Relation of Dominant Leg Use with Functional Symmetries in Young Football Players of Different Age Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Recordings and Measurements
2.2.1. Measuring the Time of Dribbling with Changes in Direction
2.2.2. Measuring the Ball Flight Speed When Kicking
2.2.3. Measuring the CMJ Relative Maximum Power
2.2.4. Recording of the Football Match
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loffing, F.; Hagemann, N.; Strauss, B.; MacMahon, C. Chapter 1—Laterality in Sports: More Than Two Sides of the Same Coin. In Laterality in Sports: Theories and Applications; Loffing, F., Hagemann, N., Strauss, B., MacMahon, C., Eds.; Academic Press, Elsevier: San Diego, CA, USA, 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Coren, S.; Porac, C.; Duncan, P. Lateral Preference Behaviors in Preschool Children and Young Adults. Child Dev. 1981, 52, 443–450. [Google Scholar] [CrossRef]
- Corballis, M.C. Handedness and cerebral asymmetry: An evolutionary perspective. In The Two Halves of the Brain: Information Processing in the Cerebral Hemispheres, 1st ed.; Hugdahl, K., Westerhausen, R., Eds.; MIT Press: Cambridge, USA, 2010; pp. 65–88. [Google Scholar] [CrossRef]
- Musálek, M. Skilled performance tests and their use in diagnosing handedness and footedness at children of lower school age 8–10. Front. Psychol. 2015, 5, 1513. [Google Scholar] [CrossRef] [PubMed]
- Loffing, F.; Hagemann, N. Chapter 12—Performance Differences Between Left- and Right-Sided Athletes in One-on-One Interactive Sports. In Laterality in Sports: Theories and Applications; Loffing, F., Hagemann, N., Strauss, B., MacMahon, C., Eds.; Academic Press, Elsevier: San Diego, CA, USA, 2016; pp. 249–277. [Google Scholar] [CrossRef]
- Stöckel, T.; Carey, D.P. Chapter 14—Laterality Effects on Performance in Team Sports: Insights From Football and Basketball. In Laterality in Sports: Theories and Applications; Loffing, F., Hagemann, N., Strauss, B., MacMahon, C., Eds.; Academic Press, Elsevier: San Diego, CA, USA, 2016; pp. 309–328. [Google Scholar] [CrossRef]
- Starosta, W. Symmetry and Asymmetry of Movements in Sport; Institutute of Sport: Warsaw, Poland, 1990. [Google Scholar]
- Malinowski, A. Auksologia. Rozwój Osobniczy Człowieka w Ujęciu Biomedycznym; Wydawnictwo Uniwersytetu Zielonogórskiego: Zielona Góra, Poland, 2004. [Google Scholar]
- Koszczyc, T. Asymetria Morfologiczna Idynamicz Orazmożliwości jej Kształtowania Udzieciwmłod Szym Wieku Szkolnym; AWF: Wrocław, Poland, 1991. [Google Scholar]
- Petersen, H.L.; Peterson, C.T.; Reddy, M.B.; Hanson, K.B.; Swain, J.H.; Sharp, R.L.; Alekel, D.L. Body composition, dietary intake, and iron status of female collegiate swimmers and divers. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Berdejo del Fresno, D.; Vicente-Rodríguez, G.; González-Ravé, J.M.; Moreno, L.A.; Rey-López, J.P. Body composition and fitness in elite Spanish children tennis players. J. Hum. Sport Exerc. 2010, 5, 250–264. [Google Scholar] [CrossRef]
- Filipčič, A.; Čuk, I.; Filipčič, T. Lateral asymmetry in upper and lower limb bioelectrical impedance analysis in youth tennis players. Int. J. Morphol. 2016, 34, 890–895. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Spiteri, T.; Newton, R.U. Leg strength and lean mass symmetry influences kicking performance in Australian football. J. Sports Sci. Med. 2014, 13, 157–165. [Google Scholar] [PubMed Central]
- Poliszczuk, T.; Mańkowska, M.; Poliszczuk, D.; Wiśniewski, A. Symmetry and asymmetry of reaction time and body tissue composition of upper limbs in young female basketball players. Pediatr. Endocrinol. Diabetes Metab. 2013, 19, 132–136. [Google Scholar]
- Rauter, S.; Vodičar, J.; Šimenko, J. Body asymmetries in young male road cyclists. Int. J. Morphol. 2017, 35, 907–912. [Google Scholar] [CrossRef]
- Rynkiewicz, M.; Rynkiewicz, T.; Starosta, W. Asymmetry of spinal segments mobility in canoeists and its relationship with racing speed. J. Hum. Kinet. 2013, 36, 37–43. [Google Scholar] [CrossRef]
- Železnik, M. Povezanost Uporabe Prevladujoče Noge s Telesnimi in z Delovnimi Skladnostmi pri Mladih Nogometaših Različnih Starostnih 612 Skupin. Ph.D. Dissertation, Univerza v Ljubljani, Fakulteta za Šport, Ljubljana, Slovenia, 2024. [Google Scholar]
- Krzykala, M. Dxa as a Tool for the Assessment of Morphological Asymmetry in Athletes; IntechOpen: London, UK, 2012; pp. 1–18. [Google Scholar] [CrossRef]
- Functional Asymmetry. Available online: https://psychologydictionary.org/functional-asymmetry/ (accessed on 15 June 2023).
