Smart Parking: A Literature Review from the Technological Perspective
Abstract
:1. Introduction
2. Research Methodology
2.1. Plan Phase
- What are smart parking solutions that do not involve algorithms within their implementations?
- What systems or sensors are used to implement smart parking solutions?
2.2. Perform Review Phase
2.3. Report Results Phase
3. Smart Parking Solutions
3.1. Types of Sensors
3.1.1. Camera
3.1.2. Ultrasonic Sensors
3.1.3. Cellular Sensors
3.1.4. Infrared
3.1.5. Radar Sensors
3.1.6. Others
3.1.7. Magnetometers
3.2. Software Solutions
3.2.1. Information Management
3.2.2. Prediction
3.2.3. E-Parking
3.3. Networking
3.3.1. Sensor Network
3.3.2. User Network
4. Discussion
4.1. Types of Sensors
4.2. Software Solutions
4.3. Networking
5. Sensor Selection Strategy
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, J.; Song, J. A Dual Key-Based Activation Scheme for Secure LoRaWAN. Wirel. Commun. Mob. Comput. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hung, M. Leading the IoT; Technical report; Gartner Inc.: Stamford, CT, USA, 2017. [Google Scholar]
- Sinha, R.S.; Wei, Y.; Hwang, S.H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [Google Scholar] [CrossRef]
- Qian, Y.; Jiang, Y.; Chen, J.; Zhang, Y.; Song, J.; Zhou, M.; Pustisek, M. Towards decentralized IoT security enhancement: A blockchain approach. Comput. Electr. Eng. 2018, 72, 266–273. [Google Scholar] [CrossRef]
- Endress, C.; Friedrich-Baasner, G.; Heim, D. From Facets to a Universal Definition—An Analysis of IoT Usage in Retail. In Proceedings of the International Conference on Wirtschaftsinformatik, Siegen, Germany, 24–27 February 2019. [Google Scholar]
- Sha, K.; Yang, T.A.; Wei, W.; Davari, S. A survey of edge computing based designs for IoT security. Digit. Commun. Netw. 2019. [Google Scholar] [CrossRef]
- Lee, M. An Empirical Study of Home IoT Services in South Korea: The Moderating Effect of the Usage Experience. Int. J. Hum. Comput. Interact. 2019, 35, 535–547. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Aydin, I.; Karakose, M.; Karakose, E. A navigation and reservation based smart parking platform using genetic optimization for smart cities. In Proceedings of the ICSG 2017—5th International Istanbul Smart Grids and Cities Congress and Fair, Istanbul, Turkey, 19–21 April 2017; pp. 120–124. [Google Scholar] [CrossRef]
- International Telecommunication Union. World Telecommunication Development Conference (WTDC-14): Final Report; International Telecommunication Union: Geneva, Switzerland, 2014; p. 718. [Google Scholar]
- Emc, D. Smart Cities and Communities GDT Smart City Solutions on Intel®-Based Dell EMC Infrastructure; Technical Report; 2017; Available online: https://www.emc.com/collateral/white-papers/smart-city-white-paper.pdf (accessed on 5 October 2019).
- ITALTEL. SMART CITIES; Technical Report; 2017; Available online: https://www.italtel.com/content/uploads/2017/09/Italtel-Smart-Cities-White-Paper.pdf (accessed on 5 October 2019).
- Lin, T.; Rivano, H.; Le Mouel, F. A Survey of Smart Parking Solutions. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3229–3253. [Google Scholar] [CrossRef] [Green Version]
- Vancluysen, K.; Boras, K. Smart Parking in the Thinking City; Technical Report; 2016; Available online: http://content.yudu.com/Library/A3zuy2/SmartParkingInTheThi/resources/index.htm (accessed on 5 October 2019).
- Geng, Y.; Cassandras, C.G. A new “Smart Parking” System Infrastructure and Implementation. Procedia Soc. Behav. Sci. 2012. [Google Scholar] [CrossRef]
- Lan, K.C.; Shih, W.Y. An intelligent driver location system for smart parking. Expert Syst. Appl. 2014, 41, 2443–2456. [Google Scholar] [CrossRef]
- Khalid, M.; Cao, Y.; Zhang, X.; Han, C.; Peng, L.; Aslam, N.; Ahmad, N. Towards autonomy: Cost-effective scheduling for long-range autonomous valet parking (LAVP). In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Thomas, D.; Kovoor, B.C. A Genetic Algorithm Approach to Autonomous Smart Vehicle Parking system. Procedia Comput. Sci. 2018, 125, 68–76. [Google Scholar] [CrossRef]
- Revathi, G.; Dhulipala, V.R.S. Smart parking systems and sensors: A survey. In Proceedings of the 2012 International Conference on Computing, Communication and Applications, Tamilnadu, India, 22–24 February 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Paidi, V.; Fleyeh, H.; Håkansson, J.; Nyberg, R.G. Smart parking sensors, technologies and applications for open parking lots: A review. IET Intell. Transp. Syst. 2018, 12, 735–741. [Google Scholar] [CrossRef]
