Explosion Characteristics and Lethality Degree Evaluation from Improvised Explosive Device (IED) Detonation in Urban Area: Case of the Cylindrical Geometry
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiments
2.2. Numerical Simulations
3. Results
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Han, F.; Zhou, Q. The projection angles of fragments from a cylindrical casing filled with charge initiated at one end. Int. J. Impact Eng. 2017, 103, 138–148. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, F.; Cao, Y.; Yan, C.A. A fragments mass distribution scaling relation for fragmenting shells with variable thickness subjected to internal explosive loading. Int. J. Impact Eng. 2018, 120, 79–94. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Wen, Y. Study on fragmentation mechanism under explosion loading. Int. J. Impact Eng. 2017, 99, 947. [Google Scholar]
- Li, Y.; Xiong, S.; Li, X.; Wen, Y. Mechanism of velocity enhancement of asymmetrically two lines initiated warhead. Int. J. Impact Eng. 2018, 122, 161–174. [Google Scholar] [CrossRef]
- An, X.; Dong, Y.; Liu, J.; Tian, C. General formula to calculate the fragment velocity of warheads with hollow core. Int. J. Impact Eng. 2018, 113, 1–8. [Google Scholar] [CrossRef]
- Gold, V.M. Fragmentation model for large L/D (Length over Diameter) explosive fragmentation warheads. Def. Technol. 2017, 13, 300–309. [Google Scholar] [CrossRef]
- Cooper, P.W. Explosive Engineering; Wiley-VCH: New York, NY, USA, 1996. [Google Scholar]
- Grisaro, H.; Dancygier, A.N. Numerical study of velocity distribution of fragments caused by explosion of a cylindrical cased charge. Int. J. Impact Eng. 2015, 86, 1–12. [Google Scholar] [CrossRef]
- Huang, G.; Li, W.; Feng, S. Axial distribution of Fragment Velocities from cylindrical casing under explosive loading. Int. J. Impact Eng. 2015, 76, 20–27. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, B.; Yan, X.; Zhou, T.; Xiao, X.; Feng, S. Axial distribution of fragment velocities from cylindrical casing with air parts at two ends. Int. J. Impact Eng. 2020, 140, 103535. [Google Scholar] [CrossRef]
- Zhou, M.; Wu, C.; An, F.; Liao, S.; Yuan, X.; Xue, D.; Liu, J. Acceleration Characteristics of Discrete Fragments Generated from Explosively-Driven Cylindrical Metal Shells. Materials 2020, 13, 2066. [Google Scholar] [CrossRef] [PubMed]
- Grisaro, H.Y.; Dancygier, A.N. Spatial mass distribution of fragments striking a protective structure. Int. J. Impact Eng. 2018, 112, 1–14. [Google Scholar] [CrossRef]
- Mott, N.F. Fragmentation of shells under explosive loading. Proc. R. Soc. A 1945, 189, 300–308. [Google Scholar]
- Grady, D.; Kipp, M. Mechanisms of dynamic fragmentation. Factors governing fragment size. Mech. Mater. 1985, 4, 311–320. [Google Scholar] [CrossRef]
- Kipp, M.E.; Grady, D.E.; Swegle, J.W. Numerical and experimental studies of mgh-velocity impact fragmentation. Int. J. Impact Eng. 1993, 14, 427–438. [Google Scholar] [CrossRef]
- Mock, W.; Holt, W.H. Computation of fragment mass distributions for HF-1 steel explosive-filled cylinders. J. Appl. Phys. 1985, 58, 1223–1228. [Google Scholar] [CrossRef]
- Grady, D.E.; Kipp, M.E. Geometric statistics and dynamic fragmentation. J. Appl. Phys. 1985, 58, 1210–1222. [Google Scholar] [CrossRef]
- Grady, D.E. Fragmentation of Rings and Shells; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Arnold, W.; Rottenkolber, E. Fragment mass distribution of metal cased explosive charges. Int. J. Impact Eng. 2008, 35, 1393–1398. [Google Scholar] [CrossRef]
- Xu, H.; Li, W.; Li, W.; Wang, Y. Experimental studies of explosion energy output with different igniter mass. Def. Technol. 2019, 15, 808–814. [Google Scholar] [CrossRef]
- Available online: https://www.union-steels.com/standards/en-10255.html (accessed on 9 September 2025).
