Abstract
Urban green space is essential for ecological functions, environmental quality, and human well-being, yet campus expansion can reduce vegetated areas. This study assessed UGS dynamics at Universitas Padjadjaran’s Jatinangor campus from 2015 to 2025 and evaluated an object-based machine learning approach for fine-scale land cover mapping. High-resolution WorldView-2, WorldView-3, and Legion-03 imagery were pan-sharpened, geometrically corrected, normalized, and used to compute NDVI and NDWI indices. Object-based image analysis segmented the imagery into homogeneous objects, followed by random forest classification into six land cover classes; UGS was derived from dense and sparse vegetation. Accuracy assessment included confusion matrices, overall accuracy 0.810–0.860, kappa coefficients 0.747–0.826, weighted F1 scores 0.807–0.860, and validation with 43 field points. The total UGS increased from 68.89% to 74.69%, bare land decreased from 13.49% to 5.81%, and building areas moderately increased from 10.36% to 11.52%. The maps captured vegetated and developed zones accurately, demonstrating the reliability of the classification approach. These findings indicate that campus expansion has been managed without compromising ecological integrity, providing spatially explicit, reliable data to inform sustainable campus planning and support green campus initiatives.