Validation of Microplate Methods for Total Phenolic Content and Antioxidant Activity on Honeys, and Comparison with Conventional Spectrophotometric Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction Procedure
2.2.2. Conventional Total Phenolic Content (TPC)
2.2.3. 96-Well Plate Total Phenolic Method
2.2.4. DPPH Conventional Method
2.2.5. DPPH Microplate Method
2.2.6. Methodology Validation
Linearity
Specificity
Limit of Detection (LOD) and Limit of Quantification (LOQ)
Accuracy
Precision
Statistical Analysis
3. Results and Discussion
3.1. Linearity
3.2. Specificity
3.3. Limit of Detection and Limit of Quantification
3.4. Accuracy
3.5. Precision
3.6. Other Parameters
3.7. Determination of TPC and DPPH in Honeys
3.8. Comparison in Terms of Sustainability, Costs and Operational Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamin, N.; Othman, N.N. Honey as a potential natural antioxidant medicine: An insight into its molecular mechanism of action. Oxidative Med. Cellural Longev. 2018, 2018, 8367846. [Google Scholar] [CrossRef]
- Khatun, M.A.; Yoshimura, J.; Yoshida, M.; Suzuki, Y.; Huque, R.; Kelly, S.D.; Munshi, M.K. Isotopic characteristics (δ13C, δ15N, and δ18O) of honey from Bangladesh retail markets: Investigating sugar manipulation, botanical and geographical authentication. Food Chem. 2024, 435, 137612. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Topal, E.; Balkanska, R.; Yücel, B.; Oravecz, T.; Cornea-Cipcigan, M.; Vodnar, D.C. Monofloral honeys as a potential source of natural antioxidants, minerals and medicine. Antioxidants 2021, 10, 1023. [Google Scholar] [CrossRef]
- Wabaidur, S.M.; Obbed, M.S.; Alothman, Z.A.; Alfaris, N.A.; Badjah-Hadj-Ahmed, A.Y.; Siddiqui, M.R.; Altamimi, J.Z.; Aldayel, T.S. Total phenolic acids and flavonoids contents determination in Yemeni honey of various floral sources: Folin-Ciocalteu and spectrophotometric approach. Food Sci. Technol. 2020, 40, 647–652. [Google Scholar] [CrossRef]
- Blainski, A.; Lopes, G.C.; Palazzo de Mello, J.C. Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 2013, 18, 6852–6865. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Eisner, P. How does the phenol structure influence the results of the Folin-Ciocalteu assay? Antioxidants 2021, 10, 811. [Google Scholar] [CrossRef]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The chemistry behind the Folin-Ciocalteu method for the estimation of (poly)phenol content in food: Total phenolic intake in a mediterranean dietary pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef]
- Lawag, I.L.; Nolden, E.S.; Schaper, A.A.M.; Lim, L.Y.; Locher, C. A modified Folin-Ciocalteu assay for the determination of total phenolics content in honey. Appl. Sci. 2023, 13, 2135. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2023, 22, 3380. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Khalil, M.I.; Sulaiman, S.A.; Gan, S.H. Advances in the analytical methods for determining the antioxidant properties of honey: A review. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 36–42. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef]
- Gulcin, I.; Alwasei, S.H. DPPH radical scavenging assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Misha, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- Cheng, Z.; Moore, J.; Yu, L. High-throughput relative DPPH radical scavenging capacity assay. J. Agric. Food Chem. 2006, 54, 7429–7436. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, J.J.; Liu, C.Y.; Bai, W.S.; Cheng, N. A modified Folin-Ciocalteu method for the microdetermination of total phenolic content in honey. Int. Food Res. J. 2020, 27, 576–584. [Google Scholar]
- Pueyo, I.U.; Calvo, M.I. Assay conditions and validation of a new UV spectrophotometric method using microplates for the determination of polyphenol content. Fitoterapia 2009, 80, 465–467. [Google Scholar] [CrossRef]
- Musci, M.; Yao, S. Optimization and validation of Folin-Ciocalteu method for determination of total polyphenol content of Pu-erh tea. Int. J. Food Sci. Nutr. 2017, 68, 913–918. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Tulipani, S.; Díaz, D.; Estevez, Y.; Romandini, S.; Giampieri, F.; Damiani, E.; Astolfi, P.; Bompadre, S.; Battino, M. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem. Toxicol. 2010, 48, 2490–2499. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Müller, L.; Gnoyke, S.; Popken, A.M.; Böhm, V. Antioxidant capacity and related parameters of different fruit formulations. LWT Food Sci. Technol. 2010, 43, 992–999. [Google Scholar] [CrossRef]