- ANSYS, Inc. ANSYS Discover Simulation Software (One-Year Rental License). Available online: https://www.ansys.com (accessed on 9 September 2025).
- Zecevic, B.; Terzic, J.; Catovic, A.; Serdarevic Kadic, S. Characterization of distribution parameters of fragment mass and number for conventional projectiles. In New Trends in Research of Energetic Materials, Czech Republic; NTEM: Hangzhou, China, 2011. [Google Scholar]
- Zhang, F.; He, Y.; Xie, W.; Wei, N.; Li, J.; Wang, S.; Wang, J. Drag coefficients for elongated/flattened irregular particles based on particle resolved direct numerical simulation. Powder Technol. 2023, 418, 118290. [Google Scholar] [CrossRef]
- McCleskey, F. Drag Coefficients for Irregular Fragments; Naval Surface Warfare Center: Washington, DC, USA, 1988; Volume 87. [Google Scholar]
- Li, Y.; Yu, Q.; Gao, S.; Flemming, B.W. Settling velocity and drag coefficient of platy shell fragments. Sedimentology 2020, 67, 2095–2110. [Google Scholar] [CrossRef]
- The Drag Coefficient. Available online: https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/dragco.html#:~:text=The%20drag%20coefficient%20contains%20not,the%20object%20and%20the%20flow (accessed on 9 September 2025).
- Shape Effects on Drag. 2024. Available online: https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/shape-effects-on-drag-2/#:~:text=A%20quick%20comparison%20shows%20that,highly%20dependent%20on%20Reynolds%20number (accessed on 9 September 2025).
- Hu, J.; Chen, H.; Yu, Y.; Xue, X.; Feng, Z.; Chen, X. Experimental Study on Motion Law of the Fragment at Hypersonic Speed. Processes 2023, 11, 1078. [Google Scholar] [CrossRef]
- Projectile Motion with Air Resistance. 2011. Available online: https://farside.ph.utexas.edu/teaching/336k/lectures/node29.html (accessed on 9 September 2025).
- Yin, Z.-Y.; Chen, X.-W. Numerical study on the dynamic fracture of explosively driven cylindrical shells. Def. Technol. 2023, 27, 154–168. [Google Scholar] [CrossRef]
- Felix, D.; Colwill, I.; Harris, P. A fast and accurate model for the creation of explosion fragments with improved fragment shape and dimensions. Def. Technol. 2022, 18, 159–169. [Google Scholar] [CrossRef]
- Sweklej, P.; Wasilewski, A.; Magier, M. Radar Method of Measuring the Velocity of the Fragments. Sustainability 2023, 15, 951. [Google Scholar] [CrossRef]
- Kivistik, L.; Mehrparvar, M.; Eerme, M.; Dieves, V.; Majak, J. Numerical modeling of fragment flight dynamics. Proc. Est. Acad. Sci. 2025, 74, 120–125. [Google Scholar] [CrossRef]
- Sielicki, P.W.; Stewart, M.G.; Gajewski, T.; Malendowski, M.; Peksa, P.; Al-Rifaie, H.; Studziński, R.; Sumelka, W. Field Test and Probabilistic Analysis of Irregular Steel Debris Casualty Risks from a Person-Borne Improvised Explosive Device. Def. Technol 2021, 17, 1852–1863. [Google Scholar] [CrossRef]
- A Model for Hazard Assessment of the Explosion of an Explosives Vehicle in a Built-Up Area. Available online: https://apps.dtic.mil/sti/tr/pdf/ADA514151.pdf (accessed on 9 September 2025).
- da Silva, L.A.; Johnson, S.; Critchley, R.; Clements, J.; Norris, K.; Stennett, C. Experimental fragmentation of pipe bombs with varying case thickness. Forensic Sci. Int. 2020, 306, 110034. [Google Scholar] [CrossRef]
- Kuncser, A.C.; Iacob, N.; Kuncser, V.E. Automatic Investigation Method of Characteristic Distributions of Metallic Fragments Resulting from Explosions (Translated from Romanian) RO-BOPI 12, 2022, pg 48. Available online: https://www.osim.ro/images/Publicatii/Inventii/2022/bopi_122022.pdf (accessed on 11 March 2025).











