Effects of Preservation Methods on the Volatile Compound Profile and Physicochemical Properties of Aronia melanocarpa Berries
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Physical Characteristics
2.3. pH Measurement
2.4. Total Polyphenol Content (TPC)
2.5. DPPH Analysis
- ADPPH—absorbance of the prepared solution of the DPPH radical
- Ae—Absorbance of the extract after reaction with DPPH
2.6. Volatile Compound Profile
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties
3.2. Color Analysis
3.3. pH Determination
3.4. Determination of TPC
3.5. Antioxidant Activity
3.6. VOC Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roy, S.; Nisha, P.; Chakraborty, R. (Eds.) Traditional and Unconventional Food Crops with the Potential to Boost Health and Nutrition with Special Reference to Asian and African Countries. In Traditional Foods: The Reinvented Superfoods; Springer Nature: Cham, Switzerland, 2024; pp. 45–67. ISBN 978-3-031-72756-6. [Google Scholar]
- Sharma, P.; Bratley, K.; Ford, T.; Ristvey, A.G.; Volkis, V.V. Aronia Mitschurinii—New Generation of Super Fruits with Multiple Health Benefits. J. Berry Res. 2025, 15, 12–25. [Google Scholar] [CrossRef]
- Negreanu-Pirjol, B.-S.; Oprea, O.C.; Negreanu-Pirjol, T.; Roncea, F.N.; Prelipcean, A.-M.; Craciunescu, O.; Iosageanu, A.; Artem, V.; Ranca, A.; Motelica, L.; et al. Health Benefits of Antioxidant Bioactive Compounds in the Fruits and Leaves of Lonicera Caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants 2023, 12, 951. [Google Scholar] [CrossRef]
- Aronia Berries Market Size, Share, Growth, And Industry Analysis, By Type (Aronia Prunifolia (Purple Chokeberry), Aronia melanocarpa (Black Chokeberry), Aronia arbutifolia (Red Chokeberry)), By Application (Supermarket, Convenience Stores), And Regional Forecast To 2033; Global Market Statistics; India, 2024. p. 113. Available online: https://www.globalmarketstatistics.com/market-reports/aronia-berries-market-13180 (accessed on 24 September 2025).
- Szopa, A.; Kubica, P.; Ekiert, H. Ekologia, Skład Chemiczny, Działanie Prozdrowotne Oraz Badania Biotechnologiczne Aronii Czarnoowocowej (Aronia melanocarpa (Michx.) Elliott), Aronii Czerwonej (Aronia arbutifolia (L.) Pers.) i Aronii Śliwolistnej (Aronia × prunifolia (Marsh.) Rehd.). Postępy Fitoter. 2017, 18, 145–157. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black Chokeberry Aronia melanocarpa L.—A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef]
- Šnebergrová, J.; Čížková, H.; Neradová, E.; Kapci, B.; Rajchl, A.; Voldřich, M. Variability of Characteristic Components of Aronia. Czech J. Food Sci. 2014, 32, 25–30. [Google Scholar] [CrossRef]
- Jeppsson, N.; Johansson, R. Changes in Fruit Quality in Black Chokeberry (Aronia melanocarpa) during Maturation. J. Hortic. Sci. Biotechnol. 2000, 75, 340–345. [Google Scholar] [CrossRef]
- King, E.S.; Noll, A.; Glenn, S.; Bolling, B.W. Refrigerated and Frozen Storage Impact Aronia Berry Quality. Food Prod. Process Nutr. 2022, 4, 3. [Google Scholar] [CrossRef]
- Engin, S.P.; Mert, C. The Effects of Harvesting Time on the Physicochemical Components of Aronia Berry. Turk. J. Agric. 2020, 44, 361–370. [Google Scholar] [CrossRef]
