Action Video Gaming Enhances Brain Structure: Increased Cortical Thickness and White Matter Integrity in Occipital and Parietal Regions
Abstract
1. Introduction
2. Materials and Methods
2.1. Subject Data
2.2. Structural MRI Data
2.3. Structural Data Analysis Pipeline
2.3.1. Image Preprocessing
2.3.2. Data Extraction and Preparation
2.3.3. Statistical Analysis
2.4. Regions of Interest Comprising the Dorsal Stream
2.5. Tractography Protocols
3. Results
3.1. Cortical Thickness
3.2. White Matter Integrity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bereczk, A.; Szilagyine Fulop, E.; Hodine Hernadi, B. Web 3 Gaming: A Sectoral Analysis and Forecast to 2033. In Proceedings of the Central and Eastern European eDem and eGov Days, Budapest, Hungary, 12–13 September 2024; pp. 166–172. [Google Scholar]
- Coronel-Oliveros, C.; Medel, V.; Orellana, S.; Rodiño, J.; Lehue, F.; Cruzat, J.; Tagliazucchi, E.; Brzezicka, A.; Orio, P.; Kowalczyk-Grębska, N.; et al. Gaming expertise induces meso-scale brain plasticity and efficiency mechanisms as revealed by whole-brain modeling. NeuroImage 2024, 293, 120633. [Google Scholar] [CrossRef]
- Huang, H.; Cheng, C. The Benefits of Video Games on Brain Cognitive Function: A Systematic Review of Functional Magnetic Resonance Imaging Studies. Appl. Sci. 2022, 12, 5561. [Google Scholar] [CrossRef]
- Bavelier, D.; Achtman, R.L.; Mani, M.; Föcker, J. Neural bases of selective attention in action video game players. Vis. Res. 2012, 61, 132–143. [Google Scholar] [CrossRef]
- Kühn, S.; Gallinat, J. Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Mol. Psychiatry 2014, 19, 842–847. [Google Scholar] [CrossRef]
- Kühn, S.; Gleich, T.; Lorenz, R.C.; Lindenberger, U.; Gallinat, J. Playing Super Mario induces structural brain plasticity: Gray matter changes resulting from training with a commercial video game. Mol. Psychiatry 2014, 19, 265–271. [Google Scholar] [CrossRef]
- Campbell, M.J.; Cregan, S.C.; Joyce, J.M.; Kowal, M.; Toth, A.J. Comparing the cognitive performance of action video game players and age-matched controls following a cognitively fatiguing task: A stage 2 registered report. Br. J. Psychol. 2023, 115, 363–385. [Google Scholar] [CrossRef]
- Jordan, T.; Dhamala, M. Enhanced Dorsal Attention Network to Salience Network Interaction in Video Gamers During Sensorimotor Decision-Making Tasks. Brain Connect. 2023, 13, 97–106. [Google Scholar] [CrossRef]
- Jordan, T.; Dhamala, M. Video game players have improved decision-making abilities and enhanced brain activities. Neuroimage Rep. 2022, 2, 100112. [Google Scholar] [CrossRef]
- Howard, J.; Bowden, V.K.; Visser, T. Do action video games make safer drivers? The effects of video game experience on simulated driving performance. Transp. Res. Part F Traffic Psychol. Behav. 2023, 97, 170–180. [Google Scholar] [CrossRef]
- Kühn, S.; Lorenz, R.; Banaschewski, T.; Barker, G.J.; Büchel, C.; Conrod, P.J.; Flor, H.; Garavan, H.; Ittermann, B.; Loth, E.; et al. Positive association of video game playing with left frontal cortical thickness in adolescents. PLoS ONE 2014, 9, e91506. [Google Scholar] [CrossRef]
- Lewandowska, P.; Jakubowska, N.; Hryniewicz, N.; Prusinowski, R.; Kossowski, B.; Brzezicka, A.; Kowalczyk-Grębska, N. Association between real-time strategy video game learning outcomes and pre-training brain white matter structure: Preliminary study. Sci. Rep. 2022, 12, 20741. [Google Scholar] [CrossRef]