- Zaidi, Z.F. Body Asymmetries: Incidence, Etiology and Clinical Implications. Aust. J. Basic Appl. Sci. 2011, 5, 2157–2191. [Google Scholar]
- Ducher, G.; Courteix, D.; Meme, S.; Magni, C.; Viala, J.F.; Benhamou, C.L. Bone geometry in response to long-term tennis playing and its relationship with muscle volume: A quantitative magnetic resonance imaging study in tennis players. Bone 2005, 37, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, H.; Kannus, P.; Sievänen, H.; Pasanen, M.; Uusi-Rasi, K.; Heinonen, A.; Oja, P.; Vuori, I. Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 1998, 13, 310–319. [Google Scholar] [CrossRef]
- Ferriss, T. The 4 Hour Body; Crown Publishing Group: New York, NY, USA, 2010. [Google Scholar]
- Sattler, T. Notranji Dejavniki Tveganja Športnih Poškodb pri Odbojki. Ph.D. Dissertation, Univerza v Ljubljani, Fakulteta za Šport, Ljubljana, Slovenia, 2010. [Google Scholar]
- Rampinini, E.; Bishop, D.; Marcora, S.M.; Ferrari Bravo, D.; Sassi, R.; Impellizzeri, F.M. Validity of simple field tests as indicators of match-related physical performance in top-level professional football players. Int. J. Sports Med. 2007, 28, 228–235. [Google Scholar] [CrossRef]
- Pocrnjič, M. Prognostična Vrednost Ekspertnih Modelov za Usmerjanje, Izbiranje in Nadzorovanje Procesa Treniranja Mladih Nogometašev. Ph.D. Dissertation, Univerza v Ljubljani, Fakulteta za Šport, Ljubljana, Slovenia, 1999. [Google Scholar]
- Pinniger, G.; Steele, J.; Groeller, H. Does fatigue induced by repeated dynamic efforts affect hamstring muscle function? Med. Sci. Sports Exerc. 2000, 32, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Lehance, C.; Binet, J.; Bury, T.; Croisier, J.L. Muscular strength, functional performances and injury risk in professional and junior elite football players. Scand. J. Med. Sci. Sports 2009, 19, 243–251. [Google Scholar] [CrossRef]
- Masuda, K.; Kikuhara, N.; Demura, S.; Katsuta, S.; Yamanaka, K. Relationship between muscle strength in various isokinetic movements and kick performance among football players. J. Sports Med. Phys. Fit. 2005, 45, 44–52. [Google Scholar]
- Rahnama, N.; Lees, A.; Bambaecichi, E. Comparison of muscle strength and flexibility between the preferred and nonpreferred leg in English football players. Ergonomics 2005, 48, 1568–1575. [Google Scholar] [CrossRef]
- Fousekis, K.; Tsepis, E.; Poulmedis, P.; Athanasopolus, S.; Vagenas, G. Intrinsic risk factors of non-contact quadriceps and hamstring strains in football: A prospective study of 100 professional players. Br. J. Sports Med. 2011, 45, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Bale, P.; Scholes, S. Lateral dominance and basketball performance. J. Hum. Mov. Stud. 1986, 12, 145–151. [Google Scholar]
- Grouios, G.; Kollias, N.; Tsorbatzoudis, H.; Alexandris, K. Overrepresentation of mixed-footedness among professional and semi-professional football players: An innate superiority or a strategic advantage? J. Hum. Mov. Stud. 2002, 42, 19–29. [Google Scholar]