- Kulling, S.; Rawel, H. Chokeberry (Aronia melanocarpa)—A Review on the Characteristic Components and Potential Health Effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef]
- Szaniawska, M.; Taraba, A.; Szymczyk, K. Budowa, Właściwości i Zastosowanie Antocyjanów. Eng. Sci. Technol. 2015, 17, 63–78. [Google Scholar] [CrossRef]
- Olechno, E.; Puścion-Jakubik, A.; Soroczyńska, J.; Socha, K.; Cyuńczyk, M.; Zujko, M.E. Antioxidant Properties of Chokeberry Products—Assessment of the Composition of Juices and Fibers. Foods 2023, 12, 4029. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Frank, T.; Meyer, G.; Lei, J.; Grebenc, J.R.; Slaughter, R.; Gao, Y.G.; Kinghorn, A.D. Potential Benefits of Black Chokeberry (Aronia melanocarpa) Fruits and Their Constituents in Improving Human Health. Molecules 2022, 27, 7823. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdyło, A.; Lech, K. The Influence of Different the Drying Methods on Chemical Composition and Antioxidant Activity in Chokeberries. LWT—Food Sci. Technol. 2016, 66, 484–489. [Google Scholar] [CrossRef]
- Żbik, K.; Górska-Horczyczak, E.; Onopiuk, A.; Kurek, M.; Zalewska, M. Vacuum and Convection Drying Effects on Volatile Compounds Profile and Physicochemical Properties of Selected Herbs from Lamiaceae Family. Eur. Food Res. Technol. 2023, 249, 2569–2581. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Z.; Li, M.; Xu, H.; Xiao, H.; Xu, B.; Zhao, X. Effect of Different Vinification Processes on Chemical and Sensory Properties of Aronia melanocarpa Wines. Food Res. Int. 2025, 217, 116755. [Google Scholar] [CrossRef]
- Romani, A.; Vignolini, P.; Ieri, F.; Heimler, D. Polyphenols and Volatile Compounds in Commercial Chokeberry (Aronia melanocarpa) Products. Nat. Prod. Commun. 2016, 11, 99–102. [Google Scholar] [CrossRef]
- Butorová, L.; Vítová, E.; Polovka, M. Comparison of Volatiles Identified in Aronia melanocarpa and Amelanchier alnifolia Using Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry. J. Food Nutr. Res. 2016, 55, 57–68. [Google Scholar]
- Zalewska, M.; Górska-Horczyczak, E.; Marcinkowska-Lesiak, M. Effect of Applied Ozone Dose, Time of Ozonization, and Storage Time on Selected Physicochemical Characteristics of Mushrooms (Agaricus bisporus). Agriculture 2021, 11, 748. [Google Scholar] [CrossRef]
- Górska-Horczyczak, E.; Zalewska, M.; Wierzbicka, A. Chromatographic Fingerprint Application Possibilities in Food Authentication. Eur. Food Res. Technol. 2022, 248, 1163–1177. [Google Scholar] [CrossRef]
- Caputo, L.; Amato, G.; De Bartolomeis, P.; De Martino, L.; Manna, F.; Nazzaro, F.; De Feo, V.; Barba, A.A. Impact of Drying Methods on the Yield and Chemistry of Origanum Vulgare L. Essential Oil. Sci. Rep. 2022, 12, 3845. [Google Scholar] [CrossRef]
- Bogusz, R.; Nowacka, M.; Rybak, K.; Witrowa-Rajchert, D.; Gondek, E. Foam-Mat Freeze Drying of Kiwiberry (Actinidia Arguta) Pulp: Drying Kinetics, Main Properties and Microstructure. Appl. Sci. 2024, 14, 5629. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef]
