Topical Pentravan® Based Compositions with Naproxen and Its Proline Ester Derivative—A Comparative Study of Physical Properties and Permeation of Naproxen Through the Human Skin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Skin
2.3. Differential Scanning Calorimetry
2.4. Preparation of the Compositions Based on the Pentravan®
2.5. Characterization of the Topical Compositions
2.6. Skin Permeation Tests
2.7. High-Performance Liquid Chromatography (HPLC)
2.8. Statistical Analysis
3. Results
3.1. Drug-Enhancer Mixtures Thermal Testing
3.2. Stability and Rheological Evaluation of the Topical Compositions
3.3. Permeation Studies of Naproxen from the Topical Compositions Based on Pentravan®
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCarberg, B.; D’Arcy, Y. Options in Topical Therapies in the Management of Patients with Acute Pain. Postgrad. Med. 2013, 125, 19–24. [Google Scholar] [CrossRef]
- Ossowicz-Rupniewska, P.; Nowak, A.; Klebeko, J.; Janus, E.; Duchnik, W.; Adamiak-Giera, U.; Kucharski, Ł.; Prowans, P.; Petriczko, J.; Czapla, N.; et al. Assessment of the Effect of Structural Modification of Ibuprofen on the Penetration of Ibuprofen from Pentravan® (Semisolid) Formulation Using Human Skin and a Transdermal Diffusion Test Model. Materials 2021, 14, 6808. [Google Scholar] [CrossRef]
- Marwah, H.; Garg, T.; Goyal, A.K.; Rath, G. Permeation Enhancer Strategies in Transdermal Drug Delivery. Drug Deliv. 2016, 23, 564–578. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.S.; Cheruvu, H.S.; Mangion, S.E.; Alinaghi, A.; Benson, H.A.E.; Mohammed, Y.; Holmes, A.; Van Der Hoek, J.; Pastore, M.; Grice, J.E. Topical Drug Delivery: History, Percutaneous Absorption, and Product Development. Adv. Drug Deliv. Rev. 2021, 177, 113929. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, Y.; Holmes, A.; Kwok, P.C.L.; Kumeria, T.; Namjoshi, S.; Imran, M.; Matteucci, L.; Ali, M.; Tai, W.; Benson, H.A.E.; et al. Advances and Future Perspectives in Epithelial Drug Delivery. Adv. Drug Deliv. Rev. 2022, 186, 114293. [Google Scholar] [CrossRef]
- Derry, S.; Wiffen, P.J.; Kalso, E.A.; Bell, R.F.; Aldington, D.; Phillips, T.; Gaskell, H.; Moore, R.A. Topical Analgesics for Acute and Chronic Pain in Adults—An Overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2017, 2020, CD008609. [Google Scholar] [CrossRef]
- Üstündağ Okur, N.; Yavaşoğlu, A.; Karasulu, H.Y. Preparation and Evaluation of Microemulsion Formulations of Naproxen for Dermal Delivery. Chem. Pharm. Bull. 2014, 62, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Bayer Healthcare LLC. Topical Gel Compositions of Naproxen. WO2020159676 A1, 6 August 2020. Available online: https://patentimages.storage.googleapis.com/21/d0/5b/1b07902db0937c/WO2020159676A1.pdf (accessed on 3 April 2024).