- Brilliant, T.D.; Nouchi, R.; Kawashima, R. Does Video Gaming Have Impacts on the Brain: Evidence from a Systematic Review. Brain Sci. 2019, 9, 251. [Google Scholar] [CrossRef]
- He, Q.; Turel, O.; Wei, L.; Bechara, A. Structural brain differences associated with extensive massively-multiplayer video gaming. Brain Imaging Behav. 2021, 15, 364–374. [Google Scholar] [CrossRef]
- Mohammad, S.; Jan, R.A.; Alsaedi, S.L. Symptoms, Mechanisms, and Treatments of Video Game Addiction. Cureus 2023, 15, e36957. [Google Scholar] [CrossRef]
- Ivarsson, M.; Anderson, M.; Åkerstedt, T.; Lindblad, F. The effect of violent and nonviolent video games on heart rate variability, sleep, and emotions in adolescents with different violent gaming habits. Psychosom. Med. 2013, 75, 390–396. [Google Scholar] [CrossRef]
- Kühn, S.; Gallinat, J.; Mascherek, A. Effects of computer gaming on cognition, brain structure, and function: A critical reflection on existing literature. Dialogues Clin. Neurosci. 2019, 21, 319–330. [Google Scholar] [CrossRef]
- Habeck, C.; Gazes, Y.; Razlighi, Q.; Stern, Y. Cortical thickness and its associations with age, total cognition and education across the adult lifespan. PLoS ONE 2020, 15, e0230298. [Google Scholar] [CrossRef]
- Nikolaidis, A.; Voss, M.; Lee, H.; Vo, L.; Kramer, A. Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Front. Hum. Neurosci. 2014, 8, 169. [Google Scholar] [CrossRef]
- Küchenhoff, S.; Sorg, C.; Schneider, S.C.; Kohl, O.; Müller, H.J.; Napiórkowski, N.; Menegaux, A.; Finke, K.; Ruiz-Rizzo, A.L. Visual processing speed is linked to functional connectivity between right frontoparietal and visual networks. Eur. J. Neurosci. 2021, 53, 3362–3377. [Google Scholar] [CrossRef]
- Filley, C.M.; Fields, R.D. White matter and cognition: Making the connection. J. Neurophysiol. 2016, 116, 2093–2104. [Google Scholar] [CrossRef]
- Yeh, F.C.; Verstynen, T.D.; Wang, Y.; Fernandez-Miranda, J.C.; Tseng, W.Y. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE 2013, 8, e80713. [Google Scholar] [CrossRef]
- Yeh, F.C.; Wedeen, V.J.; Tseng, W.Y. Generalized q-sampling imaging. IEEE Trans. Med. Imaging 2010, 29, 1626–1635. [Google Scholar]
- Gallivan, J.P.; Chapman, C.S.; Wolpert, D.M.; Flanagan, J.R. Decision-making in sensorimotor control. Nat. Rev. Neurosci. 2018, 19, 519–534. [Google Scholar] [CrossRef]
- Yang, H.; He, C.; Han, Z.; Bi, Y. Domain-specific functional coupling between dorsal and ventral systems during action perception. Sci. Rep. 2020, 10, 21200. [Google Scholar] [CrossRef]
- Green, C.S.; Bavelier, D. Action video game modifies visual selective attention. Nature 2003, 423, 534–537. [Google Scholar] [CrossRef]
- Green, C.S.; Bavelier, D. Action-video-game experience alters the spatial resolution of vision. Psychol. Sci. 2007, 18, 88–94. [Google Scholar] [CrossRef]
- Green, C.S.; Bavelier, D. Action video game training for cognitive enhancement. Curr. Opin. Behav. Sci. 2015, 4, 103–108. [Google Scholar] [CrossRef]
- Gao, Y.-L.; Zhang, S.; Zhang, Y.; Wang, M.-X.; Li, Y.-X.; Wang, Z.; Liu, Y.-C.; Liu, K.; Cong, R.-N.; Hu, Y.; et al. Action video games influence on audiovisual integration in visual selective attention condition. In Proceedings of the International Conference on Medicine Sciences and Bioengineering, Suzhou, China, 22–24 August 2018. [Google Scholar]