- Mahiuddin, M.; Khan, M.I.H.; Kumar, C.; Rahman, M.M.; Karim, M.A. Shrinkage of Food Materials During Drying: Current Status and Challenges. Comp. Rev. Food Sci. Food Safe 2018, 17, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Bonat Celli, G.; Ghanem, A.; Su-Ling Brooks, M. Influence of Freezing Process and Frozen Storage on the Quality of Fruits and Fruit Products. Food Rev. Int. 2016, 32, 280–304. [Google Scholar] [CrossRef]
- Cesa, S.; Carradori, S.; Bellagamba, G.; Locatelli, M.; Casadei, M.A.; Masci, A.; Paolicelli, P. Evaluation of Processing Effects on Anthocyanin Content and Colour Modifications of Blueberry (Vaccinium Spp.) Extracts: Comparison between HPLC-DAD and CIELAB Analyses. Food Chem. 2017, 232, 114–123. [Google Scholar] [CrossRef]
- Yan, Y.; Castellarin, S.D. Blueberry Water Loss Is Related to Both Cuticular Wax Composition and Stem Scar Size. Postharvest Biol. Technol. 2022, 188, 111907. [Google Scholar] [CrossRef]
- Yan, Y.; Dossett, M.; Castellarin, S.D. Cuticular Waxes Affect Fruit Surface Color in Blueberries. Plants People Planet. 2023, 5, 736–751. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, B.; Liu, R.; Han, Y.; Fang, X.; Mu, H.; Farag, M.A.; Simal-Gandara, J.; Prieto, M.A.; Chen, H.; et al. Structures and Functions of Cuticular Wax in Postharvest Fruit and Its Regulation: A Comprehensive Review with Future Perspectives. Engineering 2023, 23, 118–129. [Google Scholar] [CrossRef]
- Dawson, P.; Al-Jeddawi, W.; Rieck, J. The Effect of Different Freezing Rates and Long-Term Storage Temperatures on the Stability of Sliced Peaches. Int. J. Food Sci. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S. Effect of the Production of Dried Fruits and Juice from Chokeberry (Aronia melanocarpa L.) on the Content and Antioxidative Activity of Bioactive Compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef] [PubMed]
- Samoticha, J.; Wojdyło, A.; Golis, T. Phenolic Composition, Physicochemical Properties and Antioxidant Activity of Interspecific Hybrids of Grapes Growing in Poland. Food Chem. 2017, 215, 263–273. [Google Scholar] [CrossRef]
- Ceylan, C.M.; Cakmakoglu, S.K.; Bekiroglu, H.; Yaman, M.; Akcicek, A.; Sagdic, O.; Karasu, S. Effects of Drying Methods on Different Characteristics of Chokeberry. J. Sci. Ind. Res. 2024, 83, 1284–1294. [Google Scholar] [CrossRef]
- Nawawi, N.; Ijod, G.; Abas, F.; Ramli, N.; Mohd Adzahan, N.; Mohamad Azman, E. Influence of Different Drying Methods on Anthocyanins Composition and Antioxidant Activities of Mangosteen (Garcinia mangostana L.) Pericarps and LC-MS Analysis of the Active Extract. Foods 2023, 12, 2351. [Google Scholar] [CrossRef]
- Thi, N.D.; Hwang, E.-S. Effects of Drying Methods on Contents of Bioactive Compounds and Antioxidant Activities of Black Chokeberries (Aronia melanocarpa). Food Sci. Biotechnol. 2016, 25, 55–61. [Google Scholar] [CrossRef]
