Naked-Eye Molecular Testing for the Detection of Xylella fastidiosa in Mallorca (Balearic Island) Almond Orchards by Colorimetric LAMP
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wells, J.M.; Raju, B.C.; Hung, H.-Y.; Weisburg, W.G.; Mandelco-Paul, L.; Brenner, D.J. Xylella fastidiosa Gen. Nov., Sp. Nov: Gram-Negative, Xylem-Limited, Fastidious Plant Bacteria Related to Xanthomonas spp. Int. J. Syst. Bacteriol. 1987, 37, 136–143. [Google Scholar] [CrossRef]
- Cavalieri, V.; Fasanelli, E.; Gibin, D.; Gutierrez Linares, A.; La Notte, P.; Pasinato, L.; Delbianco, A. Update of the Xylella spp. Host Plant Database—Systematic Literature Search up to 31 December 2023. EFSA J. 2024, 22, e8898. [Google Scholar] [CrossRef] [PubMed]
- Hill, B.L.; Purcell, A.H. Acquisition and Retention of Xylella fastidiosa by an Efficient Vector, Graphocephala atropunctata. Phytopathology 1995, 85, 209–212. [Google Scholar] [CrossRef]
- Almeida, R.P.P.; Purcell, A.H. Transmission of Xylella fastidiosa to Grapevines by Homalodisca coagulata (Hemiptera: Cicadellidae). J. Econ. Entomol. 2003, 96, 264–271. Available online: https://academic.oup.com/jee/article/96/2/264/2217700 (accessed on 29 September 2024). [CrossRef] [PubMed]
- Teviotdale, B.L.; Connell, J.H. UC Agriculture & Natural Resources Almond Leaf Scorch; University of California: Parlier, CA, USA, 2003; ANR Pubblication. [Google Scholar] [CrossRef]
- Sanborn, R.R.; Mircetich, S.M.; Nyland, G.; Moller, W.J. “Golden Death” a new leaf scorch threat to almond growers. Calif. Agric. 1974, 28, 4–5. [Google Scholar]
- Sisterson, M.S.; Chen, J.; Viveros, M.A.; Civerolo, E.L.; Ledbetter, C.; Groves, R.L. Effects of Almond Leaf Scorch Disease on Almond Yield: Implications for Management. Plant Dis. 2008, 92, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Sisterson, M.S.; Ledbetter, C.A.; Chen, J.; Higbee, B.S.; Groves, R.L.; Daane, K.M. Management of Almond Leaf Scorch Disease: Long-Term Data on Yield, Tree Vitality, and Disease Progress. Plant Dis. 2012, 96, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Olmo, D.; Nieto, A.; Adrover, F.; Urbano, A.; Beidas, O.; Juan, A.; Marco-Noales, E.; López, M.M.; Navarro, I.; Monterde, A.; et al. First Detection of Xylella fastidiosa Infecting Cherry (Prunus avium) and Polygala myrtifolia Plants, in Mallorca Island, Spain. Plant Dis. 2017, 101, 1820. [Google Scholar] [CrossRef]
- Landa, B.B.; Velasco-Amo, M.P.; Marco-Noales, E.; Olmo, D.; López, M.M.; Navarro, I.; Monterde, A.; Barbé, S.; Montes-Borrego, M.; Román-Écija, M.; et al. Draft Genome Sequence of Xylella fastidiosa subsp. Fastidiosa Strain IVIA5235, Isolated from Prunus Avium in Mallorca Island, Spain. Microbiol. Resour. Announc. 2018, 7, e01222-18. [Google Scholar] [CrossRef]
- Moralejo, E.; Gomila, M.; Montesinos, M.; Borràs, D.; Pascual, A.; Nieto, A.; Adrover, F.; Gost, P.A.; Seguí, G.; Busquets, A.; et al. Phylogenetic Inference Enables Reconstruction of a Long-Overlooked Outbreak of Almond Leaf Scorch Disease (Xylella fastidiosa) in Europe. Commun. Biol. 2020, 3, 560. [Google Scholar] [CrossRef]
- Olmo, D.; Nieto, A.; Borràs, D.; Montesinos, M.; Adrover, F.; Pascual, A.; Gost, P.A.; Quetglas, B.; Urbano, A.; de Dios García, J.; et al. Landscape Epidemiology of Xylella fastidiosa in the Balearic Islands. Agronomy 2021, 11, 473. [Google Scholar] [CrossRef]