- Al-Duais, M.; Müller, L.; Böhm, V.; Jetschke, G. Antioxidant capacity and total phenolics of Cyphostermma digitatum before and after processing: Use of different assays. Eur. Food Res. Technol. 2009, 228, 813–821. [Google Scholar] [CrossRef]
- Herald, T.J.; Gadgil, P.; Tilley, M. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J. Sci. Food Agric. 2012, 92, 2326–2331. [Google Scholar] [CrossRef]
- Bobo-García, G.; Davidov-Pardo, G.; Arroqui, C.; Vírseda, P.; Marín-Arroyo, M.R.; Navarro, M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J. Sci. Food Agric. 2015, 95, 204–209. [Google Scholar] [CrossRef]
- Paula, V.B.; Sousa-Dias, M.L.; Seixas, N.L.; Combarros-Fuertes, P.; Estevinho, L.M.; Dias, L.G. Phenolic Class Analysis in Honey: Comparison of Classical and Single UV Spectrum Methodologies. Processes 2024, 12, 2297. [Google Scholar] [CrossRef]
- Green, J.G.; Dods, K.; Hammer, K.A. Development and validation of a new microplate assay that utilises optical density to quantify the antibacterial activity of honeys including Jarrah, Marri and Manuka. PLoS ONE 2020, 15, e0243246. [Google Scholar] [CrossRef]
- Deng, J.; Liu, R.; Lu, Q.; Hao, P.; Xu, P.; Xu, A.; Zhang, J.; Tan, J. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chem. 2018, 252, 243–249. [Google Scholar] [CrossRef]
- Gośliński, M.; Nowak, D.; Kłębukowska, L. Antioxidant properties and antimicrobial activity of manuka honey versus Polish honeys. J. Food Sci. Technol. 2020, 57, 1269–1277. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidant of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef]
- Puścion-Jakubik, A.; Karpińska, E.; Moskwa, J.; Socha, K. Content of phenolic acids as a marker of Polish honey varieties and relationship with selected honey-quality-influencing variables. Antioxidants 2022, 11, 1312. [Google Scholar] [CrossRef]
- Lawag, I.L.; Islam, M.K.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. Antioxidant activity and phenolic compound identification and quantification in Western Australian honeys. Antioxidants 2023, 12, 189. [Google Scholar] [CrossRef]
- Vergara-Barberán, M.; Lerma-García, M.J.; Simó-Alfonso, E.F.; García-Álvarez-Coque, M.C. Use of polyphenolic fingerprints established by comprehensive two-dimensional liquid chromatography for the classification of honeys according to their floral origin. J. Chromatogr. A 2023, 1705, 464138. [Google Scholar] [CrossRef]
Methods | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|
TPC microplate TPC conventional | 0.7 4.1 | 7.0 41 |
DPPH microplate DPPH conventional | 0.015 0.081 | 1.5 8.1 |
Methods | Honey | Accuracy Recovery (%) | Repeatability CV (%) | Reproducibility CV (%) |
---|---|---|---|---|
TPC microplate TPC conventional | A 1 P H B average A P H B average | 95.7 95.0 95.3 95.1 95.3 96.9 95.0 97.6 97.7 96.8 | 3.3 1.6 3.9 1.8 2.6 3.2 2.4 5.8 2.5 3.5 | 4.3 2.0 3.4 1.3 2.8 4.3 2.2 1.5 1.2 2.3 |
DPPH microplate DPPH conventional | A P H B average A P H B average | 98.7 96.1 96.0 95.3 96.5 95.6 96.7 96.4 95.5 96.0 | 2.8 2.2 3.6 3.4 3.0 3.6 4.6 4.2 2.7 3.8 | 1.9 3.8 1.2 5.8 3.2 1.6 5.1 1.2 1.4 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majewska, E.; Drużyńska, B. Validation of Microplate Methods for Total Phenolic Content and Antioxidant Activity on Honeys, and Comparison with Conventional Spectrophotometric Methods. Appl. Sci. 2025, 15, 11234. https://doi.org/10.3390/app152011234
Majewska E, Drużyńska B. Validation of Microplate Methods for Total Phenolic Content and Antioxidant Activity on Honeys, and Comparison with Conventional Spectrophotometric Methods. Applied Sciences. 2025; 15(20):11234. https://doi.org/10.3390/app152011234
Chicago/Turabian StyleMajewska, Ewa, and Beata Drużyńska. 2025. "Validation of Microplate Methods for Total Phenolic Content and Antioxidant Activity on Honeys, and Comparison with Conventional Spectrophotometric Methods" Applied Sciences 15, no. 20: 11234. https://doi.org/10.3390/app152011234
APA StyleMajewska, E., & Drużyńska, B. (2025). Validation of Microplate Methods for Total Phenolic Content and Antioxidant Activity on Honeys, and Comparison with Conventional Spectrophotometric Methods. Applied Sciences, 15(20), 11234. https://doi.org/10.3390/app152011234