- Lv, X.; Lan, T.; Wang, S.; Li, X.; Bao, S.; Li, T.; Sun, X.; Ma, T. Comparative Study on the Physicochemical Properties, Functional Components, Color and Anthocyanins Profile of Aronia melanocarpa Juice Using Different Sterilization Methods. Food Innov. Adv. 2024, 3, 64–74. [Google Scholar] [CrossRef]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa Products and By-Products for Health and Nutrition: A Review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Yen, P.P.; Kitts, D.D.; Pratap Singh, A. Natural Acidification with Low-pH Fruits and Incorporation of Essential Oil Constituents for Organic Preservation of Unpasteurized Juices. J. Food Sci. 2018, 83, 2039–2046. [Google Scholar] [CrossRef]
- Al Hasani, S.; Al-Attabi, Z.; Waly, M.; Al-Habsi, N.; Al-Subhi, L.; Shafiur Rahman, M. Polyphenol and Flavonoid Stability of Wild Blueberry (Sideroxylon mascatense) during Air- and Freeze-Drying and Storage Stability as a Function of Temperature. Foods 2023, 12, 871. [Google Scholar] [CrossRef] [PubMed]
- Tiho, T.; Yao, J.C.N.; Brou, C.Y.; Adima, A.A. Drying Temperature Effect on Total Phenols and Flavonoids Content, and Antioxidant Activity of Borassus aethiopum Mart Ripe Fruits’ Pulp. JFR 2017, 6, 50. [Google Scholar] [CrossRef]
- Uribe, E.; Marín, D.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Rodríguez, A. Assessment of Vacuum-Dried Peppermint (Mentha piperita L.) as a Source of Natural Antioxidants. Food Chem. 2016, 190, 559–565. [Google Scholar] [CrossRef]
- Simkova, K.; Grohar, M.C.; Pelacci, M.; Veberic, R.; Jakopic, J.; Hudina, M. The Effect of Freezing, Frozen Storage and Thawing on the Strawberry Fruit Composition. Int. J. Fruit. Sci. 2024, 24, 186–199. [Google Scholar] [CrossRef]
- Sielicka, M.; Pawlak, S. Wpływ rozpuszczalnika zastosowanego do ekstrakcji na oznaczoną zawartość związków fenolowych i aktywność prze-ciwutleniającą wytłoków z aronii. In Zagospodarowanie ubocznych produktów przemysłu spożywczego; Górecka, D., Pospiech, E., Eds.; Uniwersytet Przyrodniczy w Poznaniu: Poznań, Poland, 2016; ISBN 978-83-7160-836-0. [Google Scholar]
- Coşkun, N.; Sarıtaş, S.; Jaouhari, Y.; Bordiga, M.; Karav, S. The Impact of Freeze Drying on Bioactivity and Physical Properties of Food Products. Appl. Sci. 2024, 14, 9183. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Cristea, E.; Ghendov-Mosanu, A.; Patras, A.; Socaciu, C.; Pintea, A.; Tudor, C.; Sturza, R. The Influence of Temperature, Storage Conditions, pH, and Ionic Strength on the Antioxidant Activity and Color Parameters of Rowan Berry Extracts. Molecules 2021, 26, 3786. [Google Scholar] [CrossRef]
- Luo, P.; Li, F.; Liu, H.; Yang, X.; Duan, Z. Effect of Fucoidan-based Edible Coating on Antioxidant Degradation Kinetics in Strawberry Fruit during Cold Storage. J. Food Process Preserv. 2020, 44, e14381. [Google Scholar] [CrossRef]
- Yeshi, K.; Crayn, D.; Ritmejerytė, E.; Wangchuk, P. Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. Molecules 2022, 27, 313. [Google Scholar] [CrossRef]
- Tolić, M.T.; Jurčević, I.L.; Krbavčić, I.P.; Marković, K.; Vahčić, N. Phenolic Content, Antioxidant Capacity and Quality of Chokeberry (Aronia melanocarpa) Products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef]
