Abstract
Tritium (3H) is a low-energy β emitter commonly found in environmental water samples, and its routine monitoring requires highly sensitive techniques capable of achieving low detection limits. Liquid scintillation counting (LSC) is the standard method for low-level 3H analysis; however, quenching significantly affects detection efficiency and minimum detectable activity (MDA), and systematic evaluations across different quench levels and measurement approaches remain limited. This study evaluates quench-related uncertainties in low-level 3H measurement using two ultra-low background liquid scintillation counters, Quantulus 1220 and GCT 6220. High- and low-quench conditions were created by varying sample-to-cocktail ratios, and performance was assessed through detection efficiency, minimum detectable activity (MDA), and stability. Under the relative measurement method with limited quench variation, GCT 6220 achieved higher efficiency, lower background, and lower detection limits. Under the internal standard method with broader quench spans, Quantulus 1220 produced smoother efficiency–quench curves and more stable results. Thus, GCT 6220 is advantageous for sensitivity-demanding scenarios, while Quantulus 1220 is better suited for quench-correction applications.