- Carey, D.P.; Smith, G.; Smith, D.T.; Shepherd, J.W.; Skriver, J.; Ord, L.; Rutland, A. Footedness in world football: An analysis of France ‘98. J. Sport Sci. 2001, 19, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Carey, D.P.; Smith, D.T.; Martin, D.; Smith, G.; Skriver, J.; Rutland, A.; Shepherd, J.W. The bi-pedal ape: Plasticity and asymmetry in footedness. Cortex 2009, 45, 650–661. [Google Scholar] [CrossRef]
- Pocrnjič, M. Struktura in Povezanost Osnovne in Nogometne Motorike pri Nogometaših Starih od 12 do 13 Let. Master’s Thesis, Univerza v Ljubljani, Fakulteta za Šport, Ljubljana, Slovenia, 1996. [Google Scholar]
- Díez-Fernández, D.M.; Rodríguez-Rosell, D.; Gazzo, F.; Giráldez, J.; Villaseca-Vicuña, R.; Gonzalez-Jurado, J.A. Can the Supido Radar Be Used for Measuring Ball Speed during Football Kicking? A Reliability and Concurrent Validity Study of a New Low-Cost Device. Sensors 2022, 22, 7046. [Google Scholar] [CrossRef] [PubMed]
- Spudić, D. Primerjava Različnih Protokolov Inercijske Vadbe za Moč nog. Ph.D. Dissertation, Univerza v Ljubljani, Fakulteta za Šport, Ljubljana, Slovenia, 2022. Available online: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=139102 (accessed on 18 January 2025).
- Parry, G.N.; Herrington, L.C.; Horsley, I.G. The Test-Retest Reliability of Force Plate-Derived Parameters of the Countermovement Push-Up as a Power Assessment Tool. J. Sport Rehabil. 2020, 29, 381–383. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the key phases of the countermovement jump force-time curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A Review of Countermovement and Squat Jump Testing Methods in the Context of Public Health Examination in Adolescence: Reliability and Feasibility of Current Testing Procedures. Front. Physiol. 2019, 10, 1384. [Google Scholar] [CrossRef] [PubMed]
- Haaland, E.; Hoff, J. Non-dominant leg training improves the bilateral motor performance of football players. Scand. J. Med. Sci. Sports 2003, 13, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.A.; Silva, M.V.; Carvalho, M. Reduction of lateral asymmetries in dribbling: The role of bilateral practice. Laterality Asymmetries Body Brain Cogn. 2003, 8, 53–65. [Google Scholar] [CrossRef]
- Nunome, H.; Ikegami, Y.; Kozakai, R.; Apriantono, T.; Sano, S. Segmental dynamics of football instep kicking with the preferred and non-preferred leg. J. Sports Sci. 2006, 24, 529–541. [Google Scholar] [CrossRef]
- Dörge, H.C.; Bull-Andersen, T.; Sørensen, H.; Simonsen, E.B. Biomechanical differences in football kicking with the preferred and the non-preferred leg. J. Sports Sci. 2002, 20, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Yanci, J.; Camara, J. Bilateral and unilateral vertical ground reaction forces and leg asymmetries in football players. Biol. Sport 2016, 33, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Painter, K. Bilateral Ground Reaction Force Jumping Asymmetry and Performance. Ph.D. Thesis, East Tennessee State University, Johnson City, TN, USA, 2021. Paper 3962. Available online: https://dc.etsu.edu/etd/3962 (accessed on 2 March 2024).