- Chandrahasan, M.; Mahadik, A.; Lotlikar, T.; Oke, M.; Yeole, A. Survey on Different Smart Parking Techniques. Int. J. Comput. Appl. 2019, 137, 13–21. [Google Scholar] [CrossRef]
- Nene, S.; Mundle, S.; Mahajan, S.; Yeginwar, S.; Panchal, L. A Study of Vehicular Parking Systems. In ICICCT 2019—System Reliability, Quality Control, Safety, Maintenance and Management; Springer: Singapore, 2019; pp. 207–215. [Google Scholar] [CrossRef]
- El Khalidi, N.; Benabbou, F.; Sael, N.; Sabiri, K. Toward Distributed Smart Parking Management System. In Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications; ACM: New York, NY, USA, 2018; pp. 9:1–9:5. [Google Scholar] [CrossRef]
- Thiébaud (-Müller), E.; Hilty, L.M.; Schluep, M.; Widmer, R.; Faulstich, M. Service Lifetime, Storage Time, and Disposal Pathways of Electronic Equipment: A Swiss Case Study. J. Ind. Ecol. 2018, 22, 196–208. [Google Scholar] [CrossRef]
- Drummond, J.S.; Themessl-Huber, M. The cyclical process of action research. Action Res. 2007, 5, 430–448. [Google Scholar] [CrossRef]
- Chauhan, S.; Agarwal, N.; Kar, A.K. Addressing big data challenges in smart cities: A systematic literature review. Info 2016, 18, 73–90. [Google Scholar] [CrossRef]
- de Morais, C.M.; Sadok, D.; Kelner, J. An IoT sensor and scenario survey for data researchers. J. Braz. Comput. Soc. 2019, 25, 4. [Google Scholar] [CrossRef] [Green Version]
- Hamad Bin Khalifa University. Rayyan QCRI, the Systematic Reviews Web App; Hamad Bin Khalifa University: Doha, Qatar, 2016. [Google Scholar]
- Alam, M.; Moroni, D.; Pieri, G.; Tampucci, M.; Gomes, M.; Fonseca, J.; Ferreira, J.; Leone, G.R. Real-Time Smart Parking Systems Integration in Distributed ITS for Smart Cities. J. Adv. Transp. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Jones, M.; Khan, A.; Kulkarni, P.; Carnelli, P.; Sooriyabandara, M. ParkUs 2.0: Automated Cruise Detection for Parking Availability Inference. In Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services; ACM: New York, NY, USA, 2017; pp. 242–251. [Google Scholar] [CrossRef]
- Belkhala, S.; Benhadou, S.; Boukhdir, K.; Medromi, H. Smart Parking Architecture based on Multi Agent System. IJACSA Int. J. Advanced Comput. Sci. Appl. 2019, 10, 379–382. [Google Scholar] [CrossRef]
- FoxNet. What Smart Parking Architecture Is Best For Your City?—FoxNet; FoxNet Solutions: Waterloo, UK, 2018. [Google Scholar]
- RF Wireless World. Zigbee Smart Parking Architecture | Zigbee Smart Parking Basics; RF Wireless World: Bangalore, India, 2012. [Google Scholar]
- Isakovic, H.; Ratasich, D.; Hirsch, C.; Platzer, M.; Wally, B.; Rausch, T.; Nickovic, D.; Krenn, W.; Kappel, G.; Dustdar, S.; et al. CPS/IoT Ecosystem: A platform for research and education. In Proceedings of the 14th Workshop on Embedded and Cyber-Physical Systems Education (WESE 2018), Turin, Italy, 4–5 October 2014. [Google Scholar]
- AlHarbi, A.; AlOtaibi, B.; Baatya, M.; Jastania, Z.; Meccawy, M. A Smart Parking Solution for Jeddah City. Int. J. Comput. Appl. 2017, 171, 4–9. [Google Scholar] [CrossRef]
- Salpietro, R.; Bedogni, L.; Di Felice, M.; Bononi, L. Park Here! a smart parking system based on smartphones’ embedded sensors and short range Communication Technologies. In Proceedings of the IEEE World Forum on Internet of Things, WF-IoT 2015, Milan, Italy, 14–16 December 2015; pp. 18–23. [Google Scholar] [CrossRef]
- Lin, T.S.; Rivano, H.; Le Mouël, F. Performance comparison of contention- and schedule-based mac protocols in urban parking sensor networks. In Proceedings of the 2014 ACM International Workshop on Wireless and Mobile Technologies for Smart Cities—WiMobCity ’14; ACM Press: New York, NY, USA, 2014; pp. 39–48. [Google Scholar] [CrossRef] [Green Version]
- Shang, H.; Lin, W.; Huang, H. Empirical Study of Parking Problem on University Campus. J. Transp. Syst. Eng. Inf. Technol. 2007, 7, 135–140. [Google Scholar] [CrossRef]
- Bagula, A.; Castelli, L.; Zennaro, M. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model. Sensors 2015, 15, 15443–15467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- University of Cambridge. How Will City Infrastructure and Sensors Be Made Smart? Cambridge Centre for Smart Infrastructure and Construction, University of Cambridge: Cambridge, UK, 2015. [Google Scholar]
- Kotb, A.O.; Shen, Y.; Huang, Y. Smart Parking Guidance, Monitoring and Reservations: A Review. IEEE Intell. Transp. Syst. Mag. 2017, 9, 6–16. [Google Scholar] [CrossRef]
- Chippalkatti, P.; Kadam, G.; Ichake, V. I-SPARK: IoT Based Smart Parking System. In Proceedings of the 2018 International Conference On Advances in Communication and Computing Technology, ICACCT 2018, Sangamner, India, 8–9 February 2018; pp. 473–477. [Google Scholar] [CrossRef]
