Next Article in Journal
Neurofilaments: The C-Reactive Protein of Neurology
Next Article in Special Issue
The Role of Emotional Landmarks in Embodied and Not-Embodied Tasks
Previous Article in Journal
On the Role of Contrast Polarity: In Response to van der Helm’s Comments
Previous Article in Special Issue
Audiohaptic Feedback Enhances Motor Performance in a Low-Fidelity Simulated Drilling Task
Open AccessArticle

Motor Program Transformation of Throwing Dart from the Third-Person Perspective

1
NTI Center for Neurotechnology and VR/AR Technologies, Far Eastern Federal University, Vladivostok 690922, Russia
2
Far Eastern Scientific Center of Russian Academy of Education, Far Eastern Federal University, Vladivostok 690922, Russia
*
Authors to whom correspondence should be addressed.
Brain Sci. 2020, 10(1), 55; https://doi.org/10.3390/brainsci10010055
Received: 16 December 2019 / Revised: 15 January 2020 / Accepted: 15 January 2020 / Published: 18 January 2020
(This article belongs to the Special Issue The Role of Body in Brain Plasticity)
The perspective of perceiving one’s action affects its speed and accuracy. In the present study, we investigated the change in accuracy and kinematics when subjects throw darts from the first-person perspective and the third-person perspective with varying angles of view. To model the third-person perspective, subjects were looking at themselves as well as the scene through the virtual reality head-mounted display (VR HMD). The scene was supplied by a video feed from the camera located to the up and 0, 20 and 40 degrees to the right behind the subjects. The 28 subjects wore a motion capture suit to register their right hand displacement, velocity and acceleration, as well as torso rotation during the dart throws. The results indicated that mean accuracy shifted in opposite direction with the changes of camera location in vertical axis and in congruent direction in horizontal axis. Kinematic data revealed a smaller angle of torso rotation to the left in all third-person perspective conditions before and during the throw. The amplitude, speed and acceleration in third-person condition were lower compared to the first-person view condition, before the peak velocity of the hand in the direction toward the target and after the peak velocity in lowering the hand. Moreover, the hand movement angle was smaller in the third-person perspective conditions with 20 and 40 angle of view, compared with the first-person perspective condition just preceding the time of peak velocity, and the difference between conditions predicted the changes in mean accuracy of the throws. Thus, the results of this study revealed that subject’s localization contributed to the transformation of the motor program. View Full-Text
Keywords: body schema; darts; kinematic; motor program; third-person perspective body schema; darts; kinematic; motor program; third-person perspective
Show Figures

Figure 1

MDPI and ACS Style

Tumialis, A.; Smirnov, A.; Fadeev, K.; Alikovskaia, T.; Khoroshikh, P.; Sergievich, A.; Golokhvast, K. Motor Program Transformation of Throwing Dart from the Third-Person Perspective. Brain Sci. 2020, 10, 55.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop