Gamma and Psychological Resilience: Where to Now?
Abstract
1. Introduction
2. Measurement of PR
3. Reviews of the Neurobiology of PR
4. EEG and PR
Author, Year, Reference | PR Measure | N, Sample, Age | EEG Data Collected | Summary Outcomes |
---|---|---|---|---|
Curtis et al., 2007 [40] | Combination of depression and internalizing/externalizing behaviour | 37 resilient (16 males), M age = 10.3 yr. 50 non-resilient (27 males), M age = 10.4 yr | Resting state alpha asymmetry | Greater left central hemisphere alpha activity in resilient vs. non-resilient groups. |
Lee et al., 2019 [42] | CDRISC | 36 healthy males, M age = 25.2 yr. 35 Internet Gambling males, M age = 23.7 yr | Resting state EEG, alpha, beta, gamma (30–40 Hz) bands | Internet Gambling Ss with low PR had sig. higher alpha coherence in right hemisphere |
Paban et al., 2019 [49] | 10-item CDRISC | 45 (23 males) healthy volunteers =. M age = 34.7 yr | Resting state EEG, delta, theta, alpha, beta | Sig. inverse r between PR and network flexibility across cortical regions in the delta, alpha and beta bands. |
Sharpley et al., 2023 [50] | CDRISC | 100 (54 males) healthy volunteers. M age = 32.5 yr | Resting state EEG, frontal alpha asymmetry | Variation in r between EEG frontal alpha and five PR factors across brain regions |
Evans et al., 2024 [15] | CDRISC | 100 (54 males) healthy volunteers. M age = 32.5 yr | Resting state EEG, alpha and beta connectivity across networks | Variation in connectivity r between PR and networks according to PR factor |
KeunhoYoo et al., 2024 [41] | Relationship between perceived stress and impact of stress | 55 (29 males) healthy volunteers. M age = 23.3 yr. | Resting state EEG, delta, theta, alpha beta bands | No sig. correlations between PR and EEG data. |
Gupta & Reddy 2025 [52] | Brief Resilience Scale (6 items) | 12 (3 males) volunteers. Age range = 18–24 yr | Resting state EEG, delta, theta, alpha, beta, gamma (31–49.5 Hz) bands | Sig. differences between high vs. low PR subgroups for alpha (frontal, right side) and beta (posterior, left sided) power. |
5. Summary
6. The Argument for Gamma
7. Gamma Wave Definition and Characteristics
7.1. Definition
7.2. Gamma Associations
8. Gamma and PR: Where to from Here?
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thibodeau, R.; Jorgensen, R.; Kim, S. Depression, anxiety, and resting frontal EEg assymetry: A meta-analytic review. J. Abnorm. Psychol. 2006, 115, 715–729. [Google Scholar] [CrossRef] [PubMed]
- de Aguiar Neto, F.S.; Rosa, J.L.G. Depression biomarkers using non-invasive EEG: A review. Neurosci. Biobehav. Rev. 2019, 105, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Nystrom, C.; Matousek, M.; Hallstrom, T. Relationships between EEG and clinical characteristics in major depressive disorder. Acta Psychiatr Scand 1986, 73, 390–394. [Google Scholar] [CrossRef]
- Husnain, A.; Alomari, G.; Saeed, A. AI-driven integrated hardware and software solution for EEG-based detection of depression and anxiety. Int. J. Multidiscip. Res. (IJFMR) 2024, 6, 1–24. [Google Scholar]
- Coleman, S.L.; Sharpley, C.F.; Vessey, K.A.; Evans, I.D.; Williams, R.J.; Bitsika, V. Gamma oscillations as correlates of depression: Updating Fitzgerald and Watson (2018). Rev. Neurosci. 2025. [Google Scholar] [CrossRef]
- Wheatley, D. Stress, anxiety and depression. Stress Med. 1997, 13, 173–177. [Google Scholar] [CrossRef]
- Hammen, C.L. Stress and depression: Old questions, new approaches. Curr. Opin. Psychol. 2015, 4, 80–85. [Google Scholar] [CrossRef]
- Mehdi, S.; Wani, S.U.D.; Krishna, K.; Kinattingal, N.; Roohi, T.F. A review on linking stress, depression, and insulin resistance via low-grade chronic inflammation. Biochem. Biophys. Rep. 2023, 36, 101571. [Google Scholar] [CrossRef]