- Lee, P.; Tan, H.P.; Han, M. A solar-powered wireless parking guidance system for outdoor car parks. In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems—SenSys ’11; ACM Press: New York, NY, USA, 2011; p. 423. [Google Scholar] [CrossRef]
- Shin, J.H.; Jun, H.B. A study on smart parking guidance algorithm. Transp. Res. Part C Emerg. Technol. 2014, 44, 299–317. [Google Scholar] [CrossRef]
- Lambrinos, L.; Dosis, A. Applying mobile and internet of things technologies in managing parking spaces for people with disabilities. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication—UbiComp ’13 Adjunct; ACM Press: New York, NY, USA, 2013; pp. 219–222. [Google Scholar] [CrossRef]
- Tesoriere, G.; Giuffrè, T.; Barone, R.E.; Morgano, M.A.; Siniscalchi, S.M. Architecture for parking management in smart cities. IET Intell. Transp. Syst. 2013, 8, 445–452. [Google Scholar] [CrossRef]
- Nieto, R.M.; Garcia-Martin, A.; Hauptmann, A.G.; Martinez, J.M. Automatic Vacant Parking Places Management System Using Multicamera Vehicle Detection. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1069–1080. [Google Scholar] [CrossRef]
- Mathew, S.S.; Atif, Y.; Sheng, Q.Z.; Maamar, Z. Building Sustainable Parking Lots with the Web of Things. Pers. Ubiquitous Comput. 2014, 18, 895–907. [Google Scholar] [CrossRef]
- Heimberger, M.; Horgan, J.; Hughes, C.; McDonald, J.; Yogamani, S. Computer vision in automated parking systems: Design, implementation and challenges. Image Vis. Comput. 2017, 68, 88–101. [Google Scholar] [CrossRef]
- Roman, C.; Liao, R.; Ball, P.; Ou, S.; de Heaver, M. Detecting On-Street Parking Spaces in Smart Cities: Performance Evaluation of Fixed and Mobile Sensing Systems. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2234–2245. [Google Scholar] [CrossRef] [Green Version]
- Margreiter, M.; Orfanou, F.; Mayer, P. Determination of the parking place availability using manual data collection enriched by crowdsourced in-vehicle data. Transp. Res. Procedia 2017, 25, 497–510. [Google Scholar] [CrossRef]
- Vora, A.; Kumar, M.A.; Srinivasa, K.G. Low Cost Internet of Things based Vehicle Parking Information System. In Proceedings of the 6th IBM Collaborative Academia Research Exchange Conference (I-CARE) on I-CARE 2014—I-CARE 2014; ACM Press: New York, NY, USA, 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Hiesmair, M.; Hummel, K.A. Empowering road vehicles to learn parking situations based on optical sensor measurements. In Proceedings of the Seventh International Conference on the Internet of Things—IoT ’17; ACM Press: New York, NY, USA, 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Hamidi, S.R.; Ibrahim, E.N.M.; Rahman, M.F.B.A.; Shuhidan, S.M. Industry 4.0 Urban Mobility: GoNpark Smart Parking Tracking Module. In Proceedings of the 3rd International Conference on Communication and Information Processing; ACM: New York, NY, USA, 2017; pp. 503–507. [Google Scholar] [CrossRef]
- Ramaswamy, P. IoT smart parking system for reducing green house gas emission. In Proceedings of the 2016 International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, India, 8–9 April 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, C.F.; Ju, Y.H.; Hsieh, C.Y.; Lin, C.Y.; Tsai, M.H.; Chang, H.L. iParking—A real-time parking space monitoring and guiding system. Veh. Commun. 2017, 9, 301–305. [Google Scholar] [CrossRef]
- García, J.M.; Zoeke, D.; Vossiek, M. MIMO-FMCW Radar-Based Parking Monitoring Application With a Modified Convolutional Neural Network With Spatial Priors. IEEE Access 2018, 6, 41391–41398. [Google Scholar] [CrossRef]
- Jermsurawong, J.; Ahsan, U.; Haidar, A.; Dong, H.; Mavridis, N. One-Day Long Statistical Analysis of Parking Demand by Using Single-Camera Vacancy Detection. J. Transp. Syst. Eng. Inf. Technol. 2014, 14, 33–44. [Google Scholar] [CrossRef]
- Nawaz, S.; Efstratiou, C.; Mascolo, C. ParkSense: A Smartphone Based Sensing System For On-Street Parking. In Proceedings of the 19th Annual International Conference on Mobile Computing & Networking—MobiCom ’13; ACM Press: New York, NY, USA, 2013; p. 75. [Google Scholar] [CrossRef]
- Santos-González, I.; Caballero-Gil, P.; Rivero-García, A.; Hernández-Goya, C. Poster: Indoor Location System for Vehicles. In Proceedings of the 1st International Workshop on Experiences with the Design and Implementation of Smart Objects; ACM: New York, NY, USA, 2015; pp. 27–28. [Google Scholar] [CrossRef]
