Abstract
We investigate how generative AI tools function in smart learning by estimating a structural path model that combines the Stimulus–Organism–Response (SOR) framework with Self-Determination Theory (SDT). Using survey data from N = 540 university students and covariance-based SEM, we examine whether perceptions of these tools—usefulness (PU), ease of use (PEU), creative benefit (PCB), and personalization (PP)—align with SDT’s motivational states of perceived autonomy (PA) and perceived competence (PC) and, in turn, relate to creative confidence (CC) and creative engagement (CE). All four perceptions show positive links to PA and PC, with PP exhibiting the largest association with PA. PA precedes PC, indicating a sequential motivational route. At the behavioral level, PC relates more strongly to CC, whereas PA shows a comparatively larger association with CE. In aggregate, the results support integrating SOR with SDT to explain students’ psychological responses to generative AI tools and inform course designs that cultivate autonomy and competence to sustain creative confidence and engagement in smart-learning contexts.