- Bonina, F.P.; Puglia, C.; Barbuzzi, T.; De Caprariis, P.; Palagiano, F.; Rimoli, M.G.; Saija, A. In Vitro and in Vivo Evaluation of Polyoxyethylene Esters as Dermal Prodrugs of Ketoprofen, Naproxen and Diclofenac. Eur. J. Pharm. Sci. 2001, 14, 123–134. [Google Scholar] [CrossRef]
- Attia, D.A. In Vitro and in Vivo Evaluation of Transdermal Absorption of Naproxen Sodium. Aust. J. Basic Appl. Sci. 2009, 3, 2154–2165. [Google Scholar]
- Noreen, S.; Pervaiz, F.; Ashames, A.; Buabeid, M.; Fahelelbom, K.; Shoukat, H.; Maqbool, I.; Murtaza, G. Optimization of Novel Naproxen-Loaded Chitosan/Carrageenan Nanocarrier-Based Gel for Topical Delivery: Ex Vivo, Histopathological, and In Vivo Evaluation. Pharmaceuticals 2021, 14, 557. [Google Scholar] [CrossRef] [PubMed]
- Świątek, E.; Ossowicz-Rupniewska, P.; Janus, E.; Nowak, A.; Sobolewski, P.; Duchnik, W.; Kucharski, Ł.; Klimowicz, A. Novel Naproxen Salts with Increased Skin Permeability. Pharmaceutics 2021, 13, 2110. [Google Scholar] [CrossRef]
- Kopciuch, E.; Janus, E.; Ossowicz-Rupniewska, P.; Nowak, A.; Duchnik, W.; Kucharski, Ł.; Adamiak-Giera, U.; Lendzion-Bieluń, Z. Characterization of Naproxen Salts with Amino Acid Esters and Their Application in Topical Skin Preparations. Eur. J. Pharm. Biopharm. 2024, 204, 114505. [Google Scholar] [CrossRef] [PubMed]
- Barbero, A.M.; Frasch, H.F. Effect of Frozen Human Epidermis Storage Duration and Cryoprotectant on Barrier Function Using Two Model Compounds. Skin Pharmacol. Physiol. 2016, 29, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Badran, M.M.; Kuntsche, J.; Fahr, A. Skin Penetration Enhancement by a Microneedle Device (Dermaroller®) In Vitro: Dependency on Needle Size and Applied Formulation. Eur. J. Pharm. Sci. 2009, 36, 511–523. [Google Scholar] [CrossRef]
- Haq, A.; Goodyear, B.; Ameen, D.; Joshi, V.; Michniak-Kohn, B. Strat-M® Synthetic Membrane: Permeability Comparison to Human Cadaver Skin. Int. J. Pharm. 2018, 547, 432–437. [Google Scholar] [CrossRef]
- Kuntsche, J.; Bunjes, H.; Fahr, A.; Pappinen, S.; Rönkkö, S.; Suhonen, M.; Urtti, A. Interaction of Lipid Nanoparticles with Human Epidermis and an Organotypic Cell Culture Model. Int. J. Pharm. 2008, 354, 180–195. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.; Amaro, M.I.; Healy, A.M.; Cabral, L.M.; de Sousa, V.P. Comparative Evaluation of Rivastigmine Permeation from a Transdermal System in the Franz Cell Using Synthetic Membranes and Pig Ear Skin with in Vivo-in Vitro Correlation. Int. J. Pharm. 2016, 512, 234–241. [Google Scholar] [CrossRef]
- Davies, D.J.; Ward, R.J.; Heylings, J.R. Multi-Species Assessment of Electrical Resistance as a Skin Integrity Marker for in Vitro Percutaneous Absorption Studies. Toxicol. Vitr. 2004, 18, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Bertges, F.S.; da Penha Henriques do Amaral, M.; Rodarte, M.P.; Vieira Fonseca, M.J.; Sousa, O.V.; Pinto Vilela, F.M.; Alves, M.S. Assessment of Chemical Changes and Skin Penetration of Green Arabica Coffee Beans Biotransformed by Aspergillus Oryzae. Biocatal. Agric. Biotechnol. 2020, 23, 101512. [Google Scholar] [CrossRef]
- Scheuplein, R.J.; Blank, I.H. Permeability of the Skin. Physiol. Rev. 1971, 51, 702–747. [Google Scholar] [CrossRef]
- Higuchi, T. Physical Chemical Analysis of Percutaneous Absorption Process from Creams and Oint-Ments. J. Soc. Cosmet. Chem. 1960, 11, 85–97. [Google Scholar]
- Ribeiro, B.D.; Florindo, C.; Iff, L.C.; Coelho, M.A.Z.; Marrucho, I.M. Menthol-Based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. ACS Sustain. Chem. Eng. 2015, 3, 2469–2477. [Google Scholar] [CrossRef]