- Cherian, J.; Luo, J.; Guo, H.; Ho, S.S.; Wisbrun, R. Poster: ParkGauge: Gauging the Congestion Level of Parking Garages with Crowdsensed Parking Characteristics. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems—SenSys ’15; ACM Press: New York, NY, USA, 2015; pp. 395–396. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, H.; Han, M.; Xie, J.; Li, C. Research on Automatic Parking Systems Based on Parking Scene Recognition. IEEE Access 2017, 5, 21901–21917. [Google Scholar] [CrossRef]
- Jung, H.G. Semi-automatic parking slot marking recognition for intelligent parking assist systems. J. Eng. 2014, 2014, 8–15. [Google Scholar] [CrossRef]
- Sahfutri, A.; Husni, N.L.; Nawawi, M.; Lutfi, I.; Silvia, A.; Prihatini, E. Smart Parking Using Wireless Sensor Network System. In Proceedings of the 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal Pinang, Indonesia, 2–4 October 2018; pp. 117–122. [Google Scholar] [CrossRef]
- Grodi, R.; Rawat, D.B.; Rios-Gutierrez, F. Smart parking: Parking occupancy monitoring and visualization system for smart cities. In Proceedings of the Southeast Conference 2016, Norfolk, VA, USA, 30 March–3 April 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Nawaz, S.; Efstratiou, C.; Mascolo, C. Smart Sensing Systems for the Daily Drive. IEEE Pervasive Comput. 2016, 15, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Krieg, J.G.; Jakllari, G.; Toma, H.; Beylot, A.L. Unlocking the smartphone’s sensors for smart city parking. Pervasive Mob. Comput. 2018, 43, 78–95. [Google Scholar] [CrossRef]
- Gao, R.; He, F.; Li, T. VeLoc: Finding your car in indoor parking structures. Sensors 2018, 18, 1403. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, R.; Zhu, J.; Ye, T.; Ye, F.; Wang, Y.; Bian, K.; Luo, G.; Zhang, M. VeLoc: Finding Your Car in the Parking Lot. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems; ACM: New York, NY, USA, 2014; pp. 346–347. [Google Scholar] [CrossRef]
- Ionita, A.; Pomp, A.; Cochez, M.; Meisen, T.; Decker, S. Where to Park?: Predicting Free Parking Spots in Unmonitored City Areas. In Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics; ACM: New York, NY, USA, 2018; pp. 22:1–22:12. [Google Scholar] [CrossRef]
- Qadir, Z.; Al-Turjman, F.; Khan, M.A.; Nesimoglu, T. ZIGBEE Based Time and Energy Efficient Smart Parking System Using IOT. In Proceedings of the 2018 18th Mediterranean Microwave Symposium (MMS), Istanbul, Turkey, 31 October–2 November 2018; pp. 295–298. [Google Scholar] [CrossRef]
- Kodali, R.K.; Borra, K.Y.; G. N., S.S.; Domma, H.J. An IoT Based Smart Parking System Using LoRa. In Proceedings of the 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Zhengzhou, China, 18–20 October 2018; pp. 151–1513. [Google Scholar] [CrossRef]
- Shih, S.E.; Tsai, W.H. A convenient vision-based system for automatic detection of parking spaces in indoor parking lots using wide-angle cameras. IEEE Trans. Veh. Technol. 2014. [Google Scholar] [CrossRef]
- Baroffio, L.; Bondi, L.; Cesana, M.; Redondi, A.E.; Tagliasacchi, M. A visual sensor network for parking lot occupancy detection in Smart Cities. In Proceedings of the IEEE World Forum on Internet of Things, WF-IoT 2015, Milan, Italy, 14–16 December 2016; pp. 745–750. [Google Scholar] [CrossRef]
- Shi, J.; Jin, L.; Li, J.; Fang, Z. A smart parking system based on NB-IoT and third-party payment platform. In Proceedings of the 2017 17th International Symposium on Communications and Information Technologies (ISCIT), Cairns, Australia, 25–27 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Peng, G.C.A.; Nunes, M.B.; Zheng, L. Impacts of low citizen awareness and usage in smart city services: the case of London’s smart parking system. Inf. Syst. e-Bus. Manag. 2017, 15, 845–876. [Google Scholar] [CrossRef]
- Mainetti, L.; Palano, L.; Patrono, L.; Stefanizzi, M.L.; Vergallo, R. Integration of RFID and WSN technologies in a Smart Parking System. In Proceedings of the 2014 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 17–19 September 2014; pp. 104–110. [Google Scholar] [CrossRef]
- Atif, Y.; Ding, J.; Jeusfeld, M.A. Internet of Things Approach to Cloud-based Smart Car Parking. Procedia Comput. Sci. 2016, 98, 193–198. [Google Scholar] [CrossRef]
- Taherkhani, M.A.; Kawaguchi, R.; Shirmohammad, N.; Sato, M. BlueParking: An IoT Based Parking Reservation Service for Smart Cities. In Proceedings of the Second International Conference on IoT in Urban Space; ACM: New York, NY, USA, 2016; pp. 86–88. [Google Scholar] [CrossRef]
- Kotb, A.O.; Shen, Y.; Zhu, X.; Huang, Y. iParker—A New Smart Car-Parking System Based on Dynamic Resource Allocation and Pricing. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2637–2647. [Google Scholar] [CrossRef]