- Krondorf, L. Physiological Improvements in Male Football Players. In Laterality Aspect Changes by Training the Non-Dominant Leg; Norwegian University of Science and Technology, Department of Circulation and Medical Imaging: Trondheim, Norway, 2018. [Google Scholar] [CrossRef]
- Guilherme, J.; Graça, A.; Seabra, A.; Garganta, J. Validação de um sistema de avaliação da assimetria funcional dos membros inferiores em Futebol. Rev. Port. De Ciências Do Desporto 2012, 12, 77–97. [Google Scholar]
- Guilherme, J.; Garganta, J.; Graça, A.; Seabra, A. Influence of non-preferred foot technical training in reducing lower limbs functional asymmetry among young football players. J. Sports Sci. 2015, 33, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Marković, G.; Bradić, A. Nogomet—Integralni Kondicijski Trening; Udruga »Tjelesno vježbanje i zdravlje«: Zagreb, Croatia, 2008. [Google Scholar]
Variable | N | XA (%) | SD | SE |
---|---|---|---|---|
DLU–all | 116 | 77.78 | 8.35 | 0.78 |
DLU–U12 | 17 | 80.81 | 6.21 | 1.51 |
DLU–U13 | 18 | 73.41 | 10.24 | 2.41 |
DLU–U14 | 15 | 79.65 | 7.84 | 2.02 |
DLU–U15 | 16 | 77.76 | 9.68 | 2.42 |
DLU–U16 | 18 | 77.41 | 7.87 | 1.86 |
DLU–U17 | 13 | 78.83 | 6.28 | 1.74 |
DLU–U18 | 10 | 77.22 | 10.77 | 3.4 |
DLU–U19 | 9 | 77.59 | 5.07 | 1.69 |
Unit | Variable Right | XA | SD | K-S | Cr. α | Variable Left | XA | SD | K-S | Cr. α | t | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
No | R–all | 74.91 | 36.77 | + | L–all | 31.97 | 24.04 | - | 9.35 | <0.001 | ||
No | R–U12 | 47.76 | 21.08 | L–U12 | 21.18 | 23.72 | 9.35 | <0.001 | ||||
No | R–U13 | 59.78 | 24.42 | L–U13 | 29.72 | 19.3 | 2.92 | 0.01 | ||||
No | R–U14 | 80.33 | 41.41 | L–U14 | 36.87 | 30.97 | 3.45 | 0.003 | ||||
No | R–U15 | 69.94 | 37.22 | L–U15 | 36.31 | 28.86 | 2.64 | 0.019 | ||||
No | R–U16 | 75.56 | 32.78 | L–U16 | 37.06 | 25.75 | 2.25 | 0.04 | ||||
No | R–U17 | 106 | 43.61 | L–U17 | 34.46 | 19.74 | 3.21 | 0.005 | ||||
No | R–U18 | 86 | 19.43 | L–U18 | 25.1 | 11.73 | 5.57 | <0.001 | ||||
No | R–U19 | 97.67 | 40.27 | L–U19 | 34.89 | 22.86 | 7.21 | <0.001 | ||||
s | DCD_RR–all | 9.09 | 1.04 | - | 0.59 | DCD_LR–all | 9.25 | 1.13 | - | 0.92 | 3.59 | 0.007 |
s | DCD_RR–U12 | 10.47 | 0.92 | DCD_LR–U12 | 10.78 | 1 | −3.89 | <0.001 | ||||
s | DCD_RR–U13 | 9.93 | 0.54 | DCD_LR–U13 | 10.08 | 0.75 | −3.17 | 0.006 | ||||
s | DCD_RR–U14 | 9.38 | 0.85 | DCD_LR–U14 | 9.42 | 0.65 | −0.96 | 0.35 | ||||
s | DCD_RR–U15 | 8.99 | 0.69 | DCD_LR–U15 | 9.4 | 0.66 | −0.44 | 0.668 | ||||
s | DCD_RR–U16 | 8.34 | 0.35 | DCD_LR–U16 | 8.51 | 0.42 | −4.59 | <0.001 | ||||
s | DCD_RR–U17 | 8.38 | 0.57 | DCD_LR–U17 | 8.43 | 0.52 | −3.08 | 0.007 | ||||
