soler, N.; García-Heredia, A.; Marsillach, J.; Mackness, B.; Mackness, M.; Joven, J.; Romero, P.; Camps, J. Paraoxonase-1 is associated with corneal endothelial cell alterations in patients with chronic obstructive pulmonary disease. Invest. Ophthalmol. Vis. Sci. 2013, 54, 5852–5858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumora, L.; Rajković, M.G.; Kopčinović, L.M.; Pancirov, D.; Čepelak, I.; Grubišić, T.Ž. Paraoxonase 1 activity in patients with chronic obstructive pulmonary disease. COPD 2014, 11, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Fois, A.G.; Sotgia, S.; Sotgiu, E.; Zinellu, E.; Bifulco, F.; Mangoni, A.A.; Pirina, P.; Carru, C. Arginines Plasma Concentration and Oxidative Stress in Mild to Moderate COPD. PLoS ONE 2016, 11, e0160237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arpaci, A.; Yalin, S.; Taskin, D.; Fakioglu, F.; Ulutas, K.T.; Comelekoglu, U. Investigation of antioxidant enzyme polymorphism in chronic obstructive pulmonary disease patients. Biomed. Res. 2018, 29, 1906–1913. [Google Scholar] [CrossRef] [Green Version]
- Mahrooz, A.; Mackness, M. Epigenetics of paraoxonases. Curr. Opin. Lipidol. 2020, 31, 200–205. [Google Scholar] [CrossRef]
- Costa, L.G.; Vitalone, A.; Cole, T.B.; Furlong, C.E. Modulation of paraoxonase (PON1) activity. Biochem. Pharmacol. 2005, 69, 541–550. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, Z.; Riwanto, M.; Gao, S.; Levison, B.S.; Gu, X.; Fu, X.; Wagner, M.A.; Besler, C.; Gerstenecker, G. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J. Clin. Invest. 2013, 123, 3815–3828. [Google Scholar] [CrossRef] [Green Version]
- Bacchetti, T.; Ferretti, G.; Carbone, F.; Ministrini, S. Dysfunctional high-density lipoprotein: The role of myeloperoxidase and paraoxonase-1. Curr. Med. Chem. 2021, 28, 2842–2850. [Google Scholar] [CrossRef]
- Riley, C.M.; Sciurba, F.C. Diagnosis and Outpatient Management of Chronic Obstructive Pulmonary Disease: A Review. JAMA 2019, 321, 786–797. [Google Scholar] [CrossRef]
- Sansbury, L.B.; Rothnie, K.J.; Bains, C.; Compton, C.; Anley, G.; Ismaila, A.S. Healthcare, Medication Utilization and Outcomes of Patients with COPD by GOLD Classification in England. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 2591–2604. [Google Scholar] [CrossRef] [PubMed]
Authors [Ref No.] | Year | Country | Subject No. | Age | Activity in COPD | Activity in Healthy Controls | Included Severe COPD (%) |
---|---|---|---|---|---|---|---|
Paraoxonase | |||||||
Isik [29] | 2005 | Turkey | 45 | 61 | 49.8 ± 27.1 | 107.8 ± 36.3 | NR |
Tekes [30] | 2010 | Turkey | 62 | 60 | 43.2 ± 28.6 | 100.8 ± 40.3 | NR |
Stanojkovic [13] | 2011 | Serbia | 74 | 63 | 447 ± 337 | 330 ± 216 | 100 |
Teke [31] | 2011 | Turkey | 25 | 63 | 96.8 ± 57.4 | 185.4 ± 110.1 | NR |
Acay [32] | 2013 | Turkey | 40 | 62 | 51.4 ± 37.5 | 521.4 ± 156.2 | NR |
Okur [33] | 2013 | Turkey | 11 | 57 | 124.6 ± 28.4 | 269.0 ± 135.8 | NR |
Soler [34] | 2013 | Spain | 110 | NR | 213.8 ± 632.0 | 271.0 ± 1261.0 | 38 |
Rumora [35] | 2014 | Croatia | 105 | 71 | 136.3 ± 69.0 | 194.6 ± 98.2 | NR |
Zinellu [36] | 2016 | Italy | 43 | 74 | 223.8 ± 72.6 | 253.0 ± 71.5 | 0 |
Arpaci [37] | 2018 | Turkey | 100 | NR | 28.5 ± 14.9 | 45.9 ± 16.5 | NR |
Sarioglu [14] | 2020 | Turkey | 66 | 64 | 199.1 ± 134.5 | 129.2 ± 112.5 | 30.3 |
Sepúlveda Loyola [28] | 2021 | Brazil | 39 | 69 | 186.0 ± 55.5 | 158 ± 46.9 | 54 |
Arylesterase | |||||||
Acay [32] | 2013 | Turkey | 40 | 62 | 136.2 ± 32.0 | 198.4 ± 50.2 | 0 |
Rumora [35] | 2014 | Croatia | 105 | 71 | 21.2 ± 10.3 | 40.1 ± 14.8 | NR |
Sarioglu [14] | 2020 | Turkey | 66 | 64 | 21.3 ± 14.9 | 33.5 ± 39.5 | 30.3 |
Authors [Ref No.] | The Newcastle-Ottawa Quality Assessment Scale | ||||||||
---|---|---|---|---|---|---|---|---|---|
Selection | Comparability | Outcome | Total | ||||||
Representatives of the Exposed Cohort/Adequate Case Definition (0, 1) | Selection of the Non-Exposed Cohort/ Representative of Cases (0, 1) | Ascertainment of Exposure/ Selection of Controls (0, 1) | Demonstration That Outcome of Interest Was Not Present at Start of Study/Definition of Controls (0,1) | Comparability on the Basis of Design or Analysis (0, 1, 2) | Assessment of Outcome/Exposure (0, 1) | Was Follow-Up Long Enough for Outcomes to Occur (0, 1) | Adequacy of Follow-Up of Cohorts (0, 1) | Score | |
Isik [29] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 5 |
Tekes [30] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 5 |
Stanojkovic [13] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 |
Teke [31] | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 5 |
Acay [32] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 |
Okur [33] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 |
Soler [34] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 7 |
Rumora [35] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 7 |
Zinellu [36] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 |
Arpaci [37] | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 6 |
Sarioglu [14] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 |
Sepúlveda Loyola [28] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, J.; Kotani, K.; Gugliucci, A. Paraoxonase 1 and Chronic Obstructive Pulmonary Disease: A Meta-Analysis. Antioxidants 2021, 10, 1891. https://doi.org/10.3390/antiox10121891
Watanabe J, Kotani K, Gugliucci A. Paraoxonase 1 and Chronic Obstructive Pulmonary Disease: A Meta-Analysis. Antioxidants. 2021; 10(12):1891. https://doi.org/10.3390/antiox10121891
Chicago/Turabian StyleWatanabe, Jun, Kazuhiko Kotani, and Alejandro Gugliucci. 2021. "Paraoxonase 1 and Chronic Obstructive Pulmonary Disease: A Meta-Analysis" Antioxidants 10, no. 12: 1891. https://doi.org/10.3390/antiox10121891
APA StyleWatanabe, J., Kotani, K., & Gugliucci, A. (2021). Paraoxonase 1 and Chronic Obstructive Pulmonary Disease: A Meta-Analysis. Antioxidants, 10(12), 1891. https://doi.org/10.3390/antiox10121891