- Bock, F.; Di Martino, S.; Origlia, A. A 2-Step Approach to Improve Data-driven Parking Availability Predictions. In Proceedings of the 10th ACM SIGSPATIAL Workshop on Computational Transportation Science—IWCTS’17; ACM Press: New York, NY, USA, 2017; pp. 13–18. [Google Scholar] [CrossRef]
- Antoniou, C.; Gikas, V.; Papathanasopoulou, V.; Mpimis, T.; Perakis, H.; Kyriazis, C. A framework for risk reduction for indoor parking facilities under constraints using positioning technologies. Int. J. Disaster Risk Reduct. 2018, 31, 1166–1176. [Google Scholar] [CrossRef]
- Chatzigiannakis, I.; Vitaletti, A.; Pyrgelis, A. A privacy-preserving smart parking system using an IoT elliptic curve based security platform. Comput. Commun. 2016, 89–90, 165–177. [Google Scholar] [CrossRef]
- Filipovitch, A.; Boamah, E.F. A systems model for achieving optimum parking efficiency on campus: The case of Minnesota State University. Transp. Policy 2016, 45, 86–98. [Google Scholar] [CrossRef]
- Maternini, G.; Ferrari, F.; Guga, A. Application of variable parking pricing techniques to innovate parking strategies. The case study of Brescia. Case Stud. Transp. Policy 2017, 5, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Rashid, B.; Rehmani, M.H. Applications of wireless sensor networks for urban areas: A survey. J. Netw. Comput. Appl. 2016. [Google Scholar] [CrossRef]
- Suhr, J.K.; Jung, H.G. Automatic Parking Space Detection and Tracking for Underground and Indoor Environments. IEEE Trans. Ind. Electron. 2016, 63, 5687–5698. [Google Scholar] [CrossRef]
- Amato, G.; Carrara, F.; Falchi, F.; Gennaro, C.; Meghini, C.; Vairo, C. Deep learning for decentralized parking lot occupancy detection. Expert Syst. Appl. 2017, 72, 327–334. [Google Scholar] [CrossRef]
- Hössinger, R.; Widhalm, P.; Ulm, M.; Heimbuchner, K.; Wolf, E.; Apel, R.; Uhlmann, T. Development of a Real-Time Model of the Occupancy of Short-Term Parking Zones. Int. J. Intell. Transp. Syst. Res. 2014, 12, 37–47. [Google Scholar] [CrossRef]
- Klappenecker, A.; Lee, H.; Welch, J.L. Finding available parking spaces made easy. Ad Hoc Netw. 2014, 12, 243–249. [Google Scholar] [CrossRef]
- Rong, Y.; Xu, Z.; Yan, R.; Ma, X. Du-Parking. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining—KDD ’18; ACM Press: New York, NY, USA, 2018; pp. 646–654. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.H.; Jun, H.B.; Kim, J.G. Dynamic control of intelligent parking guidance using neural network predictive control. Comput. Ind. Eng. 2018, 120, 15–30. [Google Scholar] [CrossRef]
- Lei, C.; Ouyang, Y. Dynamic pricing and reservation for intelligent urban parking management. Transp. Res. Part C Emerg. Technol. 2017, 77, 226–244. [Google Scholar] [CrossRef] [Green Version]
- Zargayouna, M.; Balbo, F.; Ndiaye, K. Generic model for resource allocation in transportation. Application to urban parking management. Transp. Res. Part C Emerg. Technol. 2016, 71, 538–554. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Rivano, H.; Le Mouël, F. How to Choose the Relevant MAC Protocol for Wireless Smart Parking Urban Networks? In Proceedings of the 11th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks; ACM: New York, NY, USA, 2014; pp. 1–8. [Google Scholar] [CrossRef]
- Xiao, H.; Xu, M. How to restrain participants opt out in shared parking market? A fair recurrent double auction approach. Transp. Res. Part C Emerg. Technol. 2018, 93, 36–61. [Google Scholar] [CrossRef]
- Kubler, S.; Robert, J.; Hefnawy, A.; Cherifi, C.; Bouras, A.; Främling, K. IoT-based Smart Parking System for Sporting Event Management. In Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services; ACM: New York, NY, USA, 2016; pp. 104–114. [Google Scholar] [CrossRef] [Green Version]
- Jara, A.J.; Lopez, P.; Fernandez, D.; Castillo, J.F.; Zamora, M.A.; Skarmeta, A.F. Mobile Digcovery: Discovering and Interacting with the World Through the Internet of Things. Pers. Ubiquitous Comput. 2014, 18, 323–338. [Google Scholar] [CrossRef]
- Lima, D.H.; Aquino, A.L.; Ramos, H.S.; Almeida, E.S.; Rodrigues, J.J. OASys: An opportunistic and agile system to detect free on-street parking using intelligent boards embedded in surveillance cameras. J. Netw. Comput. Appl. 2014, 46, 241–249. [Google Scholar] [CrossRef]
- Qian, Z.S.; Rajagopal, R. Optimal dynamic parking pricing for morning commute considering expected cruising time. Transp. Res. Part C Emerg. Technol. 2014, 48, 468–490. [Google Scholar] [CrossRef]
- Qian, Z.S.; Rajagopal, R. Optimal Parking Pricing in General Networks with Provision of Occupancy Information. Procedia Soc. Behav. Sci. 2013, 80, 779–805. [Google Scholar] [CrossRef] [Green Version]