s | DCD_RR–U18 | 8.19 | 0.33 | DCD_LR–U18 | 8.12 | 0.61 | −1.01 | 0.332 | ||||
s | DCD_RR–U19 | 8.07 | 0.3 | DCD_LR–U19 | 8.04 | 0.27 | 0.59 | 0.569 | ||||
s | DCD_RL–all | 9.59 | 1.25 | - | 0.92 | DCD_LL–all | 9.54 | 1.16 | + | 0.65 | 0.21 | 0.84 |
s | DCD_RL–U12 | 11.18 | 0.93 | DCD_LL–U12 | 11.15 | 0.75 | 0.97 | 0.334 | ||||
s | DCD_RL–U13 | 10.54 | 0.93 | DCD_LL–U13 | 10.39 | 0.74 | 0.24 | 0.812 | ||||
s | DCD_RL–U14 | 10 | 1.09 | DCD_LL–U14 | 9.65 | 0.83 | 0.93 | 0.366 | ||||
s | DCD_RL–U15 | 9.52 | 0.93 | DCD_LL–U15 | 9.53 | 0.91 | 2.32 | 0.036 | ||||
s | DCD_RL–U16 | 8.65 | 0.43 | DCD_LL–U16 | 8.9 | 0.58 | −0.14 | 0.888 | ||||
s | DCD_RL–U17 | 8.67 | 0.51 | DCD_LL–U17 | 8.8 | 0.51 | −3.35 | 0.004 | ||||
s | DCD_RL–U18 | 8.73 | 0.53 | DCD_LL–U18 | 8.54 | 0.66 | −1.63 | 0.128 | ||||
s | DCD_RL–U19 | 8.25 | 0.37 | DCD_LL–U19 | 8.13 | 0.62 | 2.12 | 0.063 | ||||
km/h | BFS_FSR–all | 61.16 | 10.96 | - | 0.97 | BFS_FSL–all | 57.71 | 10.18 | - | 0.92 | 5.72 | <0.001 |
km/h | BFS_FSR–U12 | 46.53 | 5.56 | BFS_FSL–U12 | 44 | 5.5 | 1.93 | 0.072 | ||||
km/h | BFS_FSR–U13 | 51.33 | 3.88 | BFS_FSL–U13 | 50.39 | 3.76 | 0.83 | 0.42 | ||||
km/h | BFS_FSR–U14 | 57.8 | 6.6 | BFS_FSL–U14 | 54.73 | 6.63 | 1.58 | 0.137 | ||||
km/h | BFS_FSR–U15 | 61.19 | 4.59 | BFS_FSL–U15 | 56.75 | 7.45 | 2.1 | 0.053 | ||||
km/h | BFS_FSR–U16 | 68.5 | 7.86 | BFS_FSL–U16 | 64.22 | 7.13 | 1.96 | 0.066 | ||||
km/h | BFS_FSR–U17 | 70.38 | 4.79 | BFS_FSL–U17 | 65.46 | 4.93 | 3.62 | 0.004 | ||||
km/h | BFS_FSR–U18 | 72.5 | 4.81 | BFS_FSL–U18 | 66.9 | 5.02 | 5.78 | <0.001 | ||||
km/h | BFS_FSR–U19 | 73.44 | 6.39 | BFS_FSL–U19 | 70.44 | 5.08 | 2.75 | 0.025 | ||||
km/h | BFS_FRR–all | 83.36 | 13.22 | - | 0.96 | BFS_FRL–all | 76.82 | 13.95 | - | 0.93 | 7.42 | <0.001 |
km/h | BFS_FRR–U12 | 66.06 | 7.94 | BFS_FRL–U12 | 56.82 | 11.28 | 3.99 | 0.001 | ||||
km/h | BFS_FRR–U13 | 72.89 | 6.31 | BFS_FRL–U13 | 67.94 | 7.28 | 2.13 | 0.048 | ||||
km/h | BFS_FRR–U14 | 79.2 | 7.4 | BFS_FRL–U14 | 72.33 | 8.19 | 2.67 | 0.018 | ||||
km/h | BFS_FRR–U15 | 80.75 | 6.97 | BFS_FRL–U15 | 76.63 | 10.37 | 1.28 | 0.219 | ||||
km/h | BFS_FRR–U16 | 92.06 | 7.7 | BFS_FRL–U16 | 85.94 | 5.57 | 2.56 | 0.02 | ||||
km/h | BFS_FRR–U17 | 96.77 | 8.07 | BFS_FRL–U17 | 88.92 | 6.91 | 4.24 | 0.001 | ||||
km/h | BFS_FRR–U18 | 96.7 | 4.08 | BFS_FRL–U18 | 88.7 | 6.18 | 3.87 | 0.004 | ||||
km/h | BFS_FRR–U19 | 97 | 6.96 | BFS_FRL–U19 | 91.22 | 5.72 | 2.37 | 0.045 | ||||
W/kg | RMP_R–all | 22.07 | 3.96 | + | RMP_L–all | 22.35 | 3.99 | + | −2.43 | 0.017 | ||
W/kg | RMP_R–U12 | 18.45 | 2.84 | RMP_L–U12 | 18.48 | 3.24 | −0.1 | 0.921 | ||||
W/kg | RMP_R–U13 | 20.04 | 3.13 | RMP_L–U13 | 20.27 | 3.02 | −0.88 | 0.39 | ||||