- Vinogradova, Y.; Vergun, O.; Grygorieva, O.; Ivanišová, E.; Brindza, J. Comparative Analysis of Antioxidant Activity and Phenolic Compounds in the Fruits of Aronia Spp. Slovak J. Food Sci. 2020, 14, 393–401. [Google Scholar] [CrossRef]
- Vinogradova, Y.; Shelepova, O.; Vergun, O.; Grygorieva, O.; Kuklina, A.; Brindza, J. Differences Between Aronia medik. Taxa on the Morphological and Biochemical Characters. Environ. Res. Eng. Manag. 2019, 74, 43–52. [Google Scholar] [CrossRef]
- Thi, N.D.; Hwang, E.-S. Bioactive Compound Contents and Antioxidant Activity in Aronia (Aronia melanocarpa) Leaves Collected at Different Growth Stages. Prev. Nutr. Food Sci. 2014, 19, 204–212. [Google Scholar] [CrossRef]
- Ochmian, I.; Figiel-Kroczyńska, M.; Lachowicz, S. The Quality of Freeze-Dried and Rehydrated Blueberries Depending on Their Size and Preparation for Freeze-Drying. Acta Univ. Cibiniensis. Ser. E Food Technol. 2020, 24, 61–78. [Google Scholar] [CrossRef]
- Piecko, J.; Mieszczakowska-Frąc, M.; Celejewska, K.; Szwejda-Grzybowska, J. Impact of Ultrasound Pretreatment on Juice Yield and Bioactive Content in Juice Produced from Selected Berries Fruit. Foods 2024, 13, 1231. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.; Yang, K.; He, Q.; Wang, Y.; Sun, Y.; He, C.; Xiao, P. Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.) Berries from Different Varieties in China. Molecules 2021, 26, 7189. [Google Scholar] [CrossRef]
- Hassimotto, N.M.A.; Genovese, M.I.; Lajolo, F.M. Antioxidant Activity of Dietary Fruits, Vegetables, and Commercial Frozen Fruit Pulps. J. Agric. Food Chem. 2005, 53, 2928–2935. [Google Scholar] [CrossRef]
- Nthabiseng, L.K.; Adeyanju, A.A.; Bamidele, O.P. Effects of Frozen of Marula Fruits (Sclerocarya birrea) on Chemical, Antioxidant Activities, and Sensory Properties of Marula Fruit Juice. Heliyon 2023, 9, e20452. [Google Scholar] [CrossRef] [PubMed]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black Chokeberry (Aronia melanocarpa (Michx.) Elliot) Fruits and Functional Drinks Differ Significantly in Their Chemical Composition and Antioxidant Activity. J. Chem. 2018, 2018, 9574587. [Google Scholar] [CrossRef]
- Qian, M.C.; Wang, Y. Seasonal Variation of Volatile Composition and Odor Activity Value of‘Marion’(Rubus Spp. hyb) and‘Thornless Evergreen’(R. Laciniatus L.) Blackberries. J. Food Sci. 2005, 70, C13–C20. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, T.; Sun, L.; Qiao, Z.; Pan, H.; Zhong, Y.; Zhuang, Y. Recent Advances of Fermented Fruits: A Review on Strains, Fermentation Strategies, and Functional Activities. Food Chem. X 2024, 22, 101482. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Nunes, W.; De Oliveira, C.S.; Alcantara, G.B. Ethanol Determination in Frozen Fruit Pulps: An Application of Quantitative Nuclear Magnetic Resonance: qNMR for Ethanol Quantification in Frozen Fruit Pulps. Magn. Reson. Chem. 2016, 54, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Kim, K.; Lee, J.H.; Kim, H.J. Protection of Alcohol Dehydrogenase against Freeze–Thaw Stress by Ice-Binding Proteins Is Proportional to Their Ice Recrystallization Inhibition Property. Mar. Drugs 2020, 18, 638. [Google Scholar] [CrossRef]