- Vella, S.-L.C.; Pai, N.B. A theoretical review of psychological resilience: Defining resilience and resilience research over the decades. Arch. Med. Health Sci. 2019, 7, 233–239. [Google Scholar] [CrossRef]
- Killgore, W.D.; Taylor, E.C.; Cloonan, S.A.; Dailey, N.S. Psychological resilience during the COVID-19 lockdown. Psychiatry Res. 2020, 291, 113216. [Google Scholar] [CrossRef]
- Imran, A.; Tariq, S.; Kapczinski, F.; de Azevedo Cardoso, T. Psychological resilience and mood disorders: A systematic review and meta-analysis. Trends Psychiatry Psychother. 2024, 46, e20220524. [Google Scholar] [CrossRef] [PubMed]
- Peeters, G.; Kok, A.A.; de Bruin, S.R.; van Campen, C.; Graff, M.; Nieuwboer, M.; Huisman, M.; van Munster, B.; van der Zee, E.A.; Kas, M.J.; et al. Supporting Resilience of Older Adults with Cognitive Decline Requires a Multi-Level System Approach. Gerontology 2023, 69, 866–874. [Google Scholar] [CrossRef]
- Connor, K.; Davidson, J. Development of a new resilience scale: The Connor-Davidson Resilience Scale (CD-RISC). Depress. Anxiety 2003, 18, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, M.; Marzetti, L.; Sepede, G.; Zappasodi, F.; Pizzella, V.; Sarchione, F.; Vellante, F.; Martinotti, G.; Di Giannantonio, M. Resilience and cross-network connectivity: A neural model for post-trauma survival. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 77, 110–119. [Google Scholar] [CrossRef]
- Evans, I.D.; Sharpley, C.F.; Bitsika, V.; Vessey, K.A.; Jesulola, E.; Agnew, L.L. Functional Network Connectivity for Components of Depression-Related Psychological Fragility. Brain Sci. 2024, 14, 845. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, C.; Ji, Y.; Yang, L. Biological and Psychological Perspectives of Resilience: Is It Possible to Improve Stress Resistance? Front. Hum. Neurosci. 2018, 12, 326. [Google Scholar] [CrossRef]
- Roeckner, A.R.; Oliver, K.I.; Lebois, L.A.M.; van Rooij, S.J.H.; Stevens, J.S. Neural contributors to trauma resilience: A review of longitudinal neuroimaging studies. Transl. Psychiatry 2021, 11, 508. [Google Scholar] [CrossRef]
- Waugh, C.E.; Sali, A.W. Resilience as the Ability to Maintain Well-Being: An Allostatic Active Inference Model. J. Intell. 2023, 11, 158. [Google Scholar] [CrossRef]
- Salisu, I.; Hashim, N. A critical review of scales used in resilience research. IOSR J. Bus. Manag. 2017, 19, 23–33. [Google Scholar] [CrossRef]
- Hasan, R.A.; Ali, S.S.A.; Tang, T.B.; Yusoff, M.S.B. Finding the EEG Footprint of Stress Resilience. In Lecture Notes in Electrical Engineering; Springer Nature: Singapore, 2022; pp. 807–816. [Google Scholar]
- Wojujutari, A.K.; Idemudia, E.S.; Ugwu, L.E. Evaluation of reliability generalization of Conner-Davison Resilience Scale (CD-RISC-10 and CD-RISC-25): A Meta-analysis. PLoS ONE 2024, 19, e0297913. [Google Scholar] [CrossRef] [PubMed]
- den Hartigh, R.; Hill, Y. Conceptualizing and measuring psychological resilience: What can we learn from physics? New Ideas Psychol. 2022, 66, 100934. [Google Scholar] [CrossRef]
- Windle, G. What is resilience? A review and concept analysis. Rev. Clin. Gerontol. 2011, 21, 152–169. [Google Scholar] [CrossRef]
- Minnett, K.; Stephenson, Z. Exploring the Psychometric Properties of the Connor-Davidson Resilience Scale (CD-RISC). Advers. Resil. Sci. 2024, 1–12. [Google Scholar] [CrossRef]
- Bhatnagar, S. Rethinking stress resilience. Trends Neurosci. 2021, 44, 936–945. [Google Scholar] [CrossRef]
- Lee, S.-S.; Jeong, S.; Choi, Y.-S. The effect of stress coping on resilience of firefighters. Biomed. Res. 2019, 30, 340–345. [Google Scholar] [CrossRef]
- Cathomas, F.; Murrough, J.W.; Nestler, E.J.; Han, M.-H.; Russo, S.J. Neurobiology of Resilience: Interface Between Mind and Body. Biol. Psychiatry 2019, 86, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Babić, R.; Babić, M.; Rastović, P.; Ćurlin, M.; Šimić, J.; Mandić, K.; Pavlović, K. Resilience in health and illness. Psychiatr. Danub. 2020, 32 (Suppl. 2), 226–232. [Google Scholar] [PubMed]