- Barani Pour, S.; Jahanbin Sardroodi, J.; Rastkar Ebrahimzadeh, A.; Avestan, M.S. Structural and Dynamic Properties of Eutectic Mixtures Based on Menthol and Fatty Acids Derived from Coconut Oil: A MD Simulation Study. Sci. Rep. 2022, 12, 5153. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Crespo, E.A.; Pontes, P.V.A.; Silva, L.P.; Bülow, M.; Maximo, G.J.; Batista, E.A.C.; Held, C.; Pinho, S.P.; Coutinho, J.A.P. Tunable Hydrophobic Eutectic Solvents Based on Terpenes and Monocarboxylic Acids. ACS Sustain. Chem. Eng. 2018, 6, 8836–8846. [Google Scholar] [CrossRef]
- Jin, Y.; Jung, D.; Li, K.; Park, K.; Lee, J. Mixing of Menthol-Based Hydrophobic Deep Eutectic Solvents as a Novel Method to Tune Their Properties. J. Mol. Liq. 2020, 301, 112416. [Google Scholar] [CrossRef]
- Brummer, R.; Godersky, S. Rheological Studies to Objectify Sensations Occurring When Cosmetic Emulsions Are Applied to the Skin. Colloids Surf. A Physicochem. Eng. Asp. 1999, 152, 89–94. [Google Scholar] [CrossRef]
- Diamante, L.M.; Lan, T. Absolute Viscosities of Vegetable Oils at Different Temperatures and Shear Rate Range of 64.5 to 4835 s−1. J. Food Process. 2014, 2014, 234583. [Google Scholar] [CrossRef]
- Klebeko, J.; Ossowicz-Rupniewska, P.; Nowak, A.; Janus, E.; Duchnik, W.; Adamiak-Giera, U.; Kucharski, Ł.; Prowans, P.; Petriczko, J.; Czapla, N.; et al. Permeability of Ibuprofen in the Form of Free Acid and Salts of L-Valine Alkyl Esters from a Hydrogel Formulation through Strat-MTM Membrane and Human Skin. Materials 2021, 14, 6678. [Google Scholar] [CrossRef] [PubMed]
- Welton, T. Ionic Liquids: A Brief History. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef]
- Kumar, L.; Suhas, B.; Pai, G.K.; Verma, R. Determination of Saturated Solubility of Naproxen Using UV Visible Spectrophotometer. Res. J. Pharm. Technol. 2015, 8, 825. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Hasenkopf, K.; Eisner, P.; Kerscher, M. Release and in Vitro Skin Permeation of Polyphenols from Cosmetic Emulsions. Intern. J. Cosmet. Sci. 2013, 35, 491–501. [Google Scholar] [CrossRef]
- Benson, H. Transdermal Drug Delivery: Penetration Enhancement Techniques. Curr. Drug Deliv. 2005, 2, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Haddad, C. Treatment of Refractory Endometriosis-Related Pain with Vaginal Gestrinone in Pentravan Associated with Pinus Pinaster Extract and Resveratrol: A Preliminary Study. Gynecol. Obstet. 2014, 4, 9. [Google Scholar] [CrossRef]
- Kunta, J.R.; Goskonda, V.R.; Khan, M.A.; Brotherton, H.O.; Reddy, I.K. Effect of Menthol and Related Terpenes on the Percutaneous Absorption of Propranolol across Excised Hairless Mouse Skin. J. Pharm. Sci. 1997, 86, 1369–1373. [Google Scholar]
- Degim, I.T.; Uslu, A.; Hadgraft, J.; Atay, T.; Akay, C.; Cevheroglu, S. The Effects of Azone and Capsaicin on the Permeation of Naproxen through Human Skin. Int. J. Pharm. 1999, 179, 21–25. [Google Scholar] [CrossRef]
- Nowak, A.; Duchnik, W.; Makuch, E.; Kucharski, Ł.; Ossowicz-Rupniewska, P.; Cybulska, K.; Sulikowski, T.; Moritz, M.; Klimowicz, A. Epilobium angustifolium L. Essential Oil—Biological Activity and Enhancement of the Skin Penetration of Drugs—In Vitro Study. Molecules 2021, 26, 7188. [Google Scholar] [CrossRef]
- Aqil, M.; Ahad, A.; Sultana, Y.; Ali, A. Status of Terpenes as Skin Penetration Enhancers. Drug Discov. Today 2007, 12, 1061–1067. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Q.-D.; Wu, Y.-M.; Liu, P.; Yao, J.-H.; Lu, Q.; Zhang, H.; Duan, J.-A. Potential of Essential Oils as Penetration Enhancers for Transdermal Administration of Ibuprofen to Treat Dysmenorrhoea. Molecules 2015, 20, 18219–18236. [Google Scholar] [CrossRef]