- Boyles, S.D.; Tang, S.; Unnikrishnan, A. Parking search equilibrium on a network. Transp. Res. Part B Methodol. 2015, 81, 390–409. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Wang, L.; Jia, L.; Dong, H.; Li, H. Parking Survey Made Efficient in Intelligent Parking Systems. Procedia Eng. 2016, 137, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Olasupo, T.O.; Otero, C.E.; Otero, L.D.; Olasupo, K.O.; Kostanic, I. Path Loss Models for Low-Power, Low-Data Rate Sensor Nodes for Smart Car Parking Systems. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1774–1783. [Google Scholar] [CrossRef]
- Bachani, M.; Qureshi, U.M.; Shaikh, F.K. Performance Analysis of Proximity and Light Sensors for Smart Parking. Procedia Comput. Sci. 2016, 83, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Al-Rashed, E.; Al-Rousan, M.; Al-Ibrahim, N. Performance evaluation of wide-spread assignment schemes in a vehicular cloud. Veh. Commun. 2017, 9, 144–153. [Google Scholar] [CrossRef]
- Safi, Q.G.K.; Luo, S.; Wei, C.; Pan, L.; Chen, Q. PIaaS: Cloud-oriented secure and privacy-conscious parking information as a service using VANETs. Comput. Netw. 2017, 124, 33–45. [Google Scholar] [CrossRef]
- Zadeh, N.R.N.; Cruz, J.C.D. Smart urban parking detection system. In Proceedings of the 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Batu Ferringhi, Malaysia, 25–27 November 2016; pp. 370–373. [Google Scholar] [CrossRef]
- Xiao, W.; Vallet, B.; Schindler, K.; Paparoditis, N. Street-side vehicle detection, classification and change detection using mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 2016, 114, 166–178. [Google Scholar] [CrossRef]
- Safi, Q.G.K.; Luo, S.; Pan, L.; Liu, W.; Hussain, R.; Bouk, S.H. SVPS: Cloud-based smart vehicle parking system over ubiquitous VANETs. Comput. Netw. 2018, 138, 18–30. [Google Scholar] [CrossRef]
- Tasseron, G.; Martens, K.; van der Heijden, R. The Potential Impact of Vehicle-to-Vehicle Communication on On-Street Parking Under Heterogeneous Conditions. IEEE Intell. Transp. Syst. Mag. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Alturki, B.; Reiff-Marganiec, S. Towards an Off-the-cloud IoT Data Processing Architecture via a Smart Car Parking Example. In Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing; ACM: New York, NY, USA, 2017; pp. 37:1–37:5. [Google Scholar] [CrossRef]
- Rodier, C.; Shaheen, S. Transit-based smart parking: An evaluation of the San Francisco Bay area field test. Transp. Res. Part C Emerg. 2010, 18, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Qian, Z.S. Turning meter transactions data into occupancy and payment behavioral information for on-street parking. Transp. Res. Part C Emerg. Technol. 2017, 78, 165–182. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Wolfson, O.; Xu, B. UPDetector: Sensing Parking/Unparking Activities Using Smartphones. In Proceedings of the 7th ACM SIGSPATIAL International Workshop on Computational Transportation Science; ACM: New York, NY, USA, 2014; pp. 76–85. [Google Scholar] [CrossRef]
- Lee, M.R.; Lin, D.T. Vehicle counting based on a stereo vision depth maps for parking management. Multimed. Tools Appl. 2018. [Google Scholar] [CrossRef]
- Yang, Z.; Pun-Cheng, L.S.C. Vehicle detection in intelligent transportation systems and its applications under varying environments: A review. Image Vis. Comput. 2018, 69, 143–154. [Google Scholar] [CrossRef]
- Henning, K.U.; Sawodny, O. Vehicle dynamics modelling and validation for online applications and controller synthesis. Mechatronics 2016, 39, 113–126. [Google Scholar] [CrossRef]
- Islam, F.R.; Pota, H.R. Virtual active filters for HVDC networks using V2G technology. Int. J. Electr. Power Energy Syst. 2014, 54, 399–407. [Google Scholar] [CrossRef]
- Bottero, M.; Chiara, B.D.; Deflorio, F.P. Wireless sensor networks for traffic monitoring in a logistic centre. Transp. Res. Part C Emerg. Technol. 2013, 26, 99–124. [Google Scholar] [CrossRef]
- Ngabo, C.I.; El Beqqali, O. Real-time Lighting Poles Monitoring by Using Wireless Sensor Networks Applied to the Smart Cities. In Proceedings of the International Conference on Big Data and Advanced Wireless Technologies; ACM: New York, NY, USA, 2016; pp. 12:1–12:8. [Google Scholar] [CrossRef]
- Vannieuwenborg, F.; Verbrugge, S.; Colle, D. Choosing IoT-connectivity? A guiding methodology based on functional characteristics and economic considerations. Trans. Emerg. Telecommun. Technol. 2018, 29, 1–16. [Google Scholar] [CrossRef]
- You, I.; Kwon, S.; Choudhary, G.; Sharma, V.; Seo, J.T. An enhanced LoRaWAN security protocol for privacy preservation in IoT with a case study on a smart factory-enabled parking system. Sensors 2018, 18, 1888. [Google Scholar] [CrossRef]