- Stewart, H.J.; Martinez, J.L.; Perdew, A.; Green, C.S.; Moore, D.R. Auditory cognition and perception of action video game players. Sci. Rep. 2020, 10, 14410. [Google Scholar] [CrossRef]
- Clark, J. The Ishihara test for color blindness. Am. J. Physiol. Opt. 1924, 5, 269–276. [Google Scholar]
- Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 1999, 9, 179–194. [Google Scholar] [CrossRef]
- Fischl, B.; Sereno, M.I.; Tootell, R.B.; Dale, A.M. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 1999, 8, 272–284. [Google Scholar] [CrossRef]
- Ségonne, F.; Grimson, E.; Fischl, B. A genetic algorithm for the topology correction of cortical surfaces. In Biennial International Conference on Information Processing in Medical Imaging; Springer: Berlin/Heidelberg, Germany, 2005; pp. 393–405. [Google Scholar]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006, 31, 968–980. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef]
- Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; van der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S.; et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33, 341–355. [Google Scholar] [CrossRef]
- Fischl, B.; van der Kouwe, A.; Destrieux, C.; Halgren, E.; Ségonne, F.; Salat, D.H.; Busa, E.; Seidman, L.J.; Goldstein, J.; Kennedy, D.; et al. Automatically parcellating the human cerebral cortex. Cereb. Cortex 2004, 14, 11–22. [Google Scholar] [CrossRef]
- Iscan, Z.; Jin, T.B.; Kendrick, A.; Szeglin, B.; Lu, H.; Trivedi, M.; Fava, M.; McGrath, P.J.; Weissman, M.; Kurian, B.T.; et al. Test–retest reliability of freesurfer measurements within and between sites: Effects of visual approval process. Hum. Brain Mapp. 2015, 36, 3472–3485. [Google Scholar] [CrossRef]
- Micheletti, S.; Corbett, F.; Atkinson, J.; Braddick, O.; Mattei, P.; Galli, J.; Calza, S.; Fazzi, E. Dorsal and Ventral Stream Function in Children With Developmental Coordination Disorder. Front. Hum. Neurosci. 2021, 15, 703217. [Google Scholar] [CrossRef]
- Goodale, M.A.; Milner, A.D.; Jakobson, L.S.; Carey, D.P. A neurological dissociation between perceiving objects and grasping them. Nature 1991, 349, 154–156. [Google Scholar] [CrossRef]
- Wong, W.W.; Cabral, J.; Rane, R.; Ly, R.; Kringelbach, M.L.; Feusner, J.D. Effects of visual attention modulation on dynamic functional connectivity during own-face viewing in body dysmorphic disorder. Neuropsychopharmacology 2021, 46, 2030–2038. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Giacalone, M.; Agata, Z.; Cozzucoli, P.C.; Alibrandi, A. Bonferroni-Holm and permutation tests to compare health data: Methodological and applicative issues. BMC Med. Res. Methodol. 2018, 18, 81. [Google Scholar] [CrossRef]
- Yeh, F.C.; Panesar, S.; Fernandes, D.; Meola, A.; Yoshino, M.; Fernandez-Miranda, J.C.; Vettel, J.M.; Verstynen, T. Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage 2018, 178, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Yeh, F.C.; Tseng, W.Y. NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 2011, 58, 91–99. [Google Scholar] [CrossRef]
- Numssen, O.; Bzdok, D.; Hartwigsen, G. Functional specialization within the inferior parietal lobes across cognitive domains. eLife 2021, 10, e63591. [Google Scholar] [CrossRef] [PubMed]