- Feldman, R. What is resilience: An affiliative neuroscience approach. World Psychiatry 2020, 19, 132–150. [Google Scholar] [CrossRef]
- Watanabe, N.; Yoshida, S.; Keerativittayayut, R.; Takeda, M. Neural signatures of human psychological resilience driven by acute stress. bioRxiv 2024. [Google Scholar] [CrossRef]
- van der Werff, S.J.; van den Berg, S.M.; Pannekoek, J.N.; Elzinga, B.M.; Van Der Wee, N.J. Neuroimaging resilience to stress: A review. Front. Behav. Neurosci. 2013, 7, 39. [Google Scholar] [CrossRef]
- Tai, A.P.L.; Leung, M.-K.; Geng, X.; Lau, W.K.W. Conceptualizing psychological resilience through resting-state functional MRI in a mentally healthy population: A systematic review. Front. Behav. Neurosci. 2023, 17, 1175064. [Google Scholar] [CrossRef]
- Bolsinger, J.; Seifritz, E.; Kleim, B.; Manoliu, A. Neuroimaging correlates of resilience to traumatic events—A comprehensive review. Front. Psychiatry 2018, 9, 693. [Google Scholar] [CrossRef] [PubMed]
- Holz, N.E.; Tost, H.; Meyer-Lindenberg, A. Resilience and the brain: A key role for regulatory circuits linked to social stress and support. Mol. Psychiatry 2020, 25, 379–396. [Google Scholar] [CrossRef]
- Eaton, S.; Cornwell, H.; Hamilton-Giachritsis, C.; Fairchild, G. Resilience and young people’s brain structure, function and connectivity: A systematic review. Neurosci. Biobehav. Rev. 2022, 132, 936–956. [Google Scholar] [CrossRef]
- Kong, F.; Wang, X.; Hu, S.; Liu, J. Neural correlates of psychological resilience and their relation to life satisfaction in a sample of healthy young adults. Neuroimage 2015, 123, 165–172. [Google Scholar] [CrossRef]
- Kong, F.; Ma, X.; You, X.; Xiang, Y. The resilient brain: Psychological resilience mediates the effect of amplitude of low-frequency fluctuations in orbitofrontal cortex on subjective well-being in young healthy adults. Soc. Cogn. Affect. Neurosci. 2018, 13, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, L.; Zhang, F.; Gu, R.; Peng, W.; Hu, L. Demystifying signal processing techniques to extract resting-state EEG features for psychologists. Brain Sci. Adv. 2020, 6, 189–209. [Google Scholar] [CrossRef]
- Kumar, J.S.; Bhuvaneswari, P. Analysis of Electroencephalography (EEG) Signals and Its Categorization–A Study. Procedia Eng. 2012, 38, 2525–2536. [Google Scholar] [CrossRef]
- Curtis, W.J.; Cicchetti, D. Emotion and resilience: A multilevel investigation of hemispheric electroencephalogram asymmetry and emotion regulation in maltreated and nonmaltreated children. Dev. Psychopathol. 2007, 19, 811–840. [Google Scholar] [CrossRef]
- KeunhoYoo, K.; Xiu, B.; Nader, G.; Graff, A.; Gerretsen, P.; Zomorrodi, R.; de Luca, V. Power spectral analysis of resting-state EEG to monitor psychological resilience to stress. Psychiatry Res. Commun. 2024, 4, 100175. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Choi, J.-S.; Kwon, J.S. Neurophysiological mechanisms of resilience as a protective factor in patients with internet gaming disorder: A resting-state EEG coherence study. J. Clin. Med. 2019, 8, 49. [Google Scholar] [CrossRef]
- Leocani, L.; Comi, G. EEG coherence in pathological conditions. J. Clin. Neurophysiol. 1999, 16, 548. [Google Scholar] [CrossRef]
- Coben, R.; Clarke, A.R.; Hudspeth, W.; Barry, R.J. EEG power and coherence in autistic spectrum disorder. Clin. Neurophysiol. 2008, 119, 1002–1009. [Google Scholar] [CrossRef]
- Barry, R.J.; Clarke, A.R.; McCarthy, R.; Selikowitz, M. EEG coherence in attention-deficit/hyperactivity disorder: A comparative study of two DSM-IV types. Clin. Neurophysiol. 2002, 113, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Markovska-Simoska, S.; Pop-Jordanova, N.; Pop-Jordanov, J. Inter-and intra-hemispheric EEG coherence study in adults with neuropsychiatric disorders. Prilozi 2018, 39, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Velikova, S.; Locatelli, M.; Insacco, C.; Smeraldi, E.; Comi, G.; Leocani, L. Dysfunctional brain circuitry in obsessive–compulsive disorder: Source and coherence analysis of EEG rhythms. NeuroImage 2010, 49, 977–983. [Google Scholar] [CrossRef]