IEEE Xplore Digital Library | ScienceDirect | ||
Search String | Results | Search String | Results |
((((smart parking) AND solution) AND sensors) NOT algorithms) | 49 | smart parking solution and sensor | 10 |
((((smart parking) AND systems) AND sensors) NOT algorithms) | 172 | smart parking systems and sensors | 13 |
ACM Digital Library | Springer | ||
Search String | Results | Search String | Results |
+smart +parking +solutions + sensors −algorithms | 11 | smart AND parking AND solutions AND sensors AND NOT (algorithms) | 137 |
+smart +parking +sensors −algorithms | 39 | smart AND parking AND solutions AND system AND NOT (algorithms) | 53 |
IEEE Xplore Digital Library | |
Search Strings | Results |
(((((smart OR e OR automatic)AND parking) AND (systems OR solutions)) AND sensors)NOT algorithms) | 24 |
ScienceDirect | |
Search Strings | Results |
smart parking solution and sensors | 765 |
smart parking systems and sensors | 904 |
automatic parking solution and sensors | 911 |
automatic parking systems and sensors | 1229 |
e-parking solution and sensors | 1314 |
e-parking systems and sensors | 1836 |
ACM Digital Library | |
Search Strings | Result |
+smart +parking +solutions −algorithms +sensors | 26 |
+smart +parking +systems +sensors −algorithms | 80 |
+automatic +parking +solutions −algorithms +sensors | 2 |
+automatic +parking +systems +sensors −algorithms | 80 |
+e +parking +solutions −algorithms +sensors | 26 |
+e +parking +systems +sensors −algorithms | 80 |
Springer Link | |
Search Strings | Results |
”smart parking” and solutions and sensors not algorithms | 13 |
"smart parking” and solutions and systems not algorithms | 15 |
”automatic parking” and solutions and sensors not algorithms | 9 |
”automatic parking” and solutions and systems not algorithms | 13 |
”e parking” and solutions and sensors not algorithms | 87 |
”e parking” and solutions and systems not algorithms | 392 |
Sensor Type | |||||||
---|---|---|---|---|---|---|---|
Reference | Camera | Ultrasonic | Cellular Sensors | Infrared | Radar | Other | Magnetometer |
[15] | - | ● | - | - | - | - | - |
[30] | - | - | ● | - | - | - | ● |
[41] | - | - | - | - | - | - | ● |
[42] | - | ● | - | - | - | - | - |
[43] | - | ● | - | - | - | - | - |
[44] | - | ● | - | - | - | - | - |
[45] | ● | - | - | - | - | - | - |
[46] | - | - | - | - | - | - | ● |
[47] | ● | - | - | - | - | - | - |
[48] | - | ● | - | - | ● | - | - |
[49] | ● | ● | - | - | - | - | - |
[50] | - | ● | - | - | - | - | - |
[51] | ● | ● | - | - | ● | - | - |
[52] | - | - | - | ● | - | - | - |
[53] | - | - | - | ● | - | - | - |
[54] | - | - | ● | - | - | - | - |
[55] | - | ● | - | - | - | - | - |
[56] | ● | - | - | - | - | - | - |
[57] | - | - | - | - | ● | - | - |
[58] | ● | - | - | - | - | - | - |
[59] | - | - | ● | - | - | - | - |
[60] | - | - | ● | - | - | - | - |
[61] | - | - | ● | - | - | - | - |
[62] | ● | ● | - | - | - | - | - |
[63] | ● | - | - | - | - | - | - |
[64] | - | ● | - | - | - | - | - |
[65] | - | ● | - | - | - | - | - |
[66] | - | - | ● | - | - | - | - |
[67] | - | - | ● | - | - | - | - |
[68] | - | - | ● | - | - | - | - |
[69] | - | - | ● | - | - | - | - |
[70] | - | - | - | - | - | - | ● |
[71] | - | - | - | ● | - | - | - |
[72] | - | ● | - | - | - | - | - |
[73] | ● | - | - | - | - | - | - |
[74] | ● | - | - | - | - | - | - |
[75] | - | - | - | - | - | ● | - |
Reference | Information Management | Prediction | E-Parking | None |
---|---|---|---|---|
[15] | ● | ● | ● | |
[16] | ● | |||
[30] | ● | |||
[36] | ● | |||
[37] | ● | |||
[41] | ● | |||
[42] | ● | |||
[43] | ● | |||
[44] | ● | ● | ● | |
[45] | ● | ● | ||
[46] | ● | ● | ||
[47] | ● | ● | ||
[48] | ● | ● | ||
[49] | ● | ● | ||
[50] | ● | |||
[51] | ● | |||
[52] | ● | ● | ||
[53] | ● | |||
[54] | ● | |||
[55] | ● | |||
[56] | ● | ● | ||
[57] | ● | |||
[58] | ● | |||
[59] | ● | |||
[60] | ● | |||
[62] | ● | ● | ||
[63] | ● | |||
[64] | ● | ● | ||
[65] | ● | |||
[66] | ● | ● | ||
[67] | ● | |||
[68] | ● | |||
[70] | ● | ● | ||
[71] | ● | |||
[72] | ||||
[73] | ● | |||
[74] | ● | |||
[75] | ● | |||
[76] | ● | |||
[77] | ● | |||
[78] | ● | |||
[79] | ● | |||
[80] | ● | |||
[81] | ● | |||
[82] | ● | |||
[83] | ● | |||
[84] | ● | |||
[85] | ● | |||
[86] | ● | |||
[87] | ● | ● | ||
[88] | ● | |||
[89] | ● | |||
[90] | ● | |||
[91] | ● | |||
[92] | ● | |||
[93] | ● | |||
[94] | ● | |||
[95] | ● | |||
[96] | ● | |||
[97] | ● | |||
[98] | ● | |||
[99] | ● | |||
[100] | ● | |||
[101] | ● | |||
[102] | ● | ● | ● | |
[103] | ● | |||
[104] | ● | ● | ● | |
[105] | ● | |||
[106] | ● | |||
[107] | ● | |||
[108] | ● | |||
[109] | ● | ● | ||
[110] | ● | |||