| C4 | |
| Density | 1.601 g/cm3 |
| EOS | JWL |
| Parameter A | 6.097 × 108 kPa |
| Parameter B | 1.295 × 107 kPa |
| Parameter R1 | 4.5 |
| Parameter R2 | 1.4 |
| Parameter W | 0.25 |
| C-J Detonation velocity | 8.193 × 103 m/s |
| C-J Energy/unit | 9 × 106 kJ/m3 |
| C-J Pressure | 2.8 × 107 kPa |
| STEEL 1006-Modfied | |||
| Density | 7.83 g/cm3 | Strength | Johnson Cook |
| Bulk modulus | 1.59 × 108 kPa | Shear modulus | 7.7 × 107 kPa |
| Reference temperature | 300 K | Yield Stress | 1.95 × 105 kPa |
| Specific heat | 477 J/kgK | Hardening constant | 5.1 × 105 kPa |
| Hardening exponent | 0.26 | ||
| Stain rate constant | 0.014 | ||
| Erosion | Geometric Stain | Thermal softening | 1.03 |
| Erosion stain | 200% | Melting temperature | 1793 K |
| Type of geometric | Instantaneous | Ref. Stain Rate | 1 |
| Stain rate correction | 1st order | ||
| Failure | Johnson Cook | ||
| Damage constant, D1 | 0.05 | ||
| Damage constant, D2 | 3.44 | ||
| Damage constant, D3 | −2.12 | ||
| Damage constant, D4 | 0.002 | ||
| Damage constant, D5 | 0.61 | ||
| Experimental | Simulation | |
|---|---|---|
| Mean | 0.70 | 0.58 |
| Standard Error | 0.10 | 0.047 |
| Median | 0.50 | 0.11 |
| Standard Deviation | 1.00 | 1.028 |
| Skewness | 5.25 | 2.43 |
| Minimum | 0.03 | 0.00041 |
| Maximum | 7.08 | 5 |
| Confidence Level (95.0%) | 0.20 | 0.09 |
| Confidence Interval | 0.70 ± 0.203 | 0.58 ± 0.09 |
| Parameter | Experiment 1 | Experiment 2 | Experiment 3 |
|---|---|---|---|
| y0 | −14,805 | 45,864 | 26,366 |
| A | 131,746 | 389,541 | 168,995 |
| w | 1,047,203 | 637,187 | 642,156 |
| xc | 631,497 | 529,465 | 602,846 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacob, N.; Kuncser, A.; Stanciu, A.; Palade, P.; Schinteie, G.; Leca, A.; Ghicioi, E.; Laszlo, R.; Radermacher, L.; Nicola, A.; et al. Explosion Characteristics and Lethality Degree Evaluation from Improvised Explosive Device (IED) Detonation in Urban Area: Case of the Cylindrical Geometry. Appl. Sci. 2025, 15, 11851. https://doi.org/10.3390/app152211851
Iacob N, Kuncser A, Stanciu A, Palade P, Schinteie G, Leca A, Ghicioi E, Laszlo R, Radermacher L, Nicola A, et al. Explosion Characteristics and Lethality Degree Evaluation from Improvised Explosive Device (IED) Detonation in Urban Area: Case of the Cylindrical Geometry. Applied Sciences. 2025; 15(22):11851. https://doi.org/10.3390/app152211851
Chicago/Turabian StyleIacob, Nicusor, Andrei Kuncser, Anda Stanciu, Petru Palade, Gabriel Schinteie, Aurel Leca, Emilian Ghicioi, Robert Laszlo, Ladislau Radermacher, Aurelian Nicola, and et al. 2025. "Explosion Characteristics and Lethality Degree Evaluation from Improvised Explosive Device (IED) Detonation in Urban Area: Case of the Cylindrical Geometry" Applied Sciences 15, no. 22: 11851. https://doi.org/10.3390/app152211851
APA StyleIacob, N., Kuncser, A., Stanciu, A., Palade, P., Schinteie, G., Leca, A., Ghicioi, E., Laszlo, R., Radermacher, L., Nicola, A., & Kuncser, V. (2025). Explosion Characteristics and Lethality Degree Evaluation from Improvised Explosive Device (IED) Detonation in Urban Area: Case of the Cylindrical Geometry. Applied Sciences, 15(22), 11851. https://doi.org/10.3390/app152211851