- Kam, J.W.; Bolbecker, A.R.; O’Donnell, B.F.; Hetrick, W.P.; Brenner, C.A. Resting state EEG power and coherence abnormalities in bipolar disorder and schizophrenia. J. Psychiatr. Res. 2013, 47, 1893–1901. [Google Scholar] [CrossRef] [PubMed]
- Paban, V.; Modolo, J.; Mheich, A.; Hassan, M. Psychological resilience correlates with EEG source-space brain network flexibility. Netw. Neurosci. 2019, 3, 539–550. [Google Scholar] [CrossRef]
- Sharpley, C.F.; Evans, I.D.; Bitsika, V.; Arnold, W.M.; Jesulola, E.; Agnew, L.L. Frontal Alpha Asymmetry Argues for the Heterogeneity of Psychological Resilience. Brain Sci. 2023, 13, 1354. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D.; Lehmann, D.; Koukkou, M.; Kochi, K.; Anderer, P.; Saletu, B.; Tanaka, H.; Hirata, K.; John, E.R.; Prichep, L.; et al. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 3768–3784. [Google Scholar] [CrossRef]
- Gupta, S.; Reddy, J. EEG signatures of resilience across individuals with high and low anxiety. NeuroRegulation 2025, 12, 12. [Google Scholar] [CrossRef]
- Nissim, N.; Pham, D.; Poddar, T.; Blutt, E.; Hamilton, R. The impact of gamma transcranial alternating current stimulation (tACS) on cognitive and memory processes in patients with mild cognitive impairment or Alzheimer’s disease: A literature review. Brain Stimul. 2023, 16, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.J.; Watson, B.O. Gamma oscillations as a biomarker for major depression: An emerging topic. Transl. Psychiatry 2018, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Ruiz, A.; Sirota, A.; Lopes-dos-Santos, V.; Dupret, D. Over and above frequency: Gamma oscillations as units of neural circuit operations. Neuron 2023, 111, 936–953. [Google Scholar] [CrossRef]
- Buzsáki, G.; Wang, X.-J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 2012, 35, 203–225. [Google Scholar] [CrossRef]
- Nahar, L.; Delacroix, B.M.; Nam, H.W. The Role of Parvalbumin Interneurons in Neurotransmitter Balance and Neurological Disease. Front. Psychiatry 2021, 12, 679960. [Google Scholar] [CrossRef]
- Ichim, A.M.; Barzan, H.; Moca, V.V.; Nagy-Dabacan, A.; Ciuparu, A.; Hapca, A.; Vervaeke, K.; Muresan, R.C. The gamma rhythm as a guardian of brain health. eLife 2024, 13, e100238. [Google Scholar] [CrossRef]
- Deng, Q.; Wu, C.; Parker, E.; Zhu, J.; Liu, T.C.-Y.; Duan, R.; Yang, L. Mystery of gamma wave stimulation in brain disorders. Mol. Neurodegener. 2024, 19, 96. [Google Scholar] [CrossRef]
- Han, C.; Shapley, R.; Xing, D. Gamma rhythms in the visual cortex: Functions and mechanisms. Cogn. Neurodynamics 2022, 16, 745–756. [Google Scholar] [CrossRef]
- Sohal, V.S. How Close Are We to Understanding What (if Anything) γ Oscillations Do in Cortical Circuits? J. Neurosci. 2016, 36, 10489–10495. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.; Kann, M.; Wang, Q. Neuromodulation of Neural Oscillations in Health and Disease. Biology 2023, 12, 371. [Google Scholar] [CrossRef] [PubMed]
- Fries, P. Rhythms for Cognition: Communication through Coherence. Neuron 2015, 88, 220–235. [Google Scholar] [CrossRef]
- Bitsika, V.; Sharpley, C.F.; Evans, I.D.; Watson, C.B.; Williams, R.J.; Vessey, K.A. Low-Level Social Demand Is Associated with Anxiety-Related Gamma Wave Responses in Autistic Male Youth. Brain Sci. 2025, 15, 40. [Google Scholar] [CrossRef]
- Hudson, M.R.; Jones, N.C. Deciphering the code: Identifying true gamma neural oscillations. Exp. Neurol. 2022, 357, 114205. [Google Scholar] [CrossRef]
- Basar, E. A review of gamma oscillations in healthy subjects and in cognitive impairment. Int. J. Psychophysiol. 2013, 90, 99–117. [Google Scholar] [CrossRef]