- Sujka, K.; Koczon, P.; Górska, A.; Wirkowska, M.; Reder, M. Sensoryczne i Spektralne Cechy Wybranych Wyrobów Spirytusowych Poddanych Procesowi Liofilizacji. Żywność Nauka Technol. Jakość 2013, 20, 184–194. [Google Scholar]
- D’Agostino, M.F.; Sanz, J.; Sanz, M.L.; Giuffrè, A.M.; Sicari, V.; Soria, A.C. Optimization of a Solid-Phase Microextraction Method for the Gas Chromatography–Mass Spectrometry Analysis of Blackberry (Rubus ulmifolius Schott) Fruit Volatiles. Food Chem. 2015, 178, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Díaz De León-Sánchez, F.; Pelayo-Zaldívar, C.; Rivera-Cabrera, F.; Ponce-Valadez, M.; Ávila-Alejandre, X.; Fernández, F.J.; Escalona-Buendía, H.B.; Pérez-Flores, L.J. Effect of Refrigerated Storage on Aroma and Alcohol Dehydrogenase Activity in Tomato Fruit. Postharvest Biol. Technol. 2009, 54, 93–100. [Google Scholar] [CrossRef]
- Abouelenein, D.; Mustafa, A.M.; Angeloni, S.; Borsetta, G.; Vittori, S.; Maggi, F.; Sagratini, G.; Caprioli, G. Influence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams. Molecules 2021, 26, 4153. [Google Scholar] [CrossRef]
- Hirvi, T.; Honkanen, E. Analysis of the Volatile Constituents of Black Chokeberry (Aronia melanocarpa Ell.). J. Sci. Food Agric. 1985, 36, 808–810. [Google Scholar] [CrossRef]
- Tabaszewska, M.; Antoniewska, A.; Rutkowska, J.; Skoczylas, Ł.; Słupski, J.; Skoczeń-Słupska, R. Bioactive Components, Volatile Profile and In Vitro Antioxidative Properties of Taxus baccata L. Red Arils. Molecules 2021, 26, 4474. [Google Scholar] [CrossRef]
- Kraujalytė, V.; Leitner, E.; Venskutonis, P.R. Characterization of Aronia melanocarpa Volatiles by Headspace-Solid-Phase Microextraction (HS-SPME), Simultaneous Distillation/Extraction (SDE), and Gas Chromatography-Olfactometry (GC-O) Methods. J. Agric. Food Chem. 2013, 61, 4728–4736. [Google Scholar] [CrossRef]
- Bonin, S. Związki Powstające w Czasie Fermentacji Winiarskiej. Ferment. FRUITS Veg. Ind. 2018, 1, 23–25. [Google Scholar] [CrossRef]
- Yan, J.; Ban, Z.; Lu, H.; Li, D.; Poverenov, E.; Luo, Z.; Li, L. The Aroma Volatile Repertoire in Strawberry Fruit: A Review. J. Sci. Food Agric. 2018, 98, 4395–4402. [Google Scholar] [CrossRef]
- Lu, H.; Ban, Z.; Wang, K.; Li, D.; Li, D.; Poverenov, E.; Li, L.; Luo, Z. Aroma Volatiles, Sensory and Chemical Attributes of Strawberry (Fragaria × Ananassa Duch.) Achenes and Receptacle. Int. J. Food Sci. Tech. 2017, 52, 2614–2622. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, F.; Wang, L.; Niu, Y.; Chen, H.; Wang, H.; Xiao, Z. Characterization of the Key Aroma Volatile Compounds in Cranberry (Vaccinium macrocarpon Ait.) Using Gas Chromatography–Olfactometry (GC-O) and Odor Activity Value (OAV). J. Agric. Food Chem. 2016, 64, 4990–4999. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Silva, L.R.; Guedes De Pinho, P.; Gil-Izquierdo, A.; Valentão, P.; Silva, B.M.; Pereira, J.A.; Andrade, P.B. Volatile Profiling of Ficus carica Varieties by HS-SPME and GC–IT-MS. Food Chem. 2010, 123, 548–557. [Google Scholar] [CrossRef]