W/kg | RMP_R–U14 | 22.13 | 5.02 | RMP_L–U14 | 22.57 | 4.92 | −1.3 | 0.216 | ||||
W/kg | RMP_R–U15 | 21.64 | 3.27 | RMP_L–U15 | 22.3 | 2.83 | −1.65 | 0.119 | ||||
W/kg | RMP_R–U16 | 23.83 | 2.69 | RMP_L–U16 | 23.86 | 2.66 | −0.08 | 0.94 | ||||
W/kg | RMP_R–U17 | 23.14 | 4 | RMP_L–U17 | 23.57 | 3.99 | −2.13 | 0.055 | ||||
W/kg | RMP_R–U18 | 24.01 | 2.39 | RMP_L–U18 | 24.39 | 2.67 | −1.25 | 0.242 | ||||
W/kg | RMP_R–U19 | 26.41 | 2.47 | RMP_L–U19 | 26.52 | 3.13 | −0.27 | 0.797 |
Variable | D_DCD_R (s) | D_DCD_L (s) | D_BFS_FS (km/h) | D_BFS_FR (km/h) | D_RMP (W/kg) | ||
---|---|---|---|---|---|---|---|
DLU (%)–all | (N = 116) | spear. r. | 0.142 | 0.082 | 0.315 | 0.232 | −0.025 |
p | 0.128 | 0.379 | <0.001 | 0.012 | 0.793 | ||
DLU (%)–U12 | (N = 17) | spear. r. | 0.319 | −0.072 | 0.089 | 0.121 | 0.016 |
p | 0.213 | 0.783 | 0.735 | 0.645 | 0.952 | ||
DLU (%)–U13 | (N = 18) | spear. r. | 0.286 | 0.152 | 0.317 | 0.238 | 0.106 |
p | 0.25 | 0.548 | 0.199 | 0.342 | 0.674 | ||
DLU (%)–U14 | (N = 15) | spear. r. | 0.322 | 0.225 | 0.358 | 0.325 | 0.176 |
p | 0.242 | 0.419 | 0.19 | 0.237 | 0.53 | ||
DLU (%)–U15 | (N = 16) | spear. r. | 0.147 | 0.068 | 0.049 | 0.217 | −0.502 |
p | 0.587 | 0.803 | 0.858 | 0.42 | 0.047 | ||
DLU (%)–U16 | (N = 18) | spear. r. | 0.204 | 0.184 | 0.344 | −0.102 | 0.068 |
p | 0.418 | 0.465 | 0.163 | 0.687 | 0.788 | ||
DLU (%)–U17 | (N = 13) | spear. r. | 0.27 | 0.066 | 0.74 | −0.141 | 0.063 |
p | 0.373 | 0.831 | 0.004 | 0.645 | 0.837 | ||
DLU (%)–U18 | (N = 10) | spear. r. | −0.122 | −0.139 | 0.414 | 0.237 | 0.097 |
p | 0.738 | 0.701 | 0.235 | 0.51 | 0.789 | ||
DLU (%)–U19 | (N = 9) | spear. r. | 0.35 | 0.3 | −0.227 | 0.326 | −0.226 |
p | 0.356 | 0.433 | 0.557 | 0.391 | 0.559 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Železnik, M.; Čuk, I.; Šibanc, K. Relation of Dominant Leg Use with Functional Symmetries in Young Football Players of Different Age Groups. Appl. Sci. 2025, 15, 2588. https://doi.org/10.3390/app15052588
Železnik M, Čuk I, Šibanc K. Relation of Dominant Leg Use with Functional Symmetries in Young Football Players of Different Age Groups. Applied Sciences. 2025; 15(5):2588. https://doi.org/10.3390/app15052588
Chicago/Turabian StyleŽeleznik, Matjaž, Ivan Čuk, and Karmen Šibanc. 2025. "Relation of Dominant Leg Use with Functional Symmetries in Young Football Players of Different Age Groups" Applied Sciences 15, no. 5: 2588. https://doi.org/10.3390/app15052588
APA StyleŽeleznik, M., Čuk, I., & Šibanc, K. (2025). Relation of Dominant Leg Use with Functional Symmetries in Young Football Players of Different Age Groups. Applied Sciences, 15(5), 2588. https://doi.org/10.3390/app15052588