- Ahmed, O.J.; Cash, S.S. Finding synchrony in the desynchronized EEG: The history and interpretation of gamma rhythms. Front. Integr. Neurosci. 2013, 7, 58. [Google Scholar] [CrossRef]
- Vanhollebeke, G.; De Smet, S.; De Raedt, R.; Baeken, C.; van Mierlo, P.; Vanderhasselt, M.-A. The neural correlates of psychosocial stress: A systematic review and meta-analysis of spectral analysis EEG studies. Neurobiol. Stress 2022, 18, 100452. [Google Scholar] [CrossRef]
- Bennett, M.R. The Idea of Consciousness: Synapses and the Mind; Harwood Academic: Melbourne, VIC, Australia, 1997. [Google Scholar]
- Agboada, D.; Zhao, Z.; Wischnewski, M. Neuroplastic effects of transcranial alternating current stimulation (tACS): From mechanisms to clinical trials. Front. Hum. Neurosci. 2025, 19, 1548478. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.C.; Gao, J.; Leung, H.K.; Wu, B.W.Y.; Roberts, A.; Thach, T.-Q.; Sik, H.H. Modulating Consciousness through Awareness Training Program and Its Impacts on Psychological Stress and Age-Related Gamma Waves. Brain Sci. 2024, 14, 91. [Google Scholar] [CrossRef]
- Guan, A.; Wang, S.; Huang, A.; Qiu, C.; Li, Y.; Li, X.; Wang, J.; Wang, Q.; Deng, B. The role of gamma oscillations in central nervous system diseases: Mechanism and treatment. Front. Cell. Neurosci. 2022, 16, 962957. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Calderin, Y.; Wilke, M. Probing the Link Between Perception and Oscillations: Lessons from Transcranial Alternating Current Stimulation. Neuroscientist 2020, 26, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Leone, A.; Bartres-Faz, D. Human Brain Resilience: A Call to Action. Ann. Neurol. 2021, 90, 336–349. [Google Scholar] [CrossRef]
- Ravelo, Y.; Gonzalez-Mendez, R.; Alegre de la Rosa, O.M.; Marrero, H. Boosting Resilience Attentional Bias in Previously Bullied University Students with Low Post-Traumatic Growth: A Transcranial Direct Current Stimulation Study. Brain Sci. 2024, 14, 1069. [Google Scholar] [CrossRef]
- Paneva, J.; Leunissen, I.; Schuhmann, T.; de Graaf, T.A.; Jønsson, M.G.; Onarheim, B.; Sack, A.T. Using remotely supervised at-home TES for enhancing mental resilience. Front. Hum. Neurosci. 2022, 16, 838187. [Google Scholar] [CrossRef] [PubMed]
- Cowden, R.G.; Meyer-Weitz, A.; Oppong Asante, K. Mental toughness in competitive tennis: Relationships with resilience and stress. Front. Psychol. 2016, 7, 320. [Google Scholar] [CrossRef] [PubMed]
Name | Frequency (Hz) | Cognitive State |
---|---|---|
Delta | 0–4 | Deepest relaxation, restorative, dreamless sleep |
Theta | 4–8 | Deep relaxation, deep meditation |
Alpha | 8–12 | Calm wakefulness, resting state eyes closed, meditation |
Beta | 12–30 | Alert, active thinking, focus, attention, anxiety |
Gamma | 30–200 | Heightened perception, learning, information processing functions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocks, D.L.; Sharpley, C.F.; Bitsika, V.; Vessey, K.A.; Odierna, G.L.; Watson, C.B. Gamma and Psychological Resilience: Where to Now? Brain Sci. 2025, 15, 957. https://doi.org/10.3390/brainsci15090957
Rocks DL, Sharpley CF, Bitsika V, Vessey KA, Odierna GL, Watson CB. Gamma and Psychological Resilience: Where to Now? Brain Sciences. 2025; 15(9):957. https://doi.org/10.3390/brainsci15090957
Chicago/Turabian StyleRocks, Damian L., Christopher F. Sharpley, Vicki Bitsika, Kirstan A. Vessey, G. Lorenzo Odierna, and Christopher B. Watson. 2025. "Gamma and Psychological Resilience: Where to Now?" Brain Sciences 15, no. 9: 957. https://doi.org/10.3390/brainsci15090957
APA StyleRocks, D. L., Sharpley, C. F., Bitsika, V., Vessey, K. A., Odierna, G. L., & Watson, C. B. (2025). Gamma and Psychological Resilience: Where to Now? Brain Sciences, 15(9), 957. https://doi.org/10.3390/brainsci15090957