- Baró, A.; Montesinos, L.; Badosa, E.; Montesinos, E. Aggressiveness of Spanish Isolates of Xylella fastidiosa to Almond Plants of Different Cultivars Under Greenhouse Conditions. Phytopathology 2021, 111, 1994–2001. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Romero, À.; Moralejo, E.; Matías, M.A. A Compartmental Model for Xylella fastidiosa Diseases with Explicit Vector Seasonal Dynamics. Phytopathology 2023, 113, 1686–1696. [Google Scholar] [CrossRef] [PubMed]
- Quetglas, B.; Olmo, D.; Nieto, A.; Borràs, D.; Adrover, F.; Pedrosa, A.; Montesinos, M.; de Dios García, J.; López, M.; Juan, A.; et al. Evaluation of Control Strategies for Xylella fastidiosa in the Balearic Islands. Microorganisms 2022, 10, 2393. [Google Scholar] [CrossRef] [PubMed]
- Krugner, R.; Ledbetter, C.A. Rootstock Effects on Almond Leaf Scorch Disease Incidence and Severity. Plant Dis. 2016, 100, 1617–1621. [Google Scholar] [CrossRef] [PubMed]
- PM 7/24 (5) Xylella fastidiosa. EPPO Bull. 2023, 53, 205–276. [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed]
- De Boer, S.H.; López, M.M. New Grower-Friendly Methods for Plant Pathogen Monitoring. Annu. Rev. Phytopathol. 2012, 50, 197–218. [Google Scholar] [CrossRef]
- Donoso, A.; Valenzuela, S. In-Field Molecular Diagnosis of Plant Pathogens: Recent Trends and Future Perspectives. Plant Pathol. 2018, 67, 1451–1461. [Google Scholar] [CrossRef]
- Baldi, P.; La Porta, N. Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. Front. Plant Sci. 2020, 11, 570862. [Google Scholar] [CrossRef] [PubMed]
- Greco, D.; Aprile, A.; De Bellis, L.; Luvisi, A. Diseases Caused by Xylella fastidiosa in Prunus Genus: An Overview of the Research on an Increasingly Widespread Pathogen. Front. Plant Sci. 2021, 12, 712452. [Google Scholar] [CrossRef] [PubMed]
- Schaad, N.W.; Opgenorth, D.; Gaush, P. Real-Time Polymerase Chain Reaction for One-Hour On-Site Diagnosis of Pierce’s Disease of Grape in Early Season Asymptomatic Vines. Phytopathology 2002, 92, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Amoia, S.S.; Loconsole, G.; Ligorio, A.; Pantazis, A.K.; Papadakis, G.; Gizeli, E.; Minafra, A. A Colorimetric LAMP Detection of Xylella fastidiosa in Crude Alkaline Sap of Olive Trees in Apulia as a Field-Based Tool for Disease Containment. Agriculture 2023, 13, 448. [Google Scholar] [CrossRef]
- Papadakis, G.; Pantazis, A.K.; Fikas, N.; Chatziioannidou, S.; Tsiakalou, V.; Michaelidou, K.; Pogka, V.; Megariti, M.; Vardaki, M.; Giarentis, K.; et al. Portable Real-Time Colorimetric LAMP-Device for Rapid Quantitative Detection of Nucleic Acids in Crude Samples. Sci. Rep. 2022, 12, 3775. [Google Scholar] [CrossRef]
- Harper, S.J.; Ward, L.I.; Clover, G.R.G. Development of LAMP and Real-Time PCR Methods for the Rapid Detection of Xylella fastidiosa for Quarantine and Field Applications. Phytopathology 2010, 100, 1282–1288. [Google Scholar] [CrossRef]
- Giampetruzzi, A.; Velasco-Amo, M.P.; Marco-Noales, E.; Montes-Borrego, M.; Román-Écija, M.; Navarro, I.; Monterde, A.; Barbé, S.; Almeida, R.P.P.; Saldarelli, P.; et al. Draft Genome Resources of Two Strains (“ESVL” and “IVIA5901”) of Xylella fastidiosa Associated with Almond Leaf Scorch Disease in Alicante, Spain. Phytopathology 2019, 109, 219–221. [Google Scholar] [CrossRef]