- Ubeda, C.; Callejón, R.M.; Hidalgo, C.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. Determination of Major Volatile Compounds during the Production of Fruit Vinegars by Static Headspace Gas Chromatography–Mass Spectrometry Method. Food Res. Int. 2011, 44, 259–268. [Google Scholar] [CrossRef]
- Wang, J.; Wei, B.; Xu, J.; Jiang, H.; Xu, Y.; Wang, C. Influence of Lactic Acid Fermentation on the Phenolic Profile, Antioxidant Activities, and Volatile Compounds of Black Chokeberry (Aronia melanocarpa) Juice. J. Food Sci. 2024, 89, 834–850. [Google Scholar] [CrossRef]
- Dennis, J.A.; Johnson, N.W.; Thorpe, T.W.; Wallace, S. Biocompatible α-Methylenation of Metabolic Butyraldehyde in Living Bacteria. Angew. Chem. Int. Ed. 2023, 62, e202306347. [Google Scholar] [CrossRef]
- Antoszkiewicz, Z.; Lipiński, K.; Purwin, C.; Pysera, B. Wpływ Kiełkowania Oraz Suszenia Ziarna Owsa Na Jakość Tłuszczu i Zawartość α-Tokoferolu. Zesz. Nauk. Uniw. Przyr. We Wrocławiu. Biol. I Hod. Zwierząt 2011, 62, 89–99. [Google Scholar]
- Yang, H.; Pu, R.; Yang, Y.; Dong, T.; Hua, Y.; Guo, L. Impact of Drying Method on Sensory, Physicochemical Properties and Biology Activity Evaluation of Boletus edulis Soup and Their Changes in Volatile Compounds. LWT 2025, 222, 117676. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, K.; Wang, M.; Li, R.; Dai, X.; Liu, Y.; Jiang, X.; Xia, T.; Gao, L. The Functional Characterization of Carboxylesterases Involved in the Degradation of Volatile Esters Produced in Strawberry Fruits. Int. J. Mol. Sci. 2022, 24, 383. [Google Scholar] [CrossRef]
- Das, P.C.; Heydari, M.M.; Baik, O.-D.; Zhang, L.; Tabil, L.G. Enhancing Drying Efficiency and Terpene Retention of Cannabis Using Cold Plasma Pretreatment. Ind. Crops Prod. 2025, 226, 120669. [Google Scholar] [CrossRef]
- Halagarda, M.; Kowa-Halagarda, K.; Popek, S. Ocena Wpływu Metody Utrwalania na Wybrane Determinanty Jakości Jabłek. Żywność Nauka Technol. Jakość 2023, 30, 211–225. [Google Scholar] [CrossRef]
Treatment | Diameter [mm] | Weight [g] |
---|---|---|
Fresh | 7.8 ± 0.7 c | 1.04 c |
Frozen | 7.4 ± 0.7 c | 0.81 b |
Dried | 5.5 ± 0.7 a | 0.25 a |
Freeze-dried | 6.7 ± 0.8 b | 0.25 a |
Treatment | L* | a* | b* |
---|---|---|---|
Fresh | 24.64 ± 0.5 d | 2.56 ± 0.1 ab | −2.21 ± 0.1 a |
Frozen | 19.82 ± 0.8 bc | 3.24 ± 0.4 b | −2.12 ± 0.2 a |
Dried | 18.56 ± 1.4 ab | 2.38 ± 0.3 a | −2.17 ± 0.5 a |
Freeze-dried | 24.44 ± 1.0 d | 3.36 ± 0.4 b | −1.54 ± 0.4 b |
VOC | IR MTX-5 | Relative Percentage of Peak Areas in the Chromatographic Profiles of Volatile Compounds (% ± SD) | |||
---|---|---|---|---|---|
Fresh | Frozen | Dried | Freeze-Dried | ||
acetaldehyde | 433 | 4.70 ± 1.75 c | 1.54 ± 0.25 b | 0.81 ± 0.10 a | 0.89 ± 0.07 a |
ethanol | 461 | 39.98 ± 5.81 c | 9.69 ± 1.21 ab | 11.99 ± 1.51 b | 7.14 ± 1.32 a |
propanal | 488 | 1.50 ± 0.18 c | 1.54 ± 0.15 c | 0.76 ± 0.10 b | 0.37 ± 0.02 a |
2-methylpropanal | 552 | 0.15 ± 0.03 c | 0.27 ± 0.07 b | 0.26 ± 0.04 b | 0.08 ± 0.01 a |
butanal | 566 | 0.56 ± 0.05 d | 0.31 ± 0.06 c | 0.19 ± 0.03 b | 0.09 ± 0.00 a |
butane-2,3-dione | 587 | 0.12 ± 0.02 c | 0.12 ± 0.03 c | 0.08 ± 0.02 b | 0.05 ± 0.01 a |
2-methylfuran | 601 | 0.45 ± 0.09 b | - | 0.22 ± 0.05 a | - |