- Wan, G.; Dai, X.; Yin, Q.; Shi, X.; Qiao, Y. Interaction of Menthol with Mixed-Lipid Bilayer of Stratum Corneum: A Coarse-Grained Simulation Study. J. Mol. Graph. Model. 2015, 60, 98–107. [Google Scholar] [CrossRef]
- Wang, H.; Meng, F. The Permeability Enhancing Mechanism of Menthol on Skin Lipids: A Molecular Dynamics Simulation Study. J. Mol. Model. 2017, 23, 279. [Google Scholar] [CrossRef]
- Huang, C.; Wang, H.; Tang, L.; Meng, F. Penetration Enhancement of Menthol on Quercetin through Skin: Insights from Atomistic Simulation. J. Mol. Model. 2019, 25, 235. [Google Scholar] [CrossRef] [PubMed]
- Adamiak-Giera, U.; Nowak, A.; Duchnik, W.; Ossowicz-Rupniewska, P.; Czerkawska, A.; Machoy-Mokrzyńska, A.; Sulikowski, T.; Kucharski, Ł.; Białecka, M.; Klimowicz, A.; et al. Evaluation of the in Vitro Permeation Parameters of Topical Ketoprofen and Lidocaine Hydrochloride from Transdermal Pentravan® Products through Human Skin. Front. Pharmacol. 2023, 14, 1157977. [Google Scholar] [CrossRef]
Composition | Ingredient | |||||
---|---|---|---|---|---|---|
Pentravan® | NAP | [ProOiPr][NAP] | Menthol | TinCap | Ethanol | |
Pen + NAP | 80 | 10 | – | – | – | 10 |
Pen + menthol + NAP | 70 | 10 | – | 10 | – | 10 |
Pen + TinCap + NAP | 80 | 10 | – | – | 10 | – |
Pen + [ProOiPr][NAP] | 73.2 | – | 16.8 | – | – | 10 |
Pen + menthol + [ProOiPr][NAP] | 63.2 | – | 16.8 | 10 | – | 10 |
Pen + TinCap + [ProOiPr][NAP] | 73.2 | – | 16.8 | – | 10 | – |
Formulation | Q (µg NAP cm−2) | %AD | JSS, (µg cm−2 h−1) |
---|---|---|---|
Pen + NAP | 339.7 ± 16.3 a | 0.33 ± 0.02 a | 12.9 ± 0.6 *, a |
Pen + menthol + NAP | 847.9 ± 117.1 b | 0.85 ± 0.12 b | 34.5 ± 1.6 *, b |
Pen + TinCap + NAP | 1079.1 ± 137.1 b | 1.08 ± 0.12 b | 47.9 ± 1.9 *, c |
Pen + [ProOiPr][NAP] | 791.2 ± 83.8 b | 0.79 ± 0.08 b | 91.14 ± 2.7 **, d |
Pen + TinCap + [ProOiPr][NAP] | 1613.2 ± 114.3 c | 1.61 ± 0.11 c | 66.8 ± 1.0 *, e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopciuch, E.; Ossowicz-Rupniewska, P.; Adamiak-Giera, U.; Nowak, A.; Wilpiszewska, K.; Białecka, M.; Kucharski, Ł.; Muzykiewicz-Szymańska, A.; Miernik, M.; Halczak, M.; et al. Topical Pentravan® Based Compositions with Naproxen and Its Proline Ester Derivative—A Comparative Study of Physical Properties and Permeation of Naproxen Through the Human Skin. Appl. Sci. 2025, 15, 1338. https://doi.org/10.3390/app15031338
Kopciuch E, Ossowicz-Rupniewska P, Adamiak-Giera U, Nowak A, Wilpiszewska K, Białecka M, Kucharski Ł, Muzykiewicz-Szymańska A, Miernik M, Halczak M, et al. Topical Pentravan® Based Compositions with Naproxen and Its Proline Ester Derivative—A Comparative Study of Physical Properties and Permeation of Naproxen Through the Human Skin. Applied Sciences. 2025; 15(3):1338. https://doi.org/10.3390/app15031338
Chicago/Turabian StyleKopciuch, Ewelina, Paula Ossowicz-Rupniewska, Urszula Adamiak-Giera, Anna Nowak, Katarzyna Wilpiszewska, Monika Białecka, Łukasz Kucharski, Anna Muzykiewicz-Szymańska, Maciej Miernik, Mirosław Halczak, and et al. 2025. "Topical Pentravan® Based Compositions with Naproxen and Its Proline Ester Derivative—A Comparative Study of Physical Properties and Permeation of Naproxen Through the Human Skin" Applied Sciences 15, no. 3: 1338. https://doi.org/10.3390/app15031338
APA StyleKopciuch, E., Ossowicz-Rupniewska, P., Adamiak-Giera, U., Nowak, A., Wilpiszewska, K., Białecka, M., Kucharski, Ł., Muzykiewicz-Szymańska, A., Miernik, M., Halczak, M., Romanowski, M., & Janus, E. (2025). Topical Pentravan® Based Compositions with Naproxen and Its Proline Ester Derivative—A Comparative Study of Physical Properties and Permeation of Naproxen Through the Human Skin. Applied Sciences, 15(3), 1338. https://doi.org/10.3390/app15031338