- Marco-Noales, E.; Barbe, S.; Monterde, A.; Navarro-Herrero, I.; Ferrer, A.; Dalmau, V.; Aure, C.M.; Domingo-Calap, M.L.; Landa, B.B.; Rosello, M. Evidence That Xylella fastidiosa Is the Causal Agent of Almond Leaf Scorch Disease in Alicante, Mainland Spain (Iberian Peninsula). Plant Dis. 2021, 105, 3349–3352. [Google Scholar] [CrossRef]
- D’Attoma, G.; Morelli, M.; Saldarelli, P.; Saponari, M.; Giampetruzzi, A.; Boscia, D.; Savino, V.N.; De La Fuente, L.; Cobine, P.A. Ionomic Differences between Susceptible and Resistant Olive Cultivars Infected by Xylella fastidiosa in the Outbreak Area of Salento, Italy. Pathogens 2019, 8, 272. [Google Scholar] [CrossRef] [PubMed]
- PM 7/76 (5) Use of EPPO Diagnostic Standards. EPPO Bull. 2018, 48, 373–377. [CrossRef]
- Amoia, S.S.; Minafra, A.; Ligorio, A.; Cavalieri, V.; Boscia, D.; Saponari, M.; Loconsole, G. Detection of Xylella fastidiosa in Host Plants and Insect Vectors by Droplet Digital PCR. Agriculture 2023, 13, 716. [Google Scholar] [CrossRef]
- Park, J.W. Principles and Applications of Loop-Mediated Isothermal Amplification to Point-of-Care Tests. Biosensors 2022, 12, 857. [Google Scholar] [CrossRef]
- Aglietti, C.; Luchi, N.; Pepori, A.L.; Bartolini, P.; Pecori, F.; Raio, A.; Capretti, P.; Santini, A. Real-Time Loop-Mediated Isothermal Amplification: An Early-Warning Tool for Quarantine Plant Pathogen Detection. AMB Express 2019, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Luchi, N.; Migliorini, D.; Pecori, F.; Santini, A. Real-Time Portable LAMP Assay for a Rapid Detection of Xylella fastidiosa In-Field. In Plant-Pathogen Interactions; Springer: New York, NY, USA, 2023; pp. 51–60. [Google Scholar]
- Yaseen, T.; Drago, S.; Valentini, F.; Elbeaino, T.; Stampone, G.; Digiaro, M.; D’Onghia, A.M. On-Site Detection of Xylella fastidiosa in Host Plants and in “Spy Insects” Using the Real-Time Loop-Mediated Isothermal Amplification Method. Phytopathol. Mediterr. 2015, 54, 488–496. [Google Scholar] [CrossRef]
- Kim, S.; Park, Y.; Kim, G. Development of Diagnostic Technology of Xylella fastidiosa Using Loop-Mediated Isothermal Amplification and PCR Methods. Res. Plant Dis. 2021, 27, 38–44. [Google Scholar] [CrossRef]
- Waliullah, S.; Di Genova, D.; Oliver, J.E.; Ali, M.E. Development of a CAPS Marker and a LAMP Assay for Rapid Detection of Xylella fastidiosa Subsp. Multiplex and Differentiation from X. fastidiosa Subsp. Fastidiosa on BlueBerry. Int. J. Mol. Sci. 2022, 23, 1937. [Google Scholar] [CrossRef] [PubMed]
- Kogovšek, P.; Hodgetts, J.; Hall, J.; Prezelj, N.; Nikolić, P.; Mehle, N.; Lenarčič, R.; Rotter, A.; Dickinson, M.; Boonham, N.; et al. LAMP Assay and Rapid Sample Preparation Method for On-Site Detection of Flavescence Dorée Phytoplasma in Grapevine. Plant Pathol. 2015, 64, 286–296. [Google Scholar] [CrossRef]
- Kogovšek, P.; Mehle, N.; Pugelj, A.; Jakomin, T.; Schroers, H.J.; Ravnikar, M.; Dermastia, M. Rapid Loop-Mediated Isothermal Amplification Assays for Grapevine Yellows Phytoplasmas on Crude Leaf-Vein Homogenate Has the Same Performance as QPCR. Eur. J. Plant Pathol. 2017, 148, 75–84. [Google Scholar] [CrossRef]