ethyl acetate | 614 | 0.16 ± 0.02 d | 0.05 ± 0.01 b | 0.12 ± 0.03 c | 0.01 ± 0.00 a |
methyl propanoate | 626 | 0.08 ± 0.01 c | 0.04 ± 0.00 b | 0.04 ± 0.00 b | 0.01 ± 0.00 a |
1-propanethiol | 634 | 0.53 ± 0.11 b | - | 0.23 ± 0.05 a | - |
2-butenal | 656 | 0.08 ± 0.01 a | 0.22 ± 0.13 b | 0.30 ± 0.02 b | 0.07 ± 0.02 a |
3-methylbutanal | 666 | 0.05 ± 0.01 a | 0.16 ± 0.04 b | 0.20 ± 0.03 c | 0.05 ± 0.01 a |
methyl isobutyrate | 683 | 0.40 ± 0.07 c | 0.25 ± 0.03 b | 0.37 ± 0.04 c | 0.07 ± 0.01 a |
pentane-2-one | 690 | 0.70 ± 0.04 c | 0.37 ± 0.03 b | 2.76 ± 0.31 d | 0.08 ± 0.01 a |
2,3-pentanedione | 701 | 0.97 ± 0.06 a | 0.94 ± 0.05 a | 1.64 ± 0.20 b | 1.73 ± 0.18 b |
2-pentenal | 745 | 2.06 ± 0.51 a | 1.52 ± 0.17 a | 30.54 ± 4.06 b | 1.20 ± 0.10 a |
pentanol | 770 | 0.44 ± 0.03 d | 0.22 ± 0.03 c | 0.12 ± 0.03 b | 0.05 ± 0.02 a |
hexanal | 803 | 9.22 ± 1.28 c | 28.4 ± 2.66 d | 0.25 ± 0.03 a | 1.37 ± 0.15 b |
(E)-2-hexenal | 816 | 0.48 ± 0.08 b | - | 0.11 ± 0.02 a | 0.08 ± 0.01 a |
(Z)-3-hexen-1-ol | 862 | 11.41 ± 0.50 c | 16.96 ± 1.94 d | 0.03 ± 0.01 a | 1.02 ± 0.14 b |
hexanol | 872 | 15.13 ± 2.26 d | 4.72 ± 0.87 c | 0.03 ± 0.01 a | 0.34 ± 0.09 b |
benzaldehyde | 979 | 9.72 ± 0.64 a | 26.37 ± 2.53 b | 47.48 ± 7.39 c | 84.02 ± 1.65 d |
α-phellandrene | 1006 | 0.28 ± 0.08 a | 0.32 ± 0.07 a | 0.24 ± 0.03 a | - |
p-cymenene | 1009 | 0.39 ± 0.04 b | 0.42 ± 0.11 b | 0.04 ± 0.01 a | 0.05 ± 0.01 a |
linalool | 1056 | 0.32 ± 0.04 d | 0.25 ± 0.04 c | 0.13 ± 0.02 b | 0.06 ± 0.01 a |
anethole | 1113 | 0.15 ± 0.03 b | 0.13 ± 0.05 b | 0.02 ± 0.00 a | 0.01 ± 0.00 a |
butyl benzoate | 1343 | 0.16 ± 0.03 b | 0.15 ± 0.03 b | 0.02 ± 0.00 a | 0.02 ± 0.00 a |
Group 1 | Group 2 | Distances |
---|---|---|
Freeze-dried | Dried | 80.95 |
Fresh | Frozen | 88.57 |
Dried | Frozen | 97.18 |
Fresh | Dried | 122.22 |
Freeze-dried | Frozen | 130.34 |
Freeze-dried | Fresh | 170.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górska-Horczyczak, E.; Jamróz, E.; Żbik, K.; Markowska-Radomska, A.; Zalewska, M. Effects of Preservation Methods on the Volatile Compound Profile and Physicochemical Properties of Aronia melanocarpa Berries. Appl. Sci. 2025, 15, 10470. https://doi.org/10.3390/app151910470
Górska-Horczyczak E, Jamróz E, Żbik K, Markowska-Radomska A, Zalewska M. Effects of Preservation Methods on the Volatile Compound Profile and Physicochemical Properties of Aronia melanocarpa Berries. Applied Sciences. 2025; 15(19):10470. https://doi.org/10.3390/app151910470
Chicago/Turabian StyleGórska-Horczyczak, Elżbieta, Ewelina Jamróz, Klara Żbik, Agnieszka Markowska-Radomska, and Magdalena Zalewska. 2025. "Effects of Preservation Methods on the Volatile Compound Profile and Physicochemical Properties of Aronia melanocarpa Berries" Applied Sciences 15, no. 19: 10470. https://doi.org/10.3390/app151910470
APA StyleGórska-Horczyczak, E., Jamróz, E., Żbik, K., Markowska-Radomska, A., & Zalewska, M. (2025). Effects of Preservation Methods on the Volatile Compound Profile and Physicochemical Properties of Aronia melanocarpa Berries. Applied Sciences, 15(19), 10470. https://doi.org/10.3390/app151910470