[111] | ● | |||
[23] | ● | |||
[112] | ● | ● | ||
[113] | ● | |||
[114] | ● | |||
[115] | ● | |||
[116] | ● | |||
[117] | ● | |||
[118] | ● | |||
[119] | ● |
Sensor Network | User Network | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Wireless IoT Protocol | Specific Protocol | WiFi | 3G/4G | Bluetooth | Wired | Not Defined | 3G/4G | WiFi | Wired | Bluetooth |
[15] | ● | ZigBee | ● | ||||||||
[16] | ● | ● | |||||||||
[30] | ● | ● | |||||||||
[36] | ● | ● | |||||||||
[37] | ● | IEEE 802.15.4 | ● | ||||||||
[41] | ● | ● | |||||||||
[42] | ● | ● | |||||||||
[43] | ● | ZigBee (XBee) | ● | ||||||||
[44] | |||||||||||
[45] | ● | ZigBee | ● | ● | |||||||
[46] | ● | ● | |||||||||
[47] | ● | ● | |||||||||
[48] | ● | ● | |||||||||
[49] | ● | ● | |||||||||
[50] | ● | ● | |||||||||
[51] | ● | ● | |||||||||
[52] | ● | ZigBee | ● | ||||||||
[53] | LTE-IEEE 802.11p | ● | ● | ||||||||
[54] | ● | ● | |||||||||
[55] | ● | ● | ● | ||||||||
[56] | ● | ● | ● | ||||||||
[57] | ● | ● | |||||||||
[58] | ● | ● | |||||||||
[59] | ● | ● | |||||||||
[60] | ● | ● | |||||||||
[62] | ● | ● | |||||||||
[63] | ● | ● | |||||||||
[64] | ● | ZigBee | ● | ||||||||
[65] | ● | ZigBee | ● | ● | |||||||
[66] | ● | ● | |||||||||
[67] | ● | ● | ● | ||||||||
[68] | ● | ● | |||||||||
[70] | ● | ● | |||||||||
[71] | ● | ZigBee | ● | ||||||||
[72] | ● | LoRaWAN | ● | ||||||||
[73] | ● | ● | |||||||||
[74] | ● | IEEE 802.15.4 | ● | ||||||||
[75] | ● | NB - IoT | ● | ||||||||
[76] | ● | ● | |||||||||
[77] | ● | ZigBee | ● | ||||||||
[78] | ● | ● | |||||||||
[79] | ● | ● | |||||||||
[80] | ● | ● | |||||||||
[81] | ● | ● | |||||||||
[82] | Meshium | ● | ● | ● | |||||||
[83] | ● | IEEE 802.15.4 Digimesh | ● | ||||||||
[84] | ● | ● | |||||||||
[85] | ● | ● | |||||||||
[86] | ● | ● | |||||||||
[87] | ● | ● | |||||||||
[88] | ● | ● | |||||||||
[89] | ● | ● | |||||||||
[91] | ● | ● | |||||||||
[92] | ● | ZigBee | ● | ||||||||
[93] | ● | ● | |||||||||
[90] | ● | ● | |||||||||
[94] | ● | ● | |||||||||
[95] | ● | IEEE 802.15.4 | ● | ||||||||
[96] | ● | ● | |||||||||
[97] | ● | ● | |||||||||
[98] | ● | ZigBee | ● | ● | ● | ||||||
[99] | IEEE 802.11n /Ethernet | ● | ● | ● | |||||||
[100] | ● | ● | |||||||||
[101] | ● | ● | |||||||||
[102] | ● | ● | |||||||||
[103] | ● | IEEE 802.15.4 | ● | ● | |||||||
[104] | ● | ZigBee | ● | ||||||||
[105] | ● | ● | |||||||||
[106] | ● | ● | |||||||||
[107] | ● | DSRC/Wave | ● | ||||||||
[108] | ● | ● | ● | ● | |||||||
[109] | ● | ● | |||||||||
[110] | ● | ● | |||||||||
[111] | ● | ● | |||||||||
[23] | ● | ● | |||||||||
[112] | ● | ZigBee | ● | ● | ● | ||||||
[113] | ● | ● | |||||||||
[114] | ● | ● | |||||||||
[115] | ● | ● | |||||||||
[116] | ● | ● | |||||||||
[117] | ● | ● | |||||||||
[118] | ● | ● | |||||||||
[119] | ● | ● | |||||||||
[120] | ● | ● |
Features | |||||
---|---|---|---|---|---|
Sensor Type | Invasive | Ease of Installation | One Sensor per Slot | Several Slots per Sensor | Detection Autonomy |
Camera | No | No | No | Yes | No |
Ultrasonic | No | No | Yes | No | Yes |
Smartphone sensors | No | Yes | Yes | No | Yes |
Magnetic Loop | No | Yes | Yes | No | No |
RFID | Yes | No | Yes | No | Yes |
Infrared | No | No | Yes | No | Yes |
Radar | No | Yes | No | Yes | No |
Laser-based | No | No | Yes | No | Yes |
Magnetometer | No | Yes | Yes | No | Yes |
Features | ||||
---|---|---|---|---|
Protocol | Protocol Type | Range | Network Topology | Spectrum |
LoRaWAN | Long-Range | 5 km (urban) 20 km (rural) | Star | Free |
NB-IoT | Long-Range | 1 km (urban) 10 km (rural) | Star | Licensed |
ZigBee | Short-Range | 10 m–100 m | Mesh | Free |
IEE802.15.4 | Short-Range | 10 m | Mesh | Free |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barriga, J.J.; Sulca, J.; León, J.L.; Ulloa, A.; Portero, D.; Andrade, R.; Yoo, S.G. Smart Parking: A Literature Review from the Technological Perspective. Appl. Sci. 2019, 9, 4569. https://doi.org/10.3390/app9214569
Barriga JJ, Sulca J, León JL, Ulloa A, Portero D, Andrade R, Yoo SG. Smart Parking: A Literature Review from the Technological Perspective. Applied Sciences. 2019; 9(21):4569. https://doi.org/10.3390/app9214569
Chicago/Turabian StyleBarriga, Jhonattan J., Juan Sulca, José Luis León, Alejandro Ulloa, Diego Portero, Roberto Andrade, and Sang Guun Yoo. 2019. "Smart Parking: A Literature Review from the Technological Perspective" Applied Sciences 9, no. 21: 4569. https://doi.org/10.3390/app9214569
APA StyleBarriga, J. J., Sulca, J., León, J. L., Ulloa, A., Portero, D., Andrade, R., & Yoo, S. G. (2019). Smart Parking: A Literature Review from the Technological Perspective. Applied Sciences, 9(21), 4569. https://doi.org/10.3390/app9214569