- Blihar, D.; Delgado, E.; Buryak, M.; Gonzalez, M.; Waechter, R. A systematic review of the neuroanatomy of dissociative identity disorder. Eur. J. Trauma Dissociation 2020, 4, 100148. [Google Scholar] [CrossRef]
- Rolls, E.T. Chapter 1—The neuroscience of emotional disorders. In Handbook of Clinical Neurology; Heilman, K.M., Nadeau, S.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–26. [Google Scholar]
- Moen, K.C.; Beck, M.R.; Saltzmann, S.M.; Cowan, T.M.; Burleigh, L.M.; Butler, L.G.; Ramanujam, J.; Cohen, A.S.; Greening, S.G. Strengthening spatial reasoning: Elucidating the attentional and neural mechanisms associated with mental rotation skill development. Cogn. Res. Princ. Implic. 2020, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, D.M.; Goodbody, S.J.; Husain, M. Maintaining internal representations: The role of the human superior parietal lobe. Nat. Neurosci. 1998, 1, 529–533. [Google Scholar] [CrossRef]
- Hahn, B.; Ross, T.J.; Stein, E.A. Neuroanatomical dissociation between bottom–up and top–down processes of visuospatial selective attention. NeuroImage 2006, 32, 842–853. [Google Scholar] [CrossRef]
- Zatorre, R.J.; Fields, R.D.; Johansen-Berg, H. Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nat. Neurosci. 2012, 15, 528–536. [Google Scholar] [CrossRef]
- Fields, R.D. A new mechanism of nervous system plasticity: Activity-dependent myelination. Nat. Rev. Neurosci. 2015, 16, 756–767. [Google Scholar] [CrossRef]
Region of Interest | MNI Coordinates x, y, z (mm) |
---|---|
Left superior occipital gyrus (L SOG) | −26, −73, 23 |
Left inferior parietal lobule (L IPL) | −24, −52, 52 |
Left superior parietal lobule (L SPL) | −30, −46, 66 |
Right superior occipital gyrus (R SOG) | 23, −91, 26 |
Right inferior parietal lobule (R IPL) | 24, −48, 42 |
Right superior parietal lobule (R SPL) | 20, −68, 62 |
Connection | Min Length (mm) | Max Length (mm) | Angular Threshold (deg) |
---|---|---|---|
L SOG L IPL | 10 | 100 | 60 |
L SOG L SPL | 10 | 300 | 70 |
R SOG R IPL | 10 | 100 | 75 |
R SOG R SPL | 10 | 150 | 70 |
Identified Regions (Thickness) | p | ηp2 | F(1,42) |
---|---|---|---|
Right inferior parietal | 0.006 | 0.169 | 8.521 |
Right precuneus | 0.002 | 0.210 | 11.154 |
Right postcentral | 0.055 | 0.085 | 3.902 |
Right superior parietal | 0.021 | 0.121 | 5.779 |
Right supramarginal | 0.010 | 0.148 | 7.293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, C.; Cahill, K.; Dhamala, M. Action Video Gaming Enhances Brain Structure: Increased Cortical Thickness and White Matter Integrity in Occipital and Parietal Regions. Brain Sci. 2025, 15, 956. https://doi.org/10.3390/brainsci15090956
Mukherjee C, Cahill K, Dhamala M. Action Video Gaming Enhances Brain Structure: Increased Cortical Thickness and White Matter Integrity in Occipital and Parietal Regions. Brain Sciences. 2025; 15(9):956. https://doi.org/10.3390/brainsci15090956
Chicago/Turabian StyleMukherjee, Chandrama, Kyle Cahill, and Mukesh Dhamala. 2025. "Action Video Gaming Enhances Brain Structure: Increased Cortical Thickness and White Matter Integrity in Occipital and Parietal Regions" Brain Sciences 15, no. 9: 956. https://doi.org/10.3390/brainsci15090956
APA StyleMukherjee, C., Cahill, K., & Dhamala, M. (2025). Action Video Gaming Enhances Brain Structure: Increased Cortical Thickness and White Matter Integrity in Occipital and Parietal Regions. Brain Sciences, 15(9), 956. https://doi.org/10.3390/brainsci15090956