You are currently on the new version of our website. Access the old version .
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

21 January 2026

Analysis of the Coupled Deformation Pattern of Existing Underground Structural Clusters Due to Undercrossing by a Super-Large-Diameter Shield Tunnel

and
1
State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China
2
Key Laboratory of Coastal Urban Resilient Infrastructures, Shenzhen University, Ministry of Education, Shenzhen 518060, China
3
Shenzhen Key Laboratory of Green, Efficient and Intelligent Construction of Underground Metro Station, Shenzhen 518060, China
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Advances in Tunnelling and Underground Space Technology—2nd Edition

Abstract

Dense and complex underground structures impose stringent requirements on shield tunneling. In the close-proximity construction of super-large-diameter shield tunnels, challenges may arise, including adverse impacts on the normal operation of existing structures, as well as difficulties in ensuring the bearing capacity and deformation control of these structures during excavation. This study, based on the stratigraphic conditions of the Chengdu area, employs FLAC3D 7.0 version software to simulate the section where the Shuanghua Road Tunnel underpasses both Metro Line 10 and the Chengdu-Guiyang High-Speed Railway. The main conclusions are as follows: (1) Tunnel underpassing induces uneven settlement in the metro tunnel, with a maximum settlement reaching 47.7 mm. The settlement trough exhibits a twin-peak morphology during dual-line construction. When a single super-large-diameter tunnel line crosses the existing structural cluster, the maximum settlement is located directly above the crossing point. During dual-line crossing, the maximum settlement shifts towards the midpoint between the two new tunnel lines. (2) As the left line of the new tunnel approaches the existing structure, the cross-sectional deformation of the existing structure is “pulled” towards the direction of the excavated new tunnel. After the new left line moves away, the cross-sectional deformation gradually recovers to a bilaterally symmetrical state. (3) The tunnel cross-section undergoes dynamic “compression-tension” convergence changes during the construction process, with a maximum longitudinal tensile convergence of −1.28 mm. (4) During the underpassing of the existing structural cluster by the super-large-diameter tunnel, the maximum torsion angle is approximately −0.016°, occurring at the moment when the shield machine head first passes directly beneath, located directly above the new tunnel. The torsion angle of the existing structure is greatest during the first underpassing event, and the maximum torsion angle during the second underpassing is lower than that during the first. This study reveals the composite deformation mode of “settlement-convergence-torsion” during the underpassing of existing structural clusters by super-large-diameter shield tunnels, providing a theoretical basis for risk control in similar adjacent engineering projects.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.