- Saponari, M.; Giampetruzzi, A.; Loconsole, G.; Boscia, D.; Saldarelli, P. Xylella fastidiosa in Olive in Apulia: Where We Stand. Phytopathology 2019, 109, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Loconsole, G.; Zicca, S.; Manco, L.; El Hatib, O.; Altamura, G.; Potere, O.; Elicio, V.; Valentini, F.; Boscia, D.; Saponari, M. Diagnostic Procedures to Detect Xylella fastidiosa in Nursery Stocks and Consignments of Plants for Planting. Agriculture 2021, 11, 922. [Google Scholar] [CrossRef]
Sample No. | Average Cq Values | cLAMP Result |
---|---|---|
1 | 20.43 | + |
2 | 24.71 | + |
3 | 24.27 | + |
4 | 24.64 | + |
5 | 25.74 | + |
6 | 25.96 | + |
7 | 25.65 | + |
8 | 25.89 | + |
9 | 26.49 | + |
10 | 26.30 | − |
11 | 26.89 | − |
12 | 26.54 | + |
13 | 26.03 | + |
14 | 26.33 | − |
15 | 26.58 | + |
16 | 26.44 | − |
17 | 26.80 | + |
18 | 27.14 | − |
19 | 27.20 | + |
20 | 27.21 | + |
21 | 27.16 | − |
22 | 27.49 | − |
23 | 28.53 | + |
24 | 28.97 | − |
25 | 28.99 | − |
26 | 28.14 | − |
27 | 29.62 | − |
28 | 29.44 | − |
29 | 29.90 | − |
30 | 29.96 | + |
31 | 29.18 | − |
32 | 30.17 | + |
33 | 30.30 | − |
34 | 31.39 | − |
35 | 31.88 | − |
36 | 32.99 | − |
37 | 32.07 | − |
38 | 32.01 | − |
39 | 32.01 | − |
40 | 32.62 | + |
41 | 32.60 | − |
42 | 33.87 | − |
43 | 33.75 | − |
44 | 34.13 | − |
45 | 35.92 | − |
46 | 35.83 | − |
47 | N/A | − |
48 | N/A | − |
49 | N/A | − |
50 | N/A | − |
51 | N/A | + |
52 | N/A | − |
53 | N/A | − |
qPCR Value | cLAMP Positives/Nr Analyzed Plants (Per Cq Value) | Diagnostic Sensitivity % | Diagnostic Specificity % |
---|---|---|---|
18–24 | 4/4 | 100 | / |
25 | 4/4 | 100 | / |
26 | 5/9 | 55.55 | / |
27 | 2/5 | 40 | / |
28 | 1/4 | 25 | / |
29 | 1/5 | 20 | / |
30–33 | 2/10 | 20 | / |
33.01-NA | 1/12 | 92.30 | |
Total | 20/53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serena, A.S.; Falcón-Piñeiro, A.; Pastar, M.; Garcìa-Madero, J.M.; Contaldo, N.; Muegge, M.; Compant, S.; Saldarelli, P.; Minafra, A. Naked-Eye Molecular Testing for the Detection of Xylella fastidiosa in Mallorca (Balearic Island) Almond Orchards by Colorimetric LAMP. Appl. Sci. 2025, 15, 739. https://doi.org/10.3390/app15020739
Serena AS, Falcón-Piñeiro A, Pastar M, Garcìa-Madero JM, Contaldo N, Muegge M, Compant S, Saldarelli P, Minafra A. Naked-Eye Molecular Testing for the Detection of Xylella fastidiosa in Mallorca (Balearic Island) Almond Orchards by Colorimetric LAMP. Applied Sciences. 2025; 15(2):739. https://doi.org/10.3390/app15020739
Chicago/Turabian StyleSerena, Amoia Serafina, Ana Falcón-Piñeiro, Milica Pastar, José Manuel Garcìa-Madero, Nicoletta Contaldo, Mikael Muegge, Stéphane Compant, Pasquale Saldarelli, and Angelantonio Minafra. 2025. "Naked-Eye Molecular Testing for the Detection of Xylella fastidiosa in Mallorca (Balearic Island) Almond Orchards by Colorimetric LAMP" Applied Sciences 15, no. 2: 739. https://doi.org/10.3390/app15020739
APA StyleSerena, A. S., Falcón-Piñeiro, A., Pastar, M., Garcìa-Madero, J. M., Contaldo, N., Muegge, M., Compant, S., Saldarelli, P., & Minafra, A. (2025). Naked-Eye Molecular Testing for the Detection of Xylella fastidiosa in Mallorca (Balearic Island) Almond Orchards by Colorimetric LAMP. Applied Sciences, 15(2), 739. https://doi.org